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Abstract. We study the low lying zeros of GL(2) × GL(2) Rankin-Selberg L-functions.
Assuming the Generalized Riemann Hypothesis, we compute the 1-level density of the low-
lying zeroes of L(s, f ⊗ g) averaged over families of Rankin-Selberg convolutions, where
f, g are cuspidal newforms with even weights k1, k2 and prime levels N1, N2, respectively.
The Katz-Sarnak density conjecture predicts that in the limit, the 1-level density of suitable
families of L-functions is the same as the distribution of eigenvalues of corresponding families
of random matrices. The 1-level density relies on a smooth test function ϕ whose Fourier

transform ϕ̂ has compact support. In general, we show the Katz-Sarnak density conjecture

holds for test functions ϕ with supp ϕ̂ ⊂ (− 1
2 ,

1
2 ). When N1 = N2, we prove the density

conjecture for supp ϕ̂ ⊂ (− 5
4 ,

5
4 ) when k1 ̸= k2, and supp ϕ̂ ⊂ (− 29

28 ,
29
28 ) when k1 = k2. A

secondary term contributes to the 1-level density when the support of ϕ̂ exceeds (−1, 1),
which makes these results particularly interesting. The main idea which allows us to extend

the support of ϕ̂ beyond (−1, 1) is an analysis of the products of Kloosterman sums arising
from the Petersson formula. We also carefully treat the contributions from poles in the
case where k1 = k2. Our work provides conditional lower bounds for the proportion of
Rankin-Selberg L-functions which are non-vanishing at the central point and for a related
conjecture of Keating and Snaith on central L-values.
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1. Introduction

Since Montgomery and Dyson’s discovery that the two point correlation of the zeros of
the Riemann zeta function agrees with the pair correlation function for eigenvalues of the
Gaussian Unitary Ensemble (see [Mon73]), the connection between the zeros of L-functions
and the eigenvalues of random matrices has been a major area of study. It is now widely
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believed that the statistical behavior of families of L-functions can be modeled by ensembles
of random matrices. Based on the observation that the spacing statistics of high zeros
associated with cuspidal L-functions agree with the corresponding statistics for eigenvalues
of random unitary matrices under Haar measure (see [RS96], for example), it was originally
believed that only the unitary ensemble was important to number theory. However, Katz and
Sarnak [KS99a, KS99b] showed that these statistics are the same for all classical compact
groups. These statistics, the n-level correlations, are unaffected by finite numbers of zeros.
In particular, they fail to identify differences in behavior near s = 1/2.

The n-level density statistic was introduced to distinguish the behavior of families of L-
functions close to the central point. Based partially on an analogy with the function field
setting, Katz and Sarnak conjectured that the low-lying zeros of families of L-functions
behave like the eigenvalues near 1 of classical compact groups (unitary, symplectic, and
orthogonal). The behavior of the eigenvalues near 1 is different for each matrix group. A
growing body of evidence has shown that this conjecture holds for test functions with suitably
restricted support for a wide range of families of L-functions. For a non-exhaustive list,
see [AM15, AAI+15, BBD+17, CDG+22, DFS22, DPR23, DM06, DM09, ERGR13, FM15,
Gao14, Gü05, HM07, ILS00, KR19, Mil04, MP12, ÖS93, ÖS99, RR11, Roy01, Rub01, SST16,
ST16, Wax21, Yan09, You05].

We study the 1-level density of families of Rankin-Selberg L-functions, which are the
L-functions associated with Rankin-Selberg convolutions of cusp forms. In particular, let
H∗

k(N) denote the set of cusp forms of weight k which are newforms of prime level N (see
the next section for more detail). We assume that the level N is prime in order to make
computations easier, but our results should hold for any N ; see [BBD+17].

Let ϕ be an even smooth test function whose Fourier transform has compact support.
Take f ∈ H∗

k1
(N1), g ∈ H∗

k2
(N2), and let L(s, f ⊗ g) be the Rankin-Selberg convolution

L-function. See Section 3.1 for a precise definition. By the work of Rankin [Ran39] and
Selberg [Sel40], L(s, f ⊗ g) is holomorphic in the entire complex plane except for a simple
pole at s = 1 when f = g. Here g is the complex conjugate of g. Note that since our forms
have trivial central character, we have that f = f so that L(s, f ⊗ g) has a pole if and only
if f = g. We are interested in the quantity

D(f ⊗ g;ϕ) :=
∑
ρf⊗g

ϕ
(γf⊗g

2π
logR

)
(1.1)

where the sum is over the non-trivial zeros ρf⊗g = 1
2

+ iγf⊗g of L(s, f ⊗ g) and R is the
analytic conductor of f ⊗ g. We have that

R =

{
[N1, N2]

2(k1 − k2)
2(k1 + k2)

2 k1 ̸= k2

[N1, N2]
2k21 k1 = k2.

(1.2)

See Section 3.1 for more information on the conductor. Because much of our analysis relies

on bounding sums over primes smaller than Rσ where supp ϕ̂ ⊂ (−σ, σ), we are able to obtain
better results when the conductor is small. These small conductor cases allow us to obtain
Fourier support up to and beyond (−1, 1) below, while we are restricted to (−1/2, 1/2) in
general.

For the purposes of this paper, we assume the Generalized Riemann Hypothesis (GRH)
for L(s, f ⊗ g), so that γf⊗g is always real. We assume GRH for L(s, f ⊗ g) as well as
L(s, sym2(f)), L(s, sym2(f)) and L(s, sym2(f)⊗sym2(g)) in order to obtain better estimates
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on prime sums in Section 3, but this also makes our results easier to interpret. As such, all
of the results stated in this paper are dependent on GRH for these L-functions. In order to
prove Theorem 1.2, we also assume GRH for Dirichlet L-functions.

We are interested in averages of D(f ⊗ g;ϕ) over families of Rankin-Selberg convolutions
of cusp forms. In particular, let

H(k1, N1, k2, N2) = {f ⊗ g | f ∈ H∗
k1

(N1), g ∈ H∗
k2

(N2)} (1.3)

be the family of Rankin-Selberg convolutions of cusp forms fromH∗
k1

(N1) andH∗
k2

(N2). These
are GL(4) automorphic forms, which are difficult to study in general. However, by studying
Rankin-Selberg convolutions, we are able to apply the GL(2) Petersson trace formula in
order to make our calculations tractable. As such, our paper mostly follows the method of
[ILS00], where the 1-level density was studied for families of cusp forms. We utilize results
from [ILS00] wherever possible for brevity. The main novelty in our method comes from
studying the interaction between the terms arising from applying the Petersson formula,
and from our analysis of the contribution from the poles (which did not appear in [ILS00]).

The families of forms we study exhibit symplectic symmetry, as shown by Dueñez and
Miller [DM09]. Dueñez and Miller study convolutions of families of L-functions in general,
and are able to determine the symmetry type for a large variety of families. However, their
results do not give explicit bounds on the support, and their methods are not strong enough
in order to obtain the support proved in this paper. In particular, assuming GRH and using
the estimates in [ILS00] to obtain explicit results for our family of study, the maximum
support obtainable using the methods of [DM09] is (−1/5, 1/5) in general, with an extension
to (−2/5, 2/5) in certain cases. See Remark 3.2 for details. Notably, this is not strong
enough to show that a positive proportion of L-functions in the family vanish at the central
point, and weaker than the results of this paper. Dueñez and Miller [DM06] also study
convolutions of families of cusp forms by a single, fixed, Hecke-Maass cusp form, but do
not obtain an explicit bound on the support of the test function. Shin and Templier [ST16]
study 1-level densities for very general families of automorphic forms, but also do not obtain
explicit support.

The density function for the symplectic group equals

W (Sp)(x) := 1 − sin 2πx

2πx
. (1.4)

The Katz-Sarnak density conjecture predicts that in the limit, as D(f ⊗ g, ϕ) is averaged
over an increasingly large family, the 1-level density equals∫ ∞

−∞
ϕ(x)W (Sp(x))dx =

∫ ∞

−∞
ϕ̂(y)Ŵ (Sp(y))dy. (1.5)

The Fourier transform of the symplectic density function is

Ŵ (Sp)(y) = δ(y) − 1

2
η(y), (1.6)

where δ is the Dirac delta function and

η(y) :=


1 |y| < 1
1
2

|y| = 1

0 |y| > 1.

(1.7)
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It follows that if supp ϕ̂ ⊂ (−1, 1) then∫ ∞

−∞
ϕ(x)W (Sp(x))dx = ϕ̂(0) − 1

2
ϕ(0). (1.8)

Because of the discontinuity of Ŵ (Sp)(y) at ±1, results which allow us to take the support

of ϕ̂ beyond the interval (−1, 1) are particularly interesting. We give these in Theorem 1.2.
We first state a general result with more restricted support.

Theorem 1.1. Assume GRH. Fix a test function ϕ with supp ϕ̂ ⊂ (−1/2, 1/2), let k1, k2 be
even integers and let N1, N2 be primes. We have

lim
N1N2→∞

1

|H(k1, N1, k2, N2)|
∑

f⊗g∈H(k1,N1,k2,N2)

D(f ⊗ g;ϕ) =

∫ ∞

−∞
ϕ(x)W (Sp(x))dx. (1.9)

Note that we just need N1N2 → ∞, so that we can hold N1 or N2 fixed and let the other
grow, or allow them both to grow in unison.

When N1 = N2, we are able to extend the support because the analytic conductor of our
cusp forms is smaller; see (1.2).

Theorem 1.2. Assume GRH and let k1, k2 be even integers. If k1 ̸= k2, fix a test function

ϕ with supp ϕ̂ ⊂ (−5/4, 5/4). If k1 = k2, then take supp ϕ̂ ⊂ (−29/28, 29/28). Then as
N → ∞ through the primes, we have

lim
N→∞

1

|H(k1, N, k2, N)|
∑

f⊗g∈H(k1,N,k2,N)

D(f ⊗ g;ϕ) =

∫ ∞

−∞
ϕ(x)W (Sp(x))dx. (1.10)

Remark 1.3. When k1 = k2, for each f ∈ H∗
k1

(N), the L-function L(s, f ⊗ f) is in our
family and has a pole at s = 1. This pole appears in the explicit formula, and contributes

to the 1-level density if the support of ϕ̂ exceeds (−1, 1). See Remark 4.4 for more details.
In general, this phenomenon makes it difficult to obtain 1-level density results with support

exceeding (−1, 1) when the family contains non-entire L-functions, and there are only a
limited number of results of this type. Fouvry and Iwaniec [FI03] study Hecke L-functions
(some of which have poles) and are able to obtain support (−4/3, 4/3) by utilizing GRH and
additional averaging.

If we take the weight of our forms to infinity, we can prove a similar result.

Theorem 1.4. Assume GRH. Fix a test function ϕ with supp ϕ̂ ⊂ (−1/2, 1/2) and let N1, N2

be 1 or prime. Then we have

lim
k1k2→∞

1

|H(k1, N1, k2, N2)|
∑

f⊗g∈H(k1,N1,k2,N2)

D(f ⊗ g;ϕ) =

∫ ∞

−∞
ϕ(x)W (Sp(x))dx. (1.11)

If k1, k2 → ∞ with |k1 − k2| bounded, we can take supp ϕ̂ ⊂ (−1, 1).

In the above theorem, we can take Fourier support (−1, 1) when |k1 − k2| is bounded
because in this case the analytic conductor for L(s, f ⊗ g) is small. When |k1 − k2| is
bounded, the conductor is of size k21. When |k1 − k2| is unbounded, the conductor can be as
large as max(k41, k

4
2).
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As noted in [ILS00], an application of 1-level density results is to lower bound the propor-
tion of L-functions in a given family which do not vanish at the central point. We use the
test function

ϕ(x) =

(
sin(πσx)

πσx

)2

, (1.12)

which has Fourier transform

ϕ̂(y) =

{
1
σ
− |y|

σ2 |y| < σ

0 |y| ≥ σ.
(1.13)

Note that this test function is not optimal for bounding order of vanishing when σ > 1, so that
the constants in (1.16) and (1.17) can be slightly improved. See [BCD+23, CCM22, DM22]
for work on optimal test functions. As shown in [ILS00], we have that the proportion of
L-functions which do not vanish at the central point is lower bounded by{

5
4
− 1

2σ
σ < 1

1 − 1
4σ2 σ ≥ 1.

(1.14)

Combining this bound with the earlier theorems gives the following result.

Corollary 1.5. Assume GRH. Set

Z(k1, N1, k2, N2) =
|{f ⊗ g ∈ H(k1, N1, k2, N2) : L(1/2, f ⊗ g) ̸= 0}|

|H(k1, N1, k2, N2)|
(1.15)

to be the proportion of L-functions in the family which are nonvanishing at the central point.
We have that

lim
N→∞
k1 ̸=k2

Z(k1, N, k2, N) ≥ 21

25
= 0.84 (1.16)

lim
N→∞

Z(k,N, k,N) ≥ 645

841
= 0.7669 . . . (1.17)

lim
k1,k2→∞

|k1−k2| bounded

Z(k1, N1, k2, N2) ≥
3

4
= 0.75 (1.18)

lim
k1N1k2N2→∞

Z(k1, N1, k2, N2) ≥
1

4
= 0.25. (1.19)

In the last limit we may take any of k1, N2, k2, N2 to infinity. Because our L-functions have
even functional equation, it is conjectured Z(k1, N1, k2, N2) = 1 in the limit. In fact, this
would follow from the conjecture of Keating and Snaith described below. [KMV02] show
that Z(k1, N1, k2, N2) is positive in the limit but do not obtain an explicit constant. We are
able to give an explicit (but conditional) lower bound.

As was recently demonstrated by Radziwi l l and Soundararajan [RS24], we can apply
Corollary 1.5 to obtain conditional lower bounds for a conjecture of Keating and Snaith
[KS00] on the distribution of L(1/2, f ⊗ g). First, set

N (k1, N1, k2, N2, α, β) =

∣∣∣{f ⊗ g ∈ H(k1, N1, k2, N2) :
logL(1/2,f⊗g)− 1

2
log logR√

log logR
∈ (α, β)

}∣∣∣
|H(k1, N1, k2, N2)|

(1.20)
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where we say that log 0 = −∞ by convention. The Keating-Snaith conjecture predicts that
as R → ∞

N (k1, N1, k2, N2, α, β) =
1√
2π

∫ β

α

e−x2/2dx+ o(1). (1.21)

In other words, logL(1/2, f ⊗ g) should be distributed approximately normally with mean
1
2

log logR and variance log logR. The mean of the distribution is expected to depend on
the symmetry type of the family. For orthogonal families, the mean is predicted to be
−1

2
log logR, as opposed to +1

2
log logR for our symplectic family. Radziwi l l and Soundarara-

jan show that assuming GRH, we can obtain lower bounds for the Keating-Snaith conjecture
using lower bounds for the proportion of L-functions in a family which are non-vanishing at
the central point.

Corollary 1.6. Assume GRH and fix an interval (α, β). Then as R → ∞, we have that

N (k1, N1, k2, N2, α, β) ≥ c0
1√
2π

∫ β

α

e−x2/2dx+ o(1) (1.22)

where

c0 =


0.84 N1 = N2 → ∞ with k1 ̸= k2 fixed

0.7669 N1 = N2 → ∞ with k1 = k2 fixed

0.75 k1, k2 → ∞ with |k1 − k2| bounded and N1, N2 fixed

0.25 in general.

(1.23)

Corollary 1.6 follows from modifying the methods of [RS24] to the family H(k1, N1, k2, N2)
and using the constants in Corollary 1.5. These modifications are fairly straightforward, so
we omit details to avoid replicating their arguments.

The structure of this paper is as follows. In Section 2, we state some important definitions
and review several facts about cusp forms from [ILS00]. In Section 3, we go over Rankin-
Selberg L-functions and develop the explicit formula relating the 1-level density to prime
sums. In Section 4, we apply the Petersson trace formula to average the explicit formula
over our family. Then, in Section 5 we prove Theorems 1.1 and 1.4. The remainder of the
paper is devoted to proving Theorem 1.2. In Section 6, we use GRH for Dirichlet L-functions
to eliminate the Kloosterman sums which arise from the Petersson formula, and carefully
analyze the remaining character sums. In the process, we develop new identities related
to sums over products of Gauss, Kloosterman, and Ramanujan sums. Then in Section 7,
we prove Theorem 1.2 in the case where k1 ̸= k2 by evaluating the Bessel integral in order
to obtain a closed form for an off-diagonal term which only contributes for support outside
(−1, 1). Lastly, in Section 8, we complete the proof of Theorem 1.2 in the case where k1 = k2
by handling the contribution from the poles.

Acknowledgments. The author would like to thank Steven J. Miller for supervising this
project and Leo Goldmakher and Simran Khunger for helpful comments.

2. Preliminaries

In this section we go over some basic facts which will be useful later in the paper.
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2.1. Notation. Throughout this paper, we use the following notation for sums over residue
classes: ∑

a(q)

f(a) =

q∑
a=1

f(a) (2.1)

∑
a(q)

∗
f(a) =

q∑
a=1

(a,q)=1

f(a). (2.2)

Often the restriction to (a, q) = 1 is implicit when the summand involves a Dirichlet character
modulo q, as in this case f(a) = 0 if (a, q) > 1.

Definition 2.1 (Gauss Sums). For χ a character modulo q and e(x) = e2πix,

Gχ(n) :=
∑
a(q)

χ(a)e(an/q). (2.3)

By Theorem 9.12 of [MV07], we have that

|Gχ(n)| ≤ (n, q)
√
q. (2.4)

Definition 2.2 (Ramanujan Sums). If χ = χ0 (the principal character modulo q) in (2.3),
then Gχ0(n) becomes the Ramanujan sum

R(n, q) :=
∑∗

a(q)

e(an/q) =
∑
d|(n,q)

µ(q/d)d. (2.5)

The Ramanujan sum satisfies the following identity:

R(n, q) = µ

(
q

(q, n)

)
φ(q)

φ
(

q
(q,n)

) . (2.6)

Definition 2.3 (Kloosterman Sums). For integers m and n,

S(m,n; q) :=
∑∗

d(q)

e

(
md

q
+
nd

q

)
, (2.7)

where dd ≡ 1 mod q.

The Kloosterman sum satisfies the Weil bound

|S(m,n; q)| ≤ (m,n, q)

√
min

{
q

(m, q)
,

q

(n, q)

}
τ(q), (2.8)

where τ(q) is the number of positive divisors of q; see Equation 2.13 of [ILS00].

Definition 2.4 (Fourier Transform). We use the following normalization:

ϕ̂(y) :=

∫ ∞

−∞
ϕ(x)e−2πixy dx, ϕ(x) :=

∫ ∞

−∞
ϕ̂(y)e2πixy dy. (2.9)

Definition 2.5 ((Infinite) GCD). For x, y ∈ Z, let (x, y) denote the greatest common divisor
of x and y. Set (x, y∞) = supn∈N(x, yn) and (x∞, y) = supn∈N(xn, y).
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The Bessel function of the first kind occurs frequently in this paper, and so we collect here
some standard bounds for it from (2.11) of [ILS00] and Lemma 2.6 of [HM07].

Lemma 2.6. Let k ≥ 2 be an integer. The Bessel function satisfies

(1) Jk−1(x) ≪ 1,
(2) Jk−1(x) ≪ x−1/2

(3) Jk−1(x) ≪ min
(
1, x

k

)
k−1/3,

(4) Jk−1(x) ≪ x2−k, 0 < x ≤ k
3
.

Throughout the paper, there will be a special case when the weights and levels of the two
families we convolve are the same, as in this case some of the L-functions in the family have
poles. We use the following indicator function to indicate this.

Definition 2.7. We have

δpole := δpole(k1, N1, k2, N2) :=

{
1 (k1, N1) = (k2, N2)

0 otherwise.
(2.10)

2.2. Cusp forms. We recall some important facts about cusp forms from [ILS00]. For more
information on cusp forms, see [Iwa97, Ono04, DS05]. Let Sk(N) denote the set of cusp forms
of even weight k and prime level N for the Hecke congruence subgroup Γ0(N). Note that we
assume the level N is prime, but most of the arguments should hold for squarefree level N as
in [ILS00]. These are cusp forms for the congruence subgroup Γ1(N) with trivial nebentypus
(central character). Each f ∈ Sk(N) has Fourier expansion

f(z) =
∞∑
n=1

af (n)e(nz). (2.11)

If f is a newform, then it is a fact that af (1) ̸= 0, so we can normalize f so that af (1) = 1.
Let H∗

k(N) denote the set of f ∈ Sk(N) which are newforms of level N normalized so that
af (1) = 1. Set

λf (n) := af (n)n−(k−1)/2. (2.12)

Each f ∈ H∗
k(N) is an eigenfunction of all the Hecke operators Tn with eigenvalue λf (n).

The Hecke eigenvalues are multiplicative, and in particular we have

λf (m)λf (n) =
∑

d|(m,n)
(d,N)=1

λf

(mn
d2

)
(2.13)

so that λf (m)λf (n) = λf (mn) if (m,n) = 1.
Let H∗

k(N) denote the set of f ∈ Sk(N) which are newforms of level N and which are
normalized so that af (1) = 1. Corollary 2.14 of [ILS00] characterizes the size of the set
H∗

k(N).

Lemma 2.8 ([ILS00], Corollary 2.14). Let H∗
k(N) denote the set of normalized cusp forms

which are newforms of level N . Then

|H∗
k(N)| =

k − 1

12
φ(N) +O

(
(kN)2/3

)
. (2.14)
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2.3. Petersson trace formula. Essential to our results will be the Petersson trace formula
[Pet32], which allows us to calculate averages over Fourier coefficients. Set

ψf (n) :=

(
Γ(k − 1)

(4πn)k−1

)1/2

||f ||−1af (n) (2.15)

where ||f ||2 = ⟨f, f⟩ is the Petersson inner product on Sk(N), defined as

⟨f, g⟩ =

∫
Γ0(N)\H

f(z)g(z)yk−2dxdy, z = x+ iy. (2.16)

Next, put

∆k,N(m,n) :=
∑

f∈Bk(N)

ψf (m)ψf (n) (2.17)

where the sum is over an orthogonal basis Bk(N) for Sk(N). The classical Petersson formula
gives

∆k,N(m,n) = δ(m,n) + 2πik
∞∑
b=1

S(m,n; bN)

bN
Jk−1

(
4π

√
mn

bN

)
. (2.18)

[ILS00] gives another version of the Petersson formula which will be useful later.

Lemma 2.9 ([ILS00], Lemma 2.7). Set

ν(N) := [Γ0(1) : Γ0(N)] = N
∏
p|N

(
1 + p−1

)
(2.19)

and define the following zeta functions

Z(s, f) :=
∞∑
n=1

λf (n2)n−s, ZN(s, f) :=
∑
n|N∞

λf (n2)n−s. (2.20)

Let (m,n,N) = 1 and (mn,N2)|N . Then

∆k,N(m,n) =
12

(k − 1)N

∑
LM=N

∑
f∈H∗

k(M)

λf (m)λf (n)

ν((mn,L))

ZN(1, f)

Z(1, f)
. (2.21)

Of particular interest to us are the pure sums

∆∗
k,N(n) :=

∑
f∈H∗

k(N)

λf (n). (2.22)

We use the following result from [ILS00].

Lemma 2.10 ([ILS00], Proposition 2.11). If (n,N2)|N , then

∆∗
k,N(n) =

k − 1

12

∑
LM=N

µ(L)M

ν((n, L))

∑
(m,M)=1

m−1∆k,M(m2, n). (2.23)

Remark 2.11. In our case when N is prime, the main contribution to (2.21) and (2.23)
comes from when M = N . If we fix k and take N → ∞, then the M = 1 term is O(1), and
it is clear from our application of the Petersson formula in Section 4 (see (4.3) and (4.8) in
particular) that the M = 1 term does not contribute in the limit. If we take k → ∞ as in
Theorem 1.4, we show in Section 5 that the M = N term vanishes, and showing that the
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M = 1 term vanishes is nearly identical. Thus for the remainder of the paper we will ignore
the M = 1 term for simplicity.

We split the sum into two pieces as

∆∗
k,N(n) = ∆′

k,N(n) + ∆∞
k,N(n) (2.24)

where

∆′
k,N(n) =

(k − 1)N

12

∑
(m,N)=1
m≤Y

m−1∆k,N(m2, n) (2.25)

and ∆∞
k,N(n) is the complementary sum (the terms with m > Y ). Here, Y is a parameter

which we set to (k1k2N1N2)
ϵ in Section 5.

Remark 2.12. [ILS00] introduces an additional parameter X into the sums ∆′ and ∆∞,
which we avoid by eliminating the terms with M ̸= N (see Remark 2.11). This means we
may take any X ≥ 1 when using bounds from [ILS00]. Using X = (k1k2N1N2)

ϵ is sufficient.

3. The explicit formula

In this section we develop the explicit formula for Rankin-Selberg L-functions to relate the
1-level densities to sums over Fourier coefficients. Many of our results about Rankin-Selberg
L-functions come from [Li79] and Section 4 of [KMV02].

3.1. Convolution L-functions. We consider two families of cusp formsH∗
k1

(N1) andH∗
k2

(N2),
both with even weights k1 and k2 and prime levels N1 and N2.

Let f ∈ H∗
k1

(N1) and g ∈ H∗
k2

(N2). We are interested in studying the convolution f ⊗ g.
As the forms in our original family are self–dual, the convolution f ⊗ g is as well. The
Rankin-Selberg convolution L-function is

L(s, f ⊗ g) : = L(2s, χN1N2
0 )

∑
n≥1

λf (n)λg(n)

ns
(3.1)

=
∏
p

2∏
i=1

2∏
j=1

(
1 − αf,i(p)αg,j(p)p

−s
)−1

,

where χN
0 denotes the principal character modulo N and αf,i are the roots of the equation

x2 − λf (p)x+ χN1
0 (p) = 0. (3.2)

The analogous definition holds for αg,j(p). We set

L∞(s, f ⊗ g) :=

(
[N1, N2]

4π2

)s

Γ

(
s+

|k1 − k2|
2

)
Γ

(
s+

k1 + k2
2

− 1

)
. (3.3)

By the duplication formula for the gamma function, we can write

L∞(s, f ⊗ g) =

(
[N1, N2]

π2

)s
2max(k1,k2)

8π
Γ

(
s

2
+

|k1 − k2|
4

)
Γ

(
s

2
+

|k1 − k2| + 2

4

)
× Γ

(
s

2
+
k1 + k2 − 2

4

)
Γ

(
s

2
+
k1 + k2

4

)
. (3.4)

The completed L-function is

Λ(s, f ⊗ g) := L∞(s, f ⊗ g)L(s, f ⊗ g). (3.5)
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It satisfies the functional equation

Λ(s, f ⊗ g) = Λ(1 − s, f ⊗ g). (3.6)

3.2. Explicit formula. Let ϕ be an even test function whose Fourier transform is compactly
supported in some fixed interval (−σ, σ). Set

D(f ⊗ g;ϕ) :=
∑
ρf⊗g

ϕ
(γf⊗g

2π
logR

)
(3.7)

as in (1.1), where the sum is over the nontrivial zeros ρf⊗g = 1
2

+ iγf⊗g of L(s, f ⊗ g). R
is a normalization factor which we set to the analytic conductor of our L-functions. The
conductor is

R =

{
[N1, N2]

2(k1 − k2)
2(k1 + k2)

2 k1 ̸= k2

[N1, N2]
2k21 k1 = k2.

(3.8)

which comes from the gamma factors in (3.4). The conductor naturally appears in the
explicit formula in (3.11).

We derive the explicit formula as in Section 4 of [ILS00]. We apply the argument principle
to Λ(s, f ⊗ g) multiplied by the normalized test function

ϕ

((
s− 1

2

)
logR

2πi

)
. (3.9)

If f ̸= g then by (4.11) of [ILS00] we have

D(f ⊗ g;ϕ) =
A

logR
− 2

∑
p

∞∑
ν=1

(∑
i,j

αν
f,i(p)α

ν
g,j(p)

)
ϕ̂

(
ν log p

logR

)
p−ν/2 log p

logR
(3.10)

where

A = ϕ̂(0) logR +O(1). (3.11)

If f = g, there is an additional term from a pole at s = 1. The contribution of the pole is
2ϕ
(
logR
4πi

)
, where we extend the definition of ϕ to C using the inverse Fourier transform:

ϕ(z) =

∫ ∞

−∞
ϕ̂(y)e2πizydy, z ∈ C. (3.12)

By the Ramanujan conjectures for f and g, we have that |αf,i(p)|, |αg,j(p)| ≤ 1, so the
terms with ν ≥ 3 in (3.10) are O

(
log−1R

)
. For the terms with ν = 1, we have that∑

i,j

αf,i(p)αg,j(p) =

(∑
i

αf,i(p)

)(∑
j

αg,j(p)

)
(3.13)

= λf (p)λg(p).

For the ν = 2 terms, we have that∑
i,j

α2
f,i(p)α

2
g,j(p) =

(∑
i

α2
f,i(p)

)(∑
j

α2
g,j(p)

)
(3.14)

=
(
λf (p2) − χN1

0 (p)
) (
λg(p

2) − χN2
0 (p)

)
.
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Putting this all together we have that

D(f ⊗ g;ϕ) = ϕ̂(0) −
∑
p

λf (p)λg(p)ϕ̂

(
log p

logR

)
2 log p

√
p logR

(3.15)

−
∑
p

(
λf (p2)λg(p

2) − λf (p2) − λg(p
2)
)
ϕ̂

(
2 log p

logR

)
2 log p

p logR

−
∑
p

ϕ̂

(
2 log p

logR

)
2 log p

p logR
+ 2δpoleϕ

(
logR

4πi

)
+O

(
log−1R

)
.

We use that χN1
0 (p) = 1 if p ̸= N1 and 0 otherwise, and the terms with p = N1 or p = N2

are trivially absorbed into the error term.
We have that

L(s, sym2 f) = L(2s, χN1
0 )
∑
n≥1

λf (n2)

ns
(3.16)

L(s, sym2 f) = L(2s, χN2
0 )
∑
n≥1

λg(n
2)

ns
(3.17)

L(s, sym2 f ⊗ sym2 g) = V (s, f, g)
∑
n≥1

λf (n2)λg(n
2)

ns
(3.18)

where V (s, f, g) is an Euler product converging absolutely for Re(s) > 1/2. Thus, GRH for
L(s, sym2(f)), L(s, sym2(g)), and L(s, sym2(f)⊗ sym2(g)) gives bounds for prime sums over
λf (p2), λg(p

2), and λf (p2)λg(p
2), respectively. In particular, assuming GRH, we have that

the second sum in (3.15) is O(log logR/ logR) if f ̸= g. If f = g, then the second sum is
O(1) (but it will still vanish after averaging over the family). Lastly, we have by the prime
number theorem and partial summation that∑

p

ϕ̂

(
2 log p

logR

)
2 log p

p logR
=

1

2
ϕ(0) +O

(
log−1R

)
. (3.19)

Combining these bounds gives the main result of the section.

Proposition 3.1. We have

D(f ⊗ g;ϕ) = ϕ̂(0)− 1

2
ϕ(0)−S(f ⊗ g;ϕ) + 2δpoleϕ

(
logR

4πi

)
+O

(
log logR

logR
+ δpole

)
(3.20)

where

S(f ⊗ g;ϕ) :=
∑
p

λf (p)λg(p)ϕ̂

(
log p

logR

)
2 log p

√
p logR

. (3.21)

Remark 3.2. Up to this point our methodology has been the same as in [DM09]. To make
the results of their paper explicit, we first sum (3.21) over f and g:

∑
f⊗g∈H(k1,N1,k2,N2)

S(f ⊗ g;ϕ) =
∑
p

 ∑
f∈H∗

k1
(N1)

λf (p)

 ∑
g∈H∗

k2
(N2)

λg(p)

 ϕ̂( log p

logR

)
2 log p

√
p logR

.

(3.22)
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Proposition 2.13 of [ILS00] gives when p ̸= N1 that∑
f∈H∗

k1
(N1)

λf (p) ≪ p1/6(k1N1)
2/3. (3.23)

Applying this bound and averaging over the size of the family using (2.14) gives

1

|H(k1, N1, k2, N2)|
∑

f⊗g∈H(k1,N1,k2,N2)

S(f ⊗ g;ϕ) ≪ R5σ/6(k1N1k2N2)
−1/3. (3.24)

We need the above sum to vanish in the limit when σ is sufficiently small. Fix k1, k2 and let
N1, N2 → ∞. Using the estimate R ≪ (N1N2)

2 gives the density conjecture when σ < 1/5.
In the “small conductor” case when N1 = N2, we have R ≪ N1N2 so we can take σ < 2/5.

The sums over Fourier coefficients in (3.22) are treated separately using the bound (3.23).
To prove our main theorems, we treat the sums in conjunction in the following sections.

4. Applying the Petersson formula

In this section we use the Petersson formula to average S(f ⊗ g;ϕ) over the forms in the
convolved family. Our main result is the following.

Proposition 4.1. We have that∑
f⊗g∈H(k1,N1,k2,N2)

S(f ⊗ g;ϕ)

:=
(k1 − 1)

12

(k2 − 1)

12
4π2ik1+k2

∑
m1,m2≤Y

1

m1m2

∑
b1,b2≥1

1

b1b2
Q∗(m2

1, b1N1,m
2
2, b2N2)

+ Y −1/2+ϵRϵO

(
k1N1k2N2

logR
+ δpolek1N1R

σ/2

)
(4.1)

where

Q∗(m2
1, c1,m

2
2, c2) =

∑
p

S(m2
1, p; c1)S(m2

2, p; c2)Jk1−1

(
4πm1

√
p

c1

)
Jk2−1

(
4πm2

√
p

c2

)
× 2 log p

√
p logR

ϕ̂

(
log p

logR

)
. (4.2)

Proof. We first sum over f . To do so, we use (2.24) to find∑
f∈H∗

k1
(N1)

S(f ⊗ g;ϕ) =
∑
p

(∆′
k1,N1

(p) + ∆∞
k1,N1

(p))λg(p)ϕ̂

(
log p

logR

)
2 log p

√
p logR

. (4.3)

We use a modification of Lemma 2.12 from [ILS00] to bound away the complementary
sum.

Lemma 4.2 ([ILS00], Lemma 2.12). Assume GRH. Set

S∞
1 =

∑
p

∆∞
k1,N1

(p)λg(p)ϕ̂

(
log p

logR

)
2 log p

√
p logR

. (4.4)

Then

S∞
1 ≪ Y −1/2+ϵRϵ

[
k1N1

logR
+ δpoleR

σ/2

]
. (4.5)
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Proof. Expanding ∆∞ and applying Lemma 2.9 gives

S∞
1 ≪

∑
f∈H∗

k1
(N1)

[
ZN1(1, f)

Z(1, f)

∑
m1>Y

m−1
1 λf (m2

1)

][∑
p

λf (p)λg(p) log p
√
p logR

ϕ̂

(
log p

logR

)]
. (4.6)

By GRH for L(s, sym2 f) (see (3.16) and the discussion following), the first term in brackets
is ≪ Y −1/2(k1N1Y )ϵ. If f ̸= g, then GRH L(s, f ⊗ g) gives that the sum over p is ≪
(k1N1k2N2)

ϵ log−1R. If f = g, then the sum over p is of size Rσ/2, which only occurs if
(k1, N1) = (k2, N2). Combining these bounds gives the lemma. □

Applying this lemma to (4.3) gives∑
f∈H∗

k1
(N1)

S(f ⊗ g;ϕ) =
∑
p

∆′
k1,N1

(p)λg(p)ϕ̂

(
log p

logR

)
2 log p

√
p logR

+ Y −1/2+ϵRϵO

(
k1N1

logR
+ δpoleR

σ/2

)
. (4.7)

Next we want to sum over g. Doing so gives∑
f⊗g∈H(k1,N1,k2,N2)

S(f ⊗ g;ϕ) =
∑
p

∆′
k1,N1

(p)∆′
k2,N2

(p)ϕ̂

(
log p

logR

)
2 log p

√
p logR

(4.8)

+
∑
p

∆′
k1,N1

(p)∆∞
k2,N2

(p)ϕ̂

(
log p

logR

)
2 log p

√
p logR

+ Y −1/2+ϵRϵO

(
k1N1k2N2

logR
+ δpolek1N1R

σ/2

)
.

The first sum is the main term, and we use a method similar to Lemma 4.2 to show that the
second sum vanishes in the limit.

Lemma 4.3. Assume GRH. Set

S∞
2 :=

∑
p

∆′
k1,N1

(p)∆∞
k2,N2

(p)ϕ̂

(
log p

logR

)
2 log p

√
p logR

. (4.9)

Then

S∞
2 ≪ Y −1/2+ϵ(k1N1k2N2)

ϵ
[
k1N1k2N2 + δpolek1N1R

σ/2
]
. (4.10)

Proof. Expanding the ∆′ and ∆∞ using (2.24) and (2.25) gives

S∞
2 ≪

∑
p

N1k1
∑
m1≤Y

(m1,N1)=1

m−1
1 ∆k1,N1(m

2
1, p)N2k2

∑
m2>Y

(m2,N2)=1

m−1
2 ∆k2,N2(m

2
2, p) (4.11)

× ϕ̂

(
log p

logR

)
log p

√
p logR

.
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Next we apply Lemma 2.9 and rearrange to give

S∞
2 ≪

∑
f⊗g∈H(k1,N1,k2,N2)

ZN1(1, f)

Z(1, f)

∑
m1≤Y

(m1,N1)=1

m−1
1 λf (m2

1)


ZN2(1, g)

Z(1, g)

∑
m2>Y

(m2,N2)=1

m−1
2 λg(m

2
2)


×
∑
p

λf (p)λg(p) log p
√
p logR

ϕ̂

(
log p

logR

)
. (4.12)

By GRH for L(s, sym2(f)) (see (3.16) and the discussion following), the first sum in
brackets is ≪ (k1N1Y )ϵ. Likewise, GRH for L(s, sym2(g)) gives that the second sum in
brackets is ≪ Y −1/2(k2N2Y )ϵ. Lastly, if f ̸= g, by GRH for L(s, f ⊗ g) the sum over p is
≪ (k1k2N1N2)

ϵ log−1R. If f = g, then the sum over p is of size Rσ/2. If (k1, N1) = (k2, N2),
there will be |Hk1(N1)| ∼ k1N1 terms in the sum for which f = g, so their contribution is
k1N1R

σ/2. Combining these bounds gives the lemma. □

Remark 4.4. When f = g, the lack of square root cancellation in the prime sum in (4.12)

means that S∞
2 contributes to the main term when ϕ̂ is supported outside (−1, 1) and Y =

(k1k2N1N2)
ϵ. In Section 8, we account for this by taking Y = Nα with α = 1/14. However,

in this case m1 and m2 have non-negligible size, which requires more careful bounding of the
main term sums over ∆′.

Lemma 4.3 shows that S∞
2 is absorbed by the error term in (4.8). Now, we want to expand

the ∆′s using the Petersson formula. By (2.18) and (2.25) we have

∆′
k,N(p) =

N(k − 1)

12
2πik

∑
m≤Y

1

m

∞∑
b=1

S(m2, p; bN)

bN
Jk−1

(
4πm

√
p

bN

)
. (4.13)

Applying this to (4.8) completes the proof of Proposition 4.1. □

5. Proofs of Theorems 1.1 and 1.4

In this section, we use Proposition 4.1 to complete the proofs of Theorems 1.1 and 1.4.
First we need to account for the contribution from any potential poles. We can bound the
contribution from the poles to (3.20) by

|H∗
k1

(N1)|ϕ
(

logR

4πi

)
=

∫ ∞

−∞
ϕ̂(y)Ry/2dy ≪ k1N1R

σ/2. (5.1)

A pole occurs only if (k1, N1) = (k2, N2), in which case R = k21N
2
1 . After dividing by the

size of the family using (2.14), we find that the contribution from the poles is O
(
kσ−1
1 Nσ−1

1

)
,

which vanishes in the limit if σ < 1. Note that if σ ≥ 1, we cannot bound away the
contribution from the pole. In Section 8, we show that a new term emerges from the average
over S(f ⊗ g;ϕ) which cancels the contribution from the pole when σ ≥ 1.

Because Theorems 1.1 and 1.4 require that ϕ̂ be supported in (−1, 1), we need to show
that

1

|H(k1, N1, k2, N2)|
∑

f⊗g∈H(k1,N1,k2,N2)

S(f ⊗ g;ϕ) = o(1) (5.2)

and then the theorems will follow from Proposition 3.1, (2.14), and comparing with (1.6).
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Now, to complete the proof of the theorem we need to bound S(f ⊗ g;ϕ) averaged over
the family. We bound Q∗ with (2.8) and Jk−1(x) ≪ x, giving

Q∗(m2
1, c1,m

2
2, c2) ≪ (m1m2c1c2)

ϵm1m2(c1c2)
−1/2R3σ/2. (5.3)

Applying this bound to (4.1) and setting Y = (k1k2N1N2)
4ϵ gives∑

f⊗g∈H(k1,N1,k2,N2)

S(f⊗g;ϕ) ≪ k1k2(N1N2)
−1/2(N1N2)

3σ(k1k2N1N2)
ϵ+O

(
k1N1k2N2

log logR

logR

)
.

(5.4)
Recall that if k1, k2 are fixed, then R ∼ N2

1N
2
2 if N1 ̸= N2 and R ∼ N2

1 if N1 = N2. When
σ < 1/2, the main term is absorbed by the error term. By (2.14), we have that our family
is of size ∼ k1k2N1N2, which completes the proof of Theorem 1.1. To prove Theorem 1.4,
we use the stronger bound Jk−1(x) ≪ x2−k from Lemma 2.6, which holds when x < k/3.
To use this bound, we need one of the following two inequalities to hold (we can just use
Jk−1(x) ≪ x for the other one):

Rσ/2 ≪ k1N1Y
−1 (5.5)

Rσ/2 ≪ k2N2Y
−1. (5.6)

Fix N1, N2 and let |k1− k2| be bounded by an absolute constant. Then we have R ≪ k21 and
R ≪ k22, so that (5.5) and (5.6) hold when σ < 1. In this case, we have that∑
f⊗g∈H(k1,N1,k2,N2)

S(f⊗g;ϕ) ≪ 2−k1−k2k1k2(N1N2)
−1/2(k1k2)

3σ(k1k2N1N2)
ϵ+O

(
k1N1k2N2

log logR

logR

)
,

(5.7)
so the main term in (4.1) is absorbed by the error term. If |k1 − k2| is unbounded, then
R ≪ k41 and R ≪ k42 so that (5.5) and (5.6) hold when σ < 1/2. The proof of Theorem 1.4
follows after dividing by the size of the family using (2.14).

6. Products of Kloosterman sums

The remainder of the paper is dedicated to proving Theorem 1.2. As such, we will assume
that N1 = N2 = N for the rest of the paper. In this section we analyze the Kloosterman
sums arising from the Petersson formula. We are interested in the sum

Q∗(m2
1, b1N,m

2
2, b2N) =

∑
p

S(m2
1, p; b1N)S(m2

2, p; b2N)Jk1−1

(
4πm1

√
p

b1N

)
Jk2−1

(
4πm2

√
p

b2N

)
× 2 log p

√
p logR

ϕ̂

(
log p

logR

)
. (6.1)

We will later use (5.3) to bound (6.1) when N divides b1 or b2, so for the rest of the section
we assume that (b1, N) = (b2, N) = 1. Additionally, we have that m1,m2 < N , so we also
assume (m1, N) = (m2, N) = 1. Our main result is the following.
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Proposition 6.1. Let b1, b2,m1,m2 be integers not divisible by the prime N . Set r = (b1, b2)
so that we can write b1 = d1r and b2 = d2r with (d1, d2) = 1. We have that

Q∗(m2
1, b1N,m

2
2, b2N)

=
4ψ(m2

1d
2
2,m

2
2d

2
1, Nr)

φ(d1d2rN)
R(m2

1, d1)R(m2
2, d2)µ(d1d2)χ

d1d2
0 (r)I(b1, b2,m1,m2, N)

+O
(
m3

1m
3
2N

2σ−1/2+ϵ(b1b2)
ϵ
)

(6.2)

where R is the Ramanujan sum (2.2), χd1d2
0 is the principal character modulo d1d2, ψ is given

in Lemma 6.6, and

I(b1, b2,m1,m2, N) :=

∫ ∞

0

Jk1−1

(
4πm1y

b1N

)
Jk2−1

(
4πm2y

b2N

)
ϕ̂

(
2

log y

logR

)
dy

logR
. (6.3)

To prove the proposition, we analyze the product of Kloosterman sums in (6.1). In Section
6.1 we decompose the Kloosterman sums in terms of Gauss sums in order to prove Lemma
6.3. In Section 6.2 we apply GRH for Dirichlet L-functions in order to effectively bound our
error terms. In Section 6.3 we develop identities for sums over Gauss sums and Ramanujan
sums in order to prove Lemma 6.6. Finally, in Section 6.4 we apply partial summation to
complete the proof of Proposition 6.1.

6.1. Decomposing Kloosterman sums. First, since (b1, N) = 1, we can write

S(m2
1, p; b1N) = S(Nm2

1, Np; b1)S(b1m
2
1, b1p;N) (6.4)

where the overline denotes the multiplicative inverse modulo the period of the Kloosterman
sum. The analogous result holds for S(m2

2, p; b2N). We use the following lemma from [ILS00]
for S(Nm2

1, Np; b1), and Lemma 6.3 for S(b1m
2
1, b1p;N).

Lemma 6.2 ([ILS00], Section 6). Let p be a prime with (p, b) = 1 and let (n, b) = 1. Then

S(nm, np; b) =
1

φ(b)

∑
χ(b)

χ(p)Gχ(n2m)Gχ(1) (6.5)

where for a Dirichlet character χ modulo b, Gχ is the Gauss sum defined in (2.3).

If p ∤ N , we have that

S(m2
1b1, pb1;N)S(m2

2b2, pb2;N) =
1

φ(N)

∑
χ(N)

χ(p)
∑
a(N)

∗
χ(a)S(m2

1b1, ab1;N)S(m2
2b2, ab2;N).

(6.6)
Since b1 and b2 are relatively prime to N , we have that

S(m2
1b1, pb1;N)S(m2

2b2, pb2;N) =
1

φ(N)

∑
χ(N)

χ(p)K(m2
1b1

2
,m2

2b2
2
, χ). (6.7)

where

K(n1, n2, χ) :=
∑
a(N)

∗
χ(a)S(n1, a;N)S(n2, a;N). (6.8)

Recall that we assume that N does not divide b1, b2,m1,m2 so that N does not divide m2
1b1

2

and m2
2b2

2
. We need the following result.
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Lemma 6.3. Let N be a prime not dividing integers n1, n2, χ a Dirichlet character modulo
N , and K(n1, n2, χ) be as in (6.8). If χ is the principal character modulo N , then

K(n1, n2, χ0) =

{
φ(N)2 + φ(N) − 1 n1 − n2 ≡ 0(N)

−φ(N) − 2 otherwise.
(6.9)

If χ is a non-principal Dirichlet character modulo N , we have that

K(n1, n2, χ) ≪ N3/2+ϵ. (6.10)

Remark 6.4. When χ0 is principal and n1 − n2 ≡ 0(N), we have that S(n1, a;N) =
S(n2, a;N) so that all the terms in (6.8) are positive (Kloosterman sums are real numbers
for any integer arguments). In the other cases when χ0 is principal, the sign of the product
of Kloosterman sums changes, which leads to better than square root cancellation. When χ
is non-principal, the sum (6.10) exhibits square root cancellation.

Proof. Expanding the Kloosterman sums and rearranging gives

K(n1, n2, χ) =
∑
a(N)

∗
χ(a)

∑
u1(N)

∗
e

(
au1 + n1u1

N

) ∑
u2(N)

∗
e

(
au2 + n2u2

N

)

=
∑
u1(N)

∗ ∑
u2(N)

∗
e

(
n1u1 + n2u2

N

)
Gχ(u1 + u2). (6.11)

Since N is prime, we have that

Gχ(u1 + u2) =

{
δχφ(N) u1 + u2 ≡ 0(N)

χ(u1 + u2)Gχ(1) otherwise
(6.12)

so we can write

K(n1, n2, χ) = Gχ(1)
∑
u1(N)

∗ ∑
u2(N)

∗
e

(
n1u1 + n2u2

N

)
χ(u1 + u2)

+ δχφ(N)
∑
u1(N)

∗
e

(
u1(n1 − n2)

N

)
(6.13)

where δχ is the indicator function for the principal character. This second sum equals φ(N)
when n1 − n2 ≡ 0 mod N and is µ(N) otherwise. For the first sum, we do a change of
variables u1 → u1u2 which gives∑

u1(N)

∗ ∑
u2(N)

∗
e

(
n1u1 + n2u2

N

)
χ(u1 + u2) =

∑
u1(N)

∗ ∑
u2(N)

∗
e

(
n1u1u2 + n2u2

N

)
χ(u1u2 + u2)

=
∑
u1(N)

∗
χ(u1 + 1)

∑
u2(N)

∗
e

(
u2(n1u1 + n2)

N

)
χ(u2)

=
∑
u1(N)

∗
χ(u1 + 1)Gχ(n1u1 + n2). (6.14)
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Applying (6.12) to (6.14) gives∑
u1(N)

∗ ∑
u2(N)

∗
e

(
n1u1 + n2u2

N

)
χ(u1+u2) = Gχ(1)

∑
u1(N)

∗
χ(u1+1)χ(n1u1+n2)+χ0(−n1n2+1)δχφ(N).

(6.15)
Applying this to (6.13) gives

K(n1, n2, χ) = Gχ(1)2
∑
u1(N)

∗
χ(u1 + 1)χ(n1u1 + n2) + δχD(n1, n2) (6.16)

where

D(n1, n2) =

{
φ(N)2 n1 − n2 ≡ 0(N)

−2φ(N) otherwise.
(6.17)

Thus when χ is principal we have

K(n1, n2, χ) =

{
φ(N)2 + φ(N) − 1 n1 − n2 ≡ 0(N)

−φ(N) − 2 otherwise
(6.18)

as desired. When χ is non-principal, we that∑
u1(N)

∗
χ(u1 + 1)χ(n1u1 + n2) ≪ N1/2+ϵ. (6.19)

This follows from Weil’s bound on character sums; see [IK04] equation (12.23). The proof

follows from the fact that |Gχ(1)| =
√
N when χ is primitive modulo N . □

6.2. Applying GRH for Dirichlet L-functions. We study a modified version of (6.1)
defined as

A := A(x,m2
1,m

2
2, b1, b2, N) :=

∑
p≤x

S(m2
1, p; b1N)S(m2

2, p; b2N) log p (6.20)

and then derive a closed form for Q∗ using partial summation. We study this sum using
GRH for Dirichlet L-functions. This implies for a Dirichlet character χ modulo c that∑

p≤x

χ(p) log p = δχx+O
(
x1/2(cx)ϵ

)
(6.21)

where δχ is the indicator for the principal character. Applying (6.4), (6.7) and Lemma 6.2
gives

A =
1

φ(b1)φ(b2)φ(N)

∑
χ1(b1)

∑
χ2(b2)

∑
χ3(N)

Gχ1(m
2
1N

2
)Gχ1(1)Gχ2(m

2
2N

2
)Gχ2(1)K(n1, n2, χ)

×
∑
p≤x

χ1χ2χ3(p) log p (6.22)

Note that we do not account for when p|b1N or p|b2N , but these terms are absorbed by the
error term (6.27). The main term of A is when χ1χ2χ3 is principal. This occurs when χ3 is
principal and χ1 is induced by some character χ∗ modulo (b1, b2), and χ2 is induced by χ∗.
Using Lemma 6.3, we can write the main term of A as

ψ(m2
1b

2
2,m

2
2b

2
1, N)x

φ(b1)φ(b2)φ(N)

∑
χ(b1,b2)

Gχ1(m
2
1N

2
)Gχ1(1)Gχ2(m

2
2N

2
)Gχ2(1) (6.23)
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where χ1 is the character modulo b1 induced by χ, χ2 is the character modulo b2 induced by
χ, and

ψ(n1, n2, N) :=

{
φ(N)2 + φ(N) − 1 n1 − n2 ≡ 0(N)

−φ(N) − 2 otherwise.
(6.24)

We have that

Gχ1(m
2
1N

2
) = χ1(N)2Gχ1(m

2
1) (6.25)

so we can simplify the main term as

ψ(m2
1b

2
2,m

2
2b

2
1, N)x

φ(b1)φ(b2)φ(N)

∑
χ(b1,b2)

Gχ1(m
2
1)Gχ1(1)Gχ2(m

2
2)Gχ2(1) (6.26)

since χ1(N)χ2(N) = χb1
0 (N)χb2

0 (N)χ(N)χ(N) = 1, where χn
0 denotes the principal character

modulo n.
Applying (2.4), (6.21) and Lemma 6.3, the error term in (6.22) can be bounded by

x1/2b1b2m
2
1m

2
2N

3/2(b1b2Nx)ϵ. (6.27)

This gives the following expression for A:

A =
ψ(m2

1b
2
2,m

2
2b

2
1, N)x

φ(b1)φ(b2)φ(N)

∑
χ(b1,b2)

Gχ1(m
2
1)Gχ1(1)Gχ2(m

2
2)Gχ2(1)

+O
(
x1/2b1b2m

2
1m

2
2N

3/2(b1b2Nx)ϵ
)
. (6.28)

6.3. Sums over Gauss sums. We want to analyze the sum over Gauss sums in (6.28).
We begin by reducing the induced characters χ1 and χ2 to the character χ modulo (b1, b2).
Before we begin, we need to introduce some notation. Set r = (b1, b2), r1 = (b1, r

∞), and
r2 = (b2, r

∞). We first prove the following lemma.

Lemma 6.5. Let b1, r, r1, χ, χ1 be as above. We have that

Gχ1(m
2
1) =

{
χ(b1/r1)R(m2

1, b1/r1)
r1
r
Gχ (m2

1r/r1) r1|m2
1r

0 otherwise.
(6.29)

Proof. We have that (r1, b1/r1) = 1, so we can write χ1 = χ
b1/r1
0 χ. We then have that

Gχ1(m
2
1) =

∑
u(b1)

χ1(u)e

(
um2

1

b1

)

=
∑
u1(r1)

∑
u2(b1/r1)

χ1(u1b1/r1 + u2r1)e

(
u1m

2
1

r1

)
e

(
u2m

2
1

b1/r1

)

= χ(b1/r1)χ
b1/r1
0 (r1)

∑
u1(r1)

χ(u1)e

(
u1m

2
1

r1

) ∑
u2(b1/r1)

χ
b1/r1
0 (u2)e

(
u2m

2
1

b1/r1

)

= χ(b1/r1)R(m2
1, b1/r1)

∑
u1(r1)

χ(u1)e

(
u1m

2
1

r1

)
. (6.30)
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Now, we have that r|r1, so we can write u1 = u3 + ru4 with u3 going from 1 to r and u4
going from 1 to r1/r, so that∑

u1(r1)

χ(u1)e

(
u1m

2
1

r1

)
=
∑
u3(r)

∑
u4(r1/r)

χ(u3 + u4r)e

(
(u3 + u4r)m

2
1

r1

)

= Gχ

(
m2

1r

r1

) ∑
u4(r1/r)

e

(
u4rm

2
1

r1

)
. (6.31)

This final sum equals r1/r if r1|rm2
1 and is 0 otherwise. Substituting this back into (6.30)

completes the proof. □

Now, if m1 = 1, we have that Gχ1(1) is 0 unless r = r1, so that (r, b1/r) = 1. In this case,
we also have that R(1, b1/r1) = µ(b1/r), so that

Gχ1(1) = χ(b1/r)µ(b1/r)Gχ(1). (6.32)

But if r = r1, then r1|m2
1r, so that

Gχ1(m
2
1) = χ(b1/r)R(m2

1, b1/r)Gχ

(
m2

1

)
(6.33)

by Lemma 6.5. Of course, the analog of (6.32) and (6.33) holds for χ2, which was induced
from χ. Set d1 = b1/r and d2 = b2/r so that (d1, d2) = 1. Applying (6.32) and (6.33) gives∑

χ(r)

Gχ1(m
2
1)Gχ1(1)Gχ2(m

2
2)Gχ2(1) = R(m2

1, d1)R(m2
2, d2)µ(d1d2)χ

r
0(d1d2)

×
∑
χ(r)

χ(d21d2
2
)Gχ(m2

1)Gχ(1)Gχ(m2
2)Gχ(1). (6.34)

Because of the term χr
0(d1d2), we may assume that (r, d1) = (r, d2) = 1. Now, we have

Gχ(m2
1)Gχ(1) =

∑
u1(r)

χ(u1)e

(
u1m

2
1

r

)∑
u2(r)

χ(u2)e
(u2
r

)
=
∑
u1(r)

χ(u1)e

(
u1m

2
1

r

)∑
u2(r)

χ(u1u2)e
(u1u2

r

)
=
∑
u2(r)

χ(u2)
∑
u1(r)

∗
e

(
u1(u2 +m2

1)

r

)
=
∑
u2(r)

χ(u2)R(u2 +m2
1, r). (6.35)

Applying this gives∑
χ(r)

χ(d21d2
2
)Gχ(m2

1)Gχ(1)Gχ(m2
2)Gχ(1) =

∑
u1(r)

∗
R(u1 +m2

1, r)
∑
u2(r)

∗
R(u2 +m2

2, r)
∑
χ(r)

χ(u1u2d
2
1d

2
2).

(6.36)
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By orthogonality the inner sum equals 0 unless u2 = u1d21d
2
2, in which case it is φ(r). Thus

we have that∑
χ(r)

χ(d21d2
2
)Gχ(1)Gχ(m2

1)Gχ(1)Gχ(m2
2) = φ(r)

∑
u1(r)

∗
R(u1 +m2

1, r)R(u1d21d
2
2 +m2

2, r)

= φ(r)
∑
u1(r)

∗
R(u1 +m2

1d
2
2, r)R(u1 +m2

2d
2
1, r).

(6.37)

Now, we want to study sums of the type

ψ(n1, n2, r) :=
∑
u1(r)

∗
R(u1 + n1, r)R(u1 + n2, r). (6.38)

We obtain the following result.

Lemma 6.6. The function ψ(n1, n2, r) defined in (6.38) is multiplicative in r so it can be
defined by its values when r = pα. We have that

ψ(n1, n2, p
α) =


pR(n1 − n2, p) −R(n1, p)R(n2, p) α = 1

0 α > 1 and p|n1n2

pαR(n1 − n2, p
α) otherwise.

(6.39)

Remark 6.7. The function ψ(n1, n2, r) defined in (6.38) is equivalent to the function ψ(n1, n2, N)
defined in (6.24) when r is prime. One can easily verify that the definitions agree using
Lemma 6.6.

Proof. First we show that ψ is multiplicative. Write r = st with (s, t) = 1. As the Ramanujan
sums are multiplicative, R(a, r) = R(a, s)R(a, t). Writing u1 = u2s+ u3t in the sum gives

ψ(n1, n2, r) =
∑
u2(t)

∗∑
u3(s)

∗
R(u2s+ u3t+ n1, s)R(u2s+ u3t+ n1, t)

×R(u2s+ u3t+ n2, s)R(u2s+ u3t+ n2, t)

=
∑
u2(t)

∗
R(u2s+ n1, t)R(u2s+ n2, t)

∑
u3(s)

∗
R(u3t+ n1, s)R(u3t+ n2, s) (6.40)

since R(a, r) is periodic modulo r. Doing a change of variables u2 → u2s and u3 → u3t gives

ψ(n1, n2, r) = ψ(n1, n2, s)ψ(n1, n2, t) (6.41)

as desired.
Now we evaluate R(d, r) when r = pα with α ≥ 1. We can write

ψ(n1, n2, p
α) =

∑
u1(pα)

R(u1 + n1, p
α)R(u1 + n2, p

α) −
∑

u1(pα−1)

R(u1p+ n1, p
α)R(u1p+ n2, p

α).

(6.42)
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Call the first sum S1 and the second S2. We have that

S1 =
∑
u1(pα)

∑
u2(pα)

∗
e

(
u1u2 + n1u2

pα

) ∑
u3(pα)

∗
(
u1u3 + n2u3

pα

)

=
∑
u2(pα)

∗ ∑
u3(pα)

∗
e

(
n1u2 + n2u3

pα

) ∑
u1(pα)

e

(
u1(u2 + u3)

pα

)
. (6.43)

The inner sum is 0 unless u2 + u3 ≡ 0(pα), so we have that

S1 = pα
∑
u2(pα)

∗
e

(
u2(n1 − n2)

pα

)
= pαR(n1 − n2, p

α). (6.44)

If α = 1, we have that S2 = R(n1, p)R(n2, p). If α > 1, we have

S2 =
∑
u2(pα)

∗ ∑
u3(pα)

∗
e

(
n1u2 + n2u3

pα

) ∑
u1(pα−1)

e

(
u1(u2 + u3)

pα−1

)
. (6.45)

The inner sum is 0 unless u2 + u3 ≡ 0(pα−1). Thus we can write u3 = −u2 + u4p
α−1 so that

S2 = pα−1
∑
u2(pα)

∗
e

(
u2(n1 − n2)

pα

)∑
u4(p)

e

(
u4n2

p

)
= pαR(n1 − n2, p

α) (6.46)

if p|n2, and S2 = 0 otherwise. Taking S1 − S2 completes the lemma. □

Now, applying (6.38) to (6.37) and then plugging into (6.34) gives∑
χ(r)

Gχ1(m
2
1)Gχ1(1)Gχ2(m

2
2)Gχ2(1) = R(m2

1, d1)R(m2
2, d2)µ(d1d2)χ

r
0(d1d2)φ(r)ψ(m2

1d
2
2,m

2
2d

2
1, r).

(6.47)
Applying this to (6.28) and using the identity ψ(m2

1b
2
2,m

2
2b

2
1, N) = ψ(m2

1d
2
2,m

2
2d

2
1, N) we

finally have

A =
ψ(m2

1d
2
2,m

2
2d

2
1, Nr)

φ(d1d2Nr)
R(m2

1, d1)R(m2
2, d2)µ(d1d2)χ

d1d2
0 (r)x

+O
(
x1/2b1b2m

2
1m

2
2N

3/2(b1b2Nx)ϵ
)
. (6.48)

6.4. Evaluating Q∗. We use summation by parts to express (6.1) in terms of (6.48). Doing
so gives

Q∗ = −
∫ ∞

0

[
ψ(m2

1d
2
2,m

2
2d

2
1, Nr)

φ(d1d2Nr)
R(m2

1, d1)R(m2
2, d2)µ(d1d2)χ

d1d2
0 (r)x+O

(
x1/2b1b2m

2
1m

2
2N

3/2(b1b2Nx)ϵ
)]

× dJk1−1

(
4πm1

√
x

b1N

)
Jk2−1

(
4πm2

√
x

b2N

)
2√

x logR
ϕ̂

(
log x

logR

)
. (6.49)

Integrating by parts and setting y =
√
x gives that the main term is

4ψ(m2
1d

2
2,m

2
2d

2
1, Nr)

φ(d1d2rN)
R(m2

1, d1)R(m2
2, d2)µ(d1d2)χ

d1d2
0 (r)

×
∫ ∞

0

Jk1−1

(
4πm1y

b1N

)
Jk2−1

(
4πm2y

b2N

)
ϕ̂

(
2

log y

logR

)
dy

logR
. (6.50)



24 ALEXANDER SHASHKOV

Similarly, we can bound the error term by

O
(
b1b2m

2
1m

2
2N

3/2(b1b2N)ϵ
) ∫ Rσ

0

∣∣∣∣Jk1−1

(
4πm1

√
x

b1N

)
Jk2−1

(
4πm2

√
x

b2N

)∣∣∣∣ dxx (6.51)

and using Jk−1(x) ≪ x gives that this is bounded by

m3
1m

3
2N

−1/2Rσ(b1b2N)ϵ ≪ m3
1m

3
2N

2σ−1/2+ϵ(b1b2)
ϵ. (6.52)

Putting this together gives Proposition 6.1. □

7. Surpassing (-1, 1): proof of Theorem 1.2

In this section, we complete the proof of Theorem 1.2 in the case where k1 ̸= k2 by proving
the following proposition.

Proposition 7.1. Let k1 ̸= k2 and set

P(k1, k2, N) :=
1

|H(k1, N, k2, N)|
∑
f,g

S(f ⊗ g;ϕ). (7.1)

If supp ϕ̂ ⊂ (−5/4, 5/4), we have that

lim
N→∞

P(k1, k2, N) =

∫ ∞

−∞
ϕ(x)

sin(2πx)

2πx
dx− 1

2
ϕ(0). (7.2)

Combining Proposition 7.1 with Proposition 3.1 completes the proof of Theorem 1.2 (after
comparing with (1.4)) in the case where k1 ̸= k2, as in this case there is no polar contribution.
The key insight which allows us to obtain a closed form for P(k1, k2, N) in the limit is Lemma
7.5, in which we apply Proposition 6.1. In doing so, we are able to remove many lower order
subterms, and the integral which remains involves a product of Bessel functions with a
relatively simple Mellin transform. We evaluate this integral in Section 7.2 using methods
similar to Section 7 of [ILS00].

7.1. Removing subterms. Applying Proposition 4.1 to (7.1) with Y = (k1k2N1N2)
4ϵ gives

P(k1, k2, N) =
4π2ik1+k2

φ(N)2

∑
m1,m2≤Y

1

m1m2

∑
b1,b2≥1

1

b1b2
Q∗(m2

1, b1N,m
2
2, b2N) +O

(
log logR

logR

)
.

(7.3)
We begin by using (5.3) to bound terms where b1 and b2 are large so that we may apply
Proposition 6.1.

Lemma 7.2. If supp(ϕ̂) ⊂ (−2, 2), we have that

P(k1, k2, N) =
4π2ik1+k2

φ(N)2

∑
m1,m2≤Y

1

m1m2

∑
1≤b1,b2<N6

1

b1b2
Q∗(m2

1, b1N,m
2
2, b2N)+O

(
log logR

logR

)
.

(7.4)

Remark 7.3. We restrict the size of b1, b2 so that sums over b−1
1 and b−1

2 converge and
are small. The restriction to N6 in (7.4) is arbitrary. It could instead be changed to any

sufficiently large power of N , which would allow for greater support of ϕ̂.
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Proof. By (5.3) and the fact that m1,m2 ≤ Y ∼ N ϵ we have that

Q∗(m2
1, b1N,m

2
2, b2N) ≪ (m1m2b1Nb2N)ϵm1m2(b1Nb2N)1/2N3σ

≪ N3σ+ϵ−1(b1b2)
−1/2+ϵ. (7.5)

We can bound the terms with b1 ≥ N6 or b2 ≥ N6 in (7.3) by

N−2N ϵN3σ+ϵ−1
∑

b1≥N6

1

b
3/2−ϵ
1

∑
b2≥1

1

b
3/2−ϵ
2

≪ N3σ+ϵ−6. (7.6)

This is O (N−ϵ) if σ < 2. □

Next we remove terms where N divides b1 or b2.

Lemma 7.4. If supp(ϕ̂) ⊂ (−3/2, 3/2), we have that

P(k1, k2, N) =
4π2ik1+k2

φ(N)2

∑
m1,m2≤Y

1

m1m2

∑
1≤b1,b2<N6

N ∤b1b2

1

b1b2
Q∗(m2

1, b1N,m
2
2, b2N)+O

(
log logR

logR

)
.

(7.7)

Proof. We need to bound the terms in (7.4) with N |b1 or N |b2. Using (5.3) we find that we
can bound these terms by

N−2N ϵN3σ+ϵ−1
∑
c1≥1

1

(Nc1)3/2−ϵ

∑
b2≥1

1

b
3/2−ϵ
2

≪ N3σ+ϵ−9/2. (7.8)

This is O (N−ϵ) if σ < 3/2. □

We are now ready to remove additional terms and simplify using Proposition 6.1. The
remaining terms are those where m1 is a multiple of d1 and m2 is a multiple of d2.

Lemma 7.5. If supp(ϕ̂) ⊂ (−5/4, 5/4), we have that

P(k1, k2, N) =
16π2ik1+k2ψ(1, 1, N)

φ(N)3

∑
m≤Y

1

m2

∑
d1,d2≤Y/m

µ(d1d2)

d21d
2
2

∑
(r,d1d2)=1

ψ(m2,m2, r)

r2φ(r)
I(m, r,N)

+O

(
log logR

logR

)
(7.9)

where

I(m, r,N) :=

∫ ∞

0

Jk1−1

(
4πmy

rN

)
Jk2−1

(
4πmy

rN

)
ϕ̂

(
2

log y

logR

)
dy

logR
. (7.10)

Proof. First we want a general purpose bound for Q∗ using Proposition 6.1. We have that
φ(n) ≫ n1−ϵ, ψ(n1, n2, r) ≪ r2, R(n, d) ≤ φ(d) and using Jν(x) ≪ x, we can bound the
integral piece by

m1m2

b1b2N2

∫ Rσ/2

0

y2dy ≪ m1m2(b1b2)
−1N3σ−2. (7.11)

This gives the bound

Q∗(m2
1, b1N,m

2
2, b2N) ≪ ψ(m2

1d
2
2,m

2
2d

2
1, N)r−1+ϵ(d1d2)

−1m1m2N
3σ+ϵ−3+m3

1m
3
2N

2σ−1/2+ϵ(b1b2)
ϵ.

(7.12)



26 ALEXANDER SHASHKOV

Now, if m2
1d

2
2 −m2

2d
2
1 ̸≡ 0(N), we have that ψ(m2

1d
2
2,m

2
2d

2
1, N) ≪ N , so we have the bound

Q∗(m2
1, b1N,m

2
2, b2N) ≪ r−1+ϵ(d1d2)

−1m1m2N
3σ+ϵ−2 +m3

1m
3
2N

2σ−1/2+ϵ(b1b2)
ϵ. (7.13)

Using this bound and m1,m2 ≤ Y ∼ N ϵ, we find that we can bound the terms in (7.7) with
m2

1d
2
2 −m2

2d
2
1 ̸≡ 0(N) by

N−2+ϵ
∑

1≤r,d1,d2<N6

[
N3σ+ϵ−2

r3−ϵd21d
2
2

+
N2σ+ϵ−1/2

r2−ϵd1−ϵ
1 d1−ϵ

2

]
≪ N3σ+ϵ−4 +N2σ−5/2+ϵ. (7.14)

This is O (N−ϵ) if supp(ϕ̂) ⊂ (−5/4, 5/4).
For the remaining terms, we have that m2

1d
2
2 −m2

2d
2
1 ≡ 0(N), so

Q∗(m2
1, b1N,m

2
2, b2N) ≪ r−1+ϵ(d1d2)

−1m1m2N
3σ+ϵ−1 +m3

1m
3
2N

2σ−1/2+ϵ(b1b2)
ϵ. (7.15)

If m2
1d

2
2 − m2

2d
2
1 ≡ 0(N), we have that m1d2 ≡ ±m2d1(N). If m1d2 ̸= m2d1, we have that

either m1d2 > N/2 or m2d1 > N/2. Since m1,m2 ≪ N ϵ this means either d1 ≫ N1−ϵ

or d2 ≫ N1−ϵ. Thus we can bound the terms in (7.7) with m2
1d

2
2 − m2

2d
2
1 ≡ 0(N) and

m1d2 ̸= m2d1 by

N−2+ϵ
∑

1≤r,d2<N6

∑
N1−ϵ≪d1<N6

[
N3σ+ϵ−1

r3−ϵ(d1d2)−2
+

N2σ+ϵ−1/2

r2−ϵd1−ϵ
1 d1−ϵ

2

]
≪ N3σ−4+ϵ +N2σ−5/2+ϵ. (7.16)

This is O (N−ϵ) if supp(ϕ̂) ⊂ (−5/4, 5/4). Thus the only terms left are those with m1d2 =
m2d1. But since (d1, d2) = 1, we must have that m1 = md1 and m2 = md2 for some m ≥ 1.

Applying this to (7.7) gives

P(k1, k2, N) =
4π2ik1+k2

φ(N)2

∑
m≤Y

1

m2

∑
d1,d2≤Y/m

1

d21d
2
2

∑
(r,N)=1

r<min(N6/d1,N6/d2)

Q∗(m2d21, rd1N,m
2d22, rd2N)

r2

+O

(
log logR

logR

)
. (7.17)

Proposition 6.1 gives that

Q∗(m2d21, rd1N,m
2d22, rd2N)

=
4ψ(m2d21d

2
2,m

2d21d
2
2, Nr)

φ(d1d2rN)
R(m2d21, d1)R(m2d22, d2)µ(d1d2)χ

d1d2
0 (r)I(rd1, rd2,md1,md2, N)

+O
(
m6d31d

3
2N

2σ−1/2+ϵ(d1d2r)
ϵ
)
. (7.18)

By the properties of the Ramanujan sum we have that ψ(ax, ay, z) = ψ(x, y, z) if (a, z) = 1.
Since (N, r) = 1, (m2d21d

2
2, N) = 1 and (d21d

2
2, r) = 1, we have that

ψ(m2d21d
2
2,m

2d21d
2
2, Nr) = ψ(1, 1, N)ψ(m2,m2, r). (7.19)

We also have that R(m2d21, d1) = φ(d1) and R(m2d22, d2) = φ(d2). Lastly, from comparing
the definitions (6.3) and (7.10) we have that

I(rd1, rd2,md1,md2, N) = I(m, r,N). (7.20)
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Applying these identities to (7.18) gives

Q∗(m2d21, rd1N,m
2d22, rd2N) =

4ψ(1, 1, N)ψ(m2,m2, r)

φ(rN)
µ(d1d2)χ

d1d2
0 (r)I(m, r,N)

+O
(
m6d31d

3
2N

2σ−1/2+ϵ(d1d2r)
ϵ
)
. (7.21)

Applying this to (7.17) gives

P(k1, k2, N) =
16π2ik1+k2ψ(1, 1, N)

φ(N)3

∑
m≤Y

1

m2

∑
d1,d2≤Y/m

µ(d1d2)

d21d
2
2

∑
(r,d1d2N)=1

r<min(N6/d1,N6/d2)

ψ(m2,m2, r)

r2φ(r)
I(m, r,N)

+O

(
N2σ−5/2+ϵ +

log logR

logR

)
. (7.22)

The error term vanishes if σ < 5/4. To complete the proof of the lemma, we extend the sum
to be over all r with (r, d1d2) = 1 using Jk−1(x) ≪ x, which gives

I(m, r,N) ≪ m2r−2N3σ−2. (7.23)

The terms in (7.22) with N |r can be bound by

N−1
∑
m≤Y

1

m2

∑
d1,d2≤Y/m

1

d21d
2
2

∑
r′

ψ(m2,m2, r′N)

(r′N)2φ(r′N)
m2(r′N)−2N3σ−2 ≪ N3σ−6+ϵ (7.24)

which is O (N−ϵ) if σ < 2. Lastly, the terms with r ≥ min(N6/d1, N
6/d2) can be bound by

N−1
∑
m≤Y

1

m2

∑
d1,d2≤Y/m

1

d21d
2
2

∑
r≥N6−ϵ

ψ(m2,m2, r)

(r)2φ(r)
m2(r)−2N3σ−2 ≪ N3σ−8+ϵ. (7.25)

This is O (N−ϵ) if σ < 8/3. □

7.2. Evaluating the integral. Unfolding the Fourier transform gives

I(m, r,N) =

∫ ∞

0

Jk1−1

(
4πmy

rN

)
Jk2−1

(
4πmy

rN

)∫ ∞

−∞
ϕ(x)y−4πix/ logRdx

dy

logR
. (7.26)

After doing a change of variables x→ x logR, we want to interchange the integrals. However,
the integral does not converge absolutely, so we introduce a parameter ϵ, which gives

I(m, r,N) = lim
ϵ→0

∫ ∞

−∞
ϕ(x logR)

∫ ∞

0

Jk1−1

(
4πmy

rN

)
Jk2−1

(
4πmy

rN

)
y−ϵ−4πixdydx, (7.27)

The above integral is absolutely convergent for any ϵ > 0 due to the rapid decay of ϕ and
the bound Jk−1(x) ≪ x−1/2 from Lemma 2.6. This allows us to apply Fubini’s theorem and
swap the order of integration. Set

H(ν, µ, s) :=

∫ ∞

0

Jν(x)Jµ(x)x−sdx (7.28)

which is essentially a Mellin transform. Setting u = 4πmy/rN gives

I(m, r,N) = lim
ϵ→0

rN

4πm

∫ ∞

−∞
ϕ(x logR)

(
4πm

rN

)ϵ+4πix

H(k1 − 1, k2 − 1, ϵ+ 4πix)dx. (7.29)
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Setting s = ϵ+ 4πix, we reinterpret this as a contour integral:

I(m, r,N) = lim
ϵ→0

rN

16π2im

∫
Re(s)=ϵ

ϕ

(
(s− ϵ) logR

4πi

)(
4πm

rN

)s

H(k1 − 1, k2 − 1, s)ds. (7.30)

Section 6.8 (33) of [EMOT54] (which is given in (6.8) of [KMV02]) gives:

H(ν, µ, s) = 2−s Γ(s)Γ(ν+µ+1−s
2

)

Γ(ν−µ+1+s
2

)Γ(µ−ν+1+s
2

)Γ(ν+µ+1+s
2

)
, 0 < Re(s) < ν + µ+ 1. (7.31)

Using the identity (essentially Euler’s reflection formula)

Γ(1/2 + s)Γ(1/2 − s) =
π

cos πs
(7.32)

gives

H(ν, µ, s) = 2−s cos(π s−ν+µ
2

)Γ(s)Γ(ν+µ+1−s
2

)Γ(ν−µ+1−s
2

)

πΓ(ν+µ+1+s
2

)Γ(ν−µ+1+s
2

)
. (7.33)

For our case where ν = k1 − 1 and µ = k2 − 1 with k1, k2 ≥ 2 even, we have that

H(k1 − 1, k2 − 1, s) = 2−sik1+k2
cos(π s

2
)Γ(s)Γ(k1+k2−1−s

2
)Γ(k1−k2+1−s

2
)

πΓ(k1+k2−1+s
2

)Γ(k1−k2+1+s
2

)
, 0 < Re(s) < 3.

(7.34)
We want to interchange the integral with the sum over r in (7.9). In order to make everything
absolutely convergent, we shift the contour to the line Re(s) = 2 and rearrange, giving∑

(r,d1d2)=1

ψ(m2,m2, r)

r2φ(r)
I(m, r,N)

= lim
ϵ→0

N

16π2im

∫
Re(s)=2

ϕ

(
(s− ϵ) logR

4πi

)(
4πm

N

)s

χ(s)H(k1 − 1, k2 − 1, s)ds (7.35)

where

χ(s) =
∑

(r,d1d2)=1

ψ(m2,m2, r)

rφ(r)
r−s (7.36)

is a Dirichlet series absolutely convergent when Re(s) > 1.
Now, by Lemma 6.6, we have that

χ(s) =
∏

p∤md1d2

[
−1

pφ(p)ps
+

1

1 − p−s

] ∏
p|m

p∤d1d2

[
1 +

1

ps+1

]

= ζ(s)ζmd1d2(s)
−1αmd1d2(s)βm/(m,d1d2)(s+ 1) (7.37)

where

ζd(s) :=
∏
p|d

1

1 − p−s
(7.38)

αd(s) :=
∏
p∤d

[
1 − 1 − p−s

pφ(p)ps

]
(7.39)

βd(s) :=
∏
p|d

[
1 + p−s

]
. (7.40)
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By the properties of infinite products (see [SS03], for example), αd(s) converges absolutely
when ∑

p∤d

∣∣∣∣ 1 − p−s

pφ(p)ps

∣∣∣∣ <∞, (7.41)

which is satisfied when Re(s) > −1/2. Now, by the functional equation for the Riemann
zeta function we have that

ζ(1 − s) = 21−sπ−s cos
(
π
s

2

)
Γ(s)ζ(s). (7.42)

Thus applying (7.34) and (7.37) to (7.35) gives∑
(r,d1d2)=1

ψ(m2,m2, r)

r2φ(r)
I(m, r,N) = lim

ϵ→0

Nik1+k2

32π3im

∫
Re(s)=2

ϕ

(
(s− ϵ) logR

4πi

)(
4π2m

N

)s

× ζmd1d2(s)
−1αmd1d2(s)βm/(m,d1d2)(s+ 1)ζ(1 − s)

Γ(k1+k2−1−s
2

)Γ(k1−k2+1−s
2

)

Γ(k1+k2−1+s
2

)Γ(k1−k2+1+s
2

)
ds.

(7.43)

We want to shift the contour back to the line Re(s) = ϵ. If k1 ̸= k2, there are no poles. If
k1 = k2, there is a pole at s = 1 coming from the term Γ(k1−k2+1−s

2
) with residue

ϕ

(
(1 − ϵ) logR

4πi

)(
4π2m

N

)1

ζmd1d2(1)−1αmd1d2(1)βm/(m,d1d2)(2)ζ(0)
Γ(k1 − 1)

Γ(k1)Γ(1)
· (−2). (7.44)

Taking ϵ → 0, using the functional equation for the Gamma function and ζ(0) = −1/2, the
above equals

4π2m

N(k1 − 1)
ϕ

(
logR

4πi

)
ζmd1d2(1)−1αmd1d2(1)βm/(m,d1d2)(2). (7.45)

We finish treating the contribution from the pole in Section 8. For the rest of the section,
assume that k1 ̸= k2 so there is no pole term. Our analysis closely follows Section 7 of
[ILS00]. Because the test function ϕ is Schwartz, the integrand decays rapidly on the line
Re(s) = ϵ (the other terms in the integrand can be bounded by polynomials). In particular,
we have that for any B > 0 that

ϕ

(
(s− ϵ) logR

4πi

)
≪ (Im(s) logR)−B, Re(s) = ϵ (7.46)

Because of this, the integral is O(log−1R) outside the region Im(s) ≪ log−1/2R. Since we
are also taking ϵ→ 0, we can use the Laurent expansion for our functions around s = 0. We
have that

ζ(1 − s) = −s−1 +O(1) (7.47)

ζd(s)
−1 = δ(1, d) +O(s log d) (7.48)

αd(s) = 1 +O(s) (7.49)

βd(s+ 1) =
ν(d)

d
+O(s) (7.50)
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where ν(d) is defined in (2.19). By Section 7 of [ILS00] (see the bottom of page 100) we have
that

Γ

(
k − s

2

)
= Γ

(
k + s

2

)(
k

2

)−s [
1 +O

( s
k

)]
. (7.51)

Applying these to (7.43) gives∑
(r,d1d2)=1

ψ(m2,m2, r)

r2φ(r)
I(m, r,N)

= − lim
ϵ→0

Nik1+k2

32π3i
δ(1,md1d2)

∫
Re(s)=ϵ

Im(s)<log−1/2 R

ϕ

(
(s− ϵ) logR

4πi

)
A−s/2ds

s

+O
(
N log(md1d2) log−1R

)
(7.52)

where

A :=
(k1 + k2 − 1)2(k1 − k2 + 1)2N2

256π4
. (7.53)

Note that the main term is only nonzero when m = 1. Applying this to (7.9) and re-extending
the integral to the entire line Re(s) = ϵ using the decay of ϕ gives

P(k1, k2, N) = −Nψ(1, 1, N)

φ(N)32πi
lim
ϵ→0

∫
Re(s)=ϵ

ϕ

(
(s− ϵ) logR

4πi

)
A−s/2ds

s
+O

(
log logR

logR

)
.

(7.54)
Now, setting s = ϵ+ 4πix and doing a change of variables ϵ→ 2ϵ gives

P(k1, k2, N) = −Nψ(1, 1, N)

φ(N)3
lim
ϵ→0

A−ϵ

∫ ∞

−∞
ϕ (x logR)A−2πix dx

ϵ+ 2πix
+O

(
log logR

logR

)
.

(7.55)
By Section 7 of [ILS00], we have that

lim
ϵ→0

A−ϵ

∫ ∞

−∞
ϕ (x logR)A−2πix dx

ϵ+ 2πix
= −

∫ ∞

−∞
ϕ(x)

sin(2πx)

2πx
dx+

1

2
ϕ(0) +O

(
log−1R

)
(7.56)

and by Lemma 6.6 we have that

Nψ(1, 1, N)

φ(N)3
= 1 +O(N−1). (7.57)

Applying this to (7.55), we finally have

P(k1, k2, N) =

∫ ∞

−∞
ϕ(x)

sin(2πx)

2πx
dx− 1

2
ϕ(0) +O

(
log logR

logR

)
(7.58)

as desired. □

8. Handling the poles

In this section, we complete the proof of Theorem 1.2 by accounting for the case where
k1 = k2. For the remainder of the section, set N = N1 = N2 and k = k1 = k2 with k fixed.

We begin by bounding the complementary sum ∆∞
k,N appearing in (4.3) and (4.8). In

Section 4, we bounded this sum using Lemmas 4.2 and 4.3 and setting Y = N ϵ. The
complementary sums are larger in the case where there are poles, so we set Y = Nα with
α = 1/14 so that we can use the Y decay and extend the support slightly past (−1, 1). We
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need to choose α small enough so that the error terms vanish in the limit, but large enough so
that the complementary m1,m2 sums vanish. This amounts to taking σ as large as possible
under the constraints

σ − α/2 − 1 ≤ 0 (8.1)

2σ + 6α− 5/2 ≤ 0. (8.2)

The optimal solution is α = 1/14, σ = 29/28. The first equation comes from (8.5) and the
second from (8.6).

We repeat the analysis in Section 7 in the case where k1 = k2. Our analysis is mostly
the same as in that section, so we omit some details. The main difference is that the size of
m1,m2 is no longer negligible, as now we have that m1,m2 ≤ Nα instead of m1,m2 ≤ N ϵ.
Our main result is the following.

Proposition 8.1. Let supp(ϕ̂) ⊂ (−29/28, 29/28) and set

P(k,N) :=
1

|H(k,N, k,N)|
∑
f,g

S(f ⊗ g;ϕ). (8.3)

We have that

P(k,N) =

∫ ∞

−∞
ϕ(x)

sin(2πx)

2πx
dx− 1

2
ϕ(0) +

2

|H∗
k(N)|

ϕ

(
logR

4πi

)
+O

(
log logR

logR

)
. (8.4)

Combining Proposition 8.1 with Proposition 3.1 completes the proof of Theorem 1.2 in
the case where k1 = k2 after comparing with (1.4).

Proof. First we apply Proposition 4.1 with Y = Nα, which gives

P(k,N) =
4π2

φ(N)2

∑
m1,m2≤Nα

1

m1m2

∑
b1,b2≥1

1

b1b2
Q∗(m2

1, b1N,m
2
2, b2N) +O

(
R−α/2+ϵ +Rσ−α/2−1+ϵ

)
.

(8.5)

The error term is O (N−ϵ) if σ < 29/28. Similarly to Lemma 7.2, we restrict the sum over
b1, b2 to be up to N , which introduces an error term of size N3σ+2α−7/2. This is O (N−ϵ) if
σ < 29/28. Next, we remove all subterms except where m1 = md1 and m2 = md2 as in
Lemma 7.5. Using (7.12), we find that this introduces an error term of

N3σ+2α−4+ϵ +N2σ+6α−5/2+ϵ. (8.6)

This is O (N−ϵ) if σ < 29/28. Applying Proposition 6.1 gives

P(k,N) =
16π2ψ(1, 1, N)

φ(N)3

∑
m≤Nα

1

m2

∑
d1,d2≤Nα/m

µ(d1d2)

d21d
2
2

∑
r<min(N/d1,N/d2)

(r,d1d2)=1

ψ(m2,m2, r)

r2φ(r)
I(m, r,N)

+O

(
log logR

logR

)
. (8.7)

Using the bound (7.23), we extend the sum to be over all r with (r, d1d2) = 1. This introduces
an error term of size

N−1
∑

m≤Nα

1
∑

d1,d2≤Nα/m

1

d21d
2
2

∑
r≥N1−α

1

r3
N3σ−2 ≪ N3σ+3α−5. (8.8)
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This is O (N−ϵ) if σ < 29/28. This gives

P(k,N) =
16π2ψ(1, 1, N)

φ(N)3

∑
m≤Nα

1

m2

∑
d1,d2≤Nα/m

µ(d1d2)

d21d
2
2

∑
(r,d1d2)=1

ψ(m2,m2, r)

r2φ(r)
I(m, r,N)

+O

(
log logR

logR

)
. (8.9)

Our analysis of the sum over r is the same as in Section 7.2 except for the contribution from
the pole in (7.43). By (7.45) and the Cauchy residue theorem, the contribution of the pole
to P(k,N) is

2πi× 16π2ψ(1, 1, N)

φ(N)3

∑
m≤Nα

1

m2

∑
d1,d2≤Nα/m

µ(d1d2)

d21d
2
2

N

32π3im

× 4π2m

N(k − 1)
ϕ

(
logR

4πi

)
ζmd1d2(1)−1αmd1d2(1)βm/(m,d1d2)(2). (8.10)

Using that Nψ(1, 1, N)/φ(N)3 = 1 +O(N−1) and (2.14), we can simplify this as

2

|H∗
k(N)|

ϕ

(
logR

4πi

)
π2

6

∑
m≤Nα

1

m2

∑
d1,d2≤Nα/m

µ(d1d2)

d21d
2
2

ζmd1d2(1)−1αmd1d2(1)βm/(m,d1d2)(2)

+O
(
Nσ−2

)
(8.11)

The error term in (8.11) is O (N−ϵ) if σ < 29/28 and comes from (5.1) and the bound

ζmd1d2(1)−1αmd1d2(1)βm/(m,d1d2)(2) ≪ 1. (8.12)

We utilize (5.1) and (8.12) to extend the sum over d1, d2 to be over all positive integers. This
introduces an error term of size

Nσ−1
∑

m≤Nα

1

m2

∑
d1≥1

1

d21

∑
d2>Nα/m

1

d22
≪ Nσ−α−1+ϵ. (8.13)

Likewise, we extend the sum over m to be over all positive integers, which introduces an

error term of the same size. These error terms are O (N−ϵ) if supp ϕ̂ ⊂ (−29/28, 29/28).
Thus we have that the contribution from the pole term is

2

|H∗
k(N)|

ϕ

(
logR

4πi

)
π2

6

∑
d1,d2≥1

µ(d1d2)

d21d
2
2

∑
m≥1

1

m2
ζmd1d2(1)−1αmd1d2(1)βm/(m,d1d2)(2) +O

(
N−ϵ

)
.

(8.14)
We complete the proof by calculating the sum over d1, d2.

Lemma 8.2. Set

S =
∑

d1,d2≥1

µ(d1d2)

d21d
2
2

∑
m≥1

1

m2
ζmd1d2(1)−1αmd1d2(1)βm/(m,d1d2)(2). (8.15)

We have that

S =
6

π2
. (8.16)
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Proof. We have that

ζmd1d2(1)−1αmd1d2(1) = ζ(3)−1
∏

p|d1d2

p3 − p2

p3 − 1

∏
q|m

q∤d1d2

q3 − q2

q3 − 1
(8.17)

βm/(m,d1d2)(2) =
∏
p|m

p∤d1d2

p2 + 1

p2
(8.18)

where q is prime. This gives∑
m≥1

1

m2
ζmd1d2(1)−1αmd1d2(1)βm/(m,d1d2)(2) = ζ(3)−1

∏
p|d1d2

p3 − p2

p3 − 1

∑
m≥1

1

m2

∏
q|m

q∤d1d2

q3 − q2

q3 − 1

q2 + 1

q2
.

(8.19)

Factoring the sum into an Euler product, we have that the above equals

ζ(3)−1
∏

p|d1d2

p3 − p2

p3 − 1

1

1 − p−2
f(p)−1

∏
q

f(q) (8.20)

where

f(p) = 1 +
p3 − p2

p3 − 1

p2 + 1

p2
1

p2 − 1
. (8.21)

Thus we have

S = ζ(3)−1
∏
q

f(q)
∑

d1,d2≥1

µ(d1d2)

d21d
2
2

∏
p|d1d2

p3 − p2

p3 − 1

1

1 − p−2
f(p)−1. (8.22)

We want to count the number of times that a fixed value of d1d2 appears in the above sum.
Since d1d2 can be assumed to be squarefree, if d1d2 has a prime factors, then it appears 2a

times. Thus we have that

S = ζ(3)−1
∏
q

f(q)
∏
p

[
1 − 2

p2
p3 − p2

p3 − 1

1

1 − p−2
f(p)−1

]
= ζ(3)−1

∏
p

[
f(p) − 2

p2
p3 − p2

p3 − 1

1

1 − p−2

]
. (8.23)

Now, we have that

f(p) − 2

p2
p3 − p2

p3 − 1

1

1 − p−2
=

1 − p−2

1 − p−3
(8.24)

so that

S = ζ(3)−1
∏
p

1 − p−2

1 − p−3

= ζ(3)−1ζ(3)ζ(2)−1 (8.25)

= ζ(2)−1 =
6

π2
. (8.26)

□



34 ALEXANDER SHASHKOV

Applying Lemma 8.2 to (8.14) gives that the contribution from the pole is

2

|H∗
k(N)|

ϕ

(
logR

4πi

)
+O

(
N−ϵ

)
. (8.27)

Combining this with the analysis of the integral from Section 7.2 gives the proposition. □
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