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Abstract

Hausdorff and box-counting are two of the most common notions of
dimension. We describe a way to calculate a different dimension, called di-
lation dimension, for certain figures exhibiting self-similarity using simple
transformations of the plane. We show that dilation dimension is equiv-
alent to Hausdorff dimension and box-counting dimension for subsets of
Rn for which it is defined, and use this equivalence to give another proof
that Hausdorff dimension and box-counting dimension can take on any
positive real value by constructing a simple generalized Cantor set. These
concepts have all been described before, and the purpose of this note is
to describe a way to show that dimension can take on any positive real
value.

1 Introduction

The ordinary notion of dimension states that points in Euclidean space have
dimension 0, lines have dimension 1, planes have dimension 2, and so on. A
natural question is whether this idea can be extended so that the dimension of
less well-behaved sets such as fractals may also be calculated. In many classes,
fractals are introduced as examples of sets with non-integral dimension. It is
thus natural to ask what possible values can be attained. The purpose of this
short note is to describe one way to show any positive number is possible, for
use in such classroom discussions. References for Section 1 can be found in [1].

Definition 1 (Box-counting dimension) Given a set F ⊆ Rn, the box-counting
dimension of F is

dimB F := lim
δ→0

logNδ(F )

− log δ
(1)

where Nδ(F ) is the smallest number of cubes of side length δ which cover F .

∗Williams College
†The author thanks Steven J. Miller and Jeffrey Lagarias for their guidance and comments.

1



Box-counting dimension is defined only for sets where the limit exists. The
definition of Hausdorff dimension is more involved and requires us to first define
several related terms. Let |F | denote the diameter of a set F ⊆ Rn, in other
words

|F | := sup{d(x, y) : x, y ∈ F} (2)

where d(x, y) is the Euclidean distance in Rn.

Definition 2 (δ-cover) Let F ⊆ Rn. A countable (possibly finite) collection
of sets {Ui} is a δ-cover of F if {Ui} covers F and each Ui has diameter at
most δ.

Defining δ-covers allows us to define the Hausdorff measure, an extension of the
ordinary Lebesgue measure on Rn.

Definition 3 (Hausdorff measure) Let F ⊆ Rn and fix s ≥ 0. For each
δ > 0, we define

Hsδ(F ) = inf

{ ∞∑
i=1

|Ui|s : {Ui} is a δ-cover of F

}
(3)

The s-dimensional Hausdorff measure on F is defined as

Hs(F ) := lim
δ→0
Hsδ(F ). (4)

It can be shown that Hs is in fact a measure which is equivalent to the Lebesgue
measure up to multiplication by a constant. Finally, we can define Hausdorff
dimension.

Definition 4 (Hausdorff dimension) Let F ⊆ Rn. The Hausdorff dimen-
sion of F is

dimH F := inf{s ≥ 0 : Hs(F ) <∞}. (5)

Hausdorff dimension is defined for any F ⊆ Rn, making it a very useful measure
of dimension. However, it can be difficult to calculate as seen from its technical
definition. The same applies for box-counting dimension. Another question is
which values Hausdorff and box-counting dimensions can take, and developing
a simple way to calculate these dimensions will make answering this question
much easier.

2 Dilation Dimension

Definition 5 (Dilation) Given a set F ⊆ Rn, a dilation of F is a mapping
fd : x→ d · x for any real d > 1.

Definition 6 (Translation) Given a set F ⊆ Rn, a translation of F is a
mapping Tλ : x→ x+ λ.
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Definition 7 (Dilation Dimension) Let F ⊆ Rn. Suppose there exists a
dilation fd of F by a factor of d such that there exists a set of translations
T1, . . . , Tm such that

fd(F ) =

m⊔
i=1

Ti(F ), (6)

where
⊔

denotes a disjoint union. The dilation dimension of F is dimD F :=
log(m)/ log(d).

Note that this means that ddimD F = m.

Definition 8 (Contraction) A contraction S is a function Rn → Rn such
that there exists 0 < d < 1 with |S(x)−S(y)| ≤ d|x−y|. A contraction is simple
if the equality holds, i.e., if there exists 0 < d < 1 such that |S(x) − S(y)| =
d|x− y|. If S is simple, then d is called the ratio of S.

Definition 9 (Attractor) An iterated function system (IFS) is a finite family
of contractions {S1, . . . , Sm} in Rn. A set S ⊆ Rn is an attractor of the IFS if

F =

m⊔
i=1

Si(F ). (7)

Lemma 1 Let F ⊆ Rn. Suppose there exists a dilation fd of F by a factor
of d such that there exist a set of translations T1, . . . , Tm such that (6) holds.
Then there exists an IFS {S1, . . . , Sm} with constant ratio d for which F is an
attractor.

Proof: Set Si = f−1d ◦ Si. Then {S1, . . . , Sm} is the desired IFS. QED

Theorem 1 ([1], Theorem 9.3) Let F be the attractor for an IFS {S1, . . . , Sm}
of simple contractions with constant ratio d. Then the Hausdorff dimension
dimH and box-counting dimension dimB of F is given by log(m)/ log(d); or
equivalently ddimB F = ddimH F = m.

The proof is fairly technical, as calculating Hausdorff and box-counting dimen-
sion directly from their definitions is fairly difficult. Their exact definitions can
also be found in [1].

Corollary 1 Dilation dimension is equivalent to Hausdorff dimension and box-
counting dimension are equivalent for any set F for which it is defined.

Proof: The proof follows directly from Lemma 1 and Theorem 1. QED

Theorem 2 Let r ≥ 0 be a nonnegative real number. There exists n ∈ N and
a set F ⊆ Rn such that dimH F = dimB F = r.

Proof: Since we have shown dilation dimension and Hausdorff dimension are
equivalent, we can merely show that the statement holds for dilation dimension.
First suppose r = 0. Take the empty set ∅. Dilating ∅ by any factor d gives 1
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copy of ∅, so the dilation dimension is logr 1 = 0.

Now suppose r is a positive integer. The r-dimensional unit hypercube in
Rr has Hausdorff (and ordinary) dimension r.

Now suppose r > 0 is not an integer. Let n be the smallest integer greater
than or equal to r (the ceiling of r) and set b = 2n/r. Since n > r > 0, b > 2.
Define the set F as follows:

F =

{
(x1, . . . , xn) : ∀1 ≤ k ≤ n, ∃Ik ⊆ N, xk =

∑
i∈Ik

b−i

}
.

Each xk in the above is analogous to a number expressed in base b using only
the digits 0 and 1, and between 0 and 1, inclusive. However, b is not necessarily
an integer. We do have that b > 2, however, so each xk can be represented
uniquely. We claim that F has dilation dimension r. Dilate F by a factor of b.
We now have 2n copies of F , as we can disjointly partition bF into 2n copies,
each given by

F + δ : δ = {(δ1, . . . , δn) : δi ∈ {0, 1}} .

There are 2n such δs. Now we have that the dilation dimension of F satisfies

bdimD F = 2n.

Solving for b gives b = 2n/ dimD F , so it is clear that dimD F = r since we
also have that b = 2n/r by definition. It then follows from Corollary 1 that
dimH F = dimB F = r. QED
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