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1 Introduction
Let k be a field of characteristic not equal to 2. We can develop the theory of quadratic forms in
quadratic 2, but it is a bit more tricky.

Definition 1.1. A quadratic form is a polynomial f(x) = f(x1, . . . , xn) =
∑

1≤i,j≤nAijxixj , where
Af = (Aij) ∈Mn×n(k) is a symmetric matrix.

Example 1.2. If A =

(
a b
b c

)
, then the associated quadratic form f is ax21 + 2bx1x2 + cx22. From

this we can see why characteristic 2 might be a bit weird, as in characteristic 2 we have that 2b = 0.

Definition 1.3. A quadratic form f is regular is det(Af ) ̸= 0.

1.1 Classical motivation
The classical motivation for studying quadratic forms is that they give the first examples of inter-
esting nonlinear Diophantine equations.

Example 1.4. If A = In, then f = x21 + · · ·+ x2n.
A classical question is to characterize f(Zn). If n ≥ 4, then the image is all of Z, otherwise

there are some interesting things going on.

Another motivation is that from geometry, as quadratic forms define projective varieties.

Example 1.5. Let f be a regular quadratic form with associated matrix Af ∈ Mn×n(k). Define
Xf ⊆ Pn−1 to be the vanishing locus of f . As det(Af ) ̸= 0 and the characteristic is not 2, Xf is a
nonsingular variety.

An important question is to decide whether Xf (k) ̸= ∅. This is especially interesting when k is
an arithmetically interesting field, for example k = Q or k is a number field. The Hasse-Minkowski
theorem gives an answer to this question.

Definition 1.6. Let k be a number field, and let Mk to be the set of places of k, equivalence classes
of non-trivial valuations on k.

Theorem 1.7 (Hasse-Minkowski). Xf (k) ̸= ∅ if and only if Xf (kv) ̸= 0 for all v ∈Mk.

This is useful because working over a local field is very nice, as we can do analysis (e.g Hensel’s
lemma). Suppose our form has at least 3 variables (in 1 or two variables the question is easy). Then
Xf (kv) ̸= 0 for all but finitely many places. For the places for which this does not hold trivially,
we can use Hensel’s lemma to reduce the question to working over a finite ring.

Corollary 1.8. There’s an easy algorithm to decide if Xf (k) ̸= ∅.

This is a very nice property of quadratic forms.

1.2 Modern motivation
We want to study the symmetries of quadratic forms.

Definition 1.9. A quadratic space over k is a pair (V, ψ) where V is a finite-dimensional vector
space over k and ψ : V × V → k is a symmetric bilinear form on V .
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If we fix a basis b = {e1, . . . , en} on V , then ψ has Gram matrix [ψ]B = (ψ(ei, ej))ij ∈Mn×n(k)
symmetric. We define f(x) = ψ(

∑
xiei,

∑
xiei) to be the quadratic form with Af = [ψ]B . We

sometimes write ψ(v, v) = ψ(v).
A quadratic space is regular if det[ψ]B ̸= 0. Equivalently, ψ defines an isomorphism V ∼= V ∗.

Definition 1.10. Let (V, ψ) be a regular quadratic space over K. Then we define

O(V ) = {g ∈ GL(V )|ψ(gv, gw) = ψ(v, w)∀v, w ∈ V } (1.1)
SO(V ) = {g ∈ O(V )|det g = 1} (1.2)

These are abstract groups, but they are also k-points of linear algebraic groups over k. Recall that
a linear algebraic group over k is an affine group variety defined over k, or equivalently, a closed
subgroup scheme of GLV , where V is a finite dimensional k-vector space. Thus we can write

OV = {g ∈ GLV | ∀v, w ∈ V, ψ(gv, gw) = ψ(v, w)}. (1.3)

Even more abstractly we can say that OV is the group scheme over k representing the functor

k−alg→ grp

R 7→ OV (R) = {g ∈ AutR(V ⊗k R) | ∀v, w ∈ V ⊗k R, ψ(gv, gw) = ψ(v, w)} (1.4)

We won’t need this definition or any complicated algebraic geometry, but it is very nice as it allows
us to define OV (R) for arbitrary k-algebras.

We can similarly define SOV .
If k is a local field and V is anisotropic, then O(V ) is compact.

1.3 What can we do?
Group action. One thing we can do is study the action of SOV on XV ⊆ P(V ). This is a
homogeneous space, which is a space with a transitive group action in the sense of algebraic groups.
For our cases, what this means is that the group action is transitive over k algebraically closed.

This puts us in the typical setting of arithmetic geometry, where we first pass to the algebraic
closure, which allows us to forget all the arithmetic of the field and just do geometry, and then
descend back to our base field.

In order to prove the Hasse-Minkowski theorem, we use class field theory and this transitive
group action.

Representation theory. Another thing we can do is study the representation theory of the
group O(V ) and see if that tells us anything about the quadratic space. Let f(x) = x2g+1+c1x

2g+
· · ·+c2g+1 ∈ k[x] be a monic separable polynomial, and let C0

f : y2 = f(x) be the associated smooth
curve over k, and let Cf be the unique smooth projective completion. This is a hyperelliptic curve
of genus g.

From the point of view of algebraic geometry, hyperelliptic curves are in some sense the “simplest”
curves of genus g. The arithmetic of hyperelliptic curves is of interest, and they are connected to
quadratic forms.
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Let Jf = Pic0 Cf be the Jacobian variety, which is an abelian of dimension g equipped with a
natural embedding Cf ↪→ Jf . Then there’s an embedding

Jf (k)/2Jf (k) ↪→ (V ⊗k V )/ SO(V ) (1.5)

Here V is the “simplest possible quadratic space of dimension 2g + 1 and d(V ) ≡ (−1)g”. This
is given by the matrix with 1s on the anti-diagonal and zeros elsewhere. The tricky piece is that
Jf (k)/2Jf (k) naturally embeds into (W ⊗k W )/ SO(W ), where W = H0(X,OX(D)) is the global
sections of some line bundle, and we need to show that V is naturally isomorphic to W . We also
need to shows that we can upgrade the embedding (1.5) into an embedding into VZ ⊗ VZ/SO(VZ).

The group Jf (k)/2Jf (k) is very nice and appears in other instances, for instance the proof of
the weak Mordell-Weil theorem (cf. elliptic curves). We won’t discuss how this embedding comes
up, but here are some nice applications.

1. Bhargava-Gross used this embedding to calculate the average size of the 2-Selmer group.

2. Poonen-Stoll showed that when k = Q, then 0% of the hyperelliptic curves as defined above
have C0

f (Q) ̸= ∅ as g →∞.

3. Bhargava-Shankar-Wang computed the density of polynomials f(x) ∈ Z[x] monic of degree
2g + 1 such that disc(f) is squarefree. This result was very surprising as it had previously
only been done by assuming that abc-conjecture.

Automorphic forms. Groups like SOV carry interesting automorphic forms, which are roughly
speaking functions on SOV (Ak)/ SOV (k). Recall (we will define all this in more detail later) that

Ak
∏
v∈Mk

′
kv (1.6)

SOV (Ak) is a huge locally compact group, and k embeds diagonally in Ak so SOV (k) maps into
SOV (Ak) by functoriality, and in fact this map is an embedding. Thus we can define the quotient
space.

Automorphic forms are very interesting for a lot of reasons. For instance, they participate in
the θ-correspondence, which relates automorphic forms on different groups. This is a generalization
of the classical theory of modular forms and their connection with quadratic forms.

One application is the Smith-Minkowski-Siegel mass formula, which uses the θ-correspondence.

Shimura varieties. For certain quadratic spaces V/Q, the group SOV can be used to construct a
Shimura variety (or even a family of Shimura varieties). These are algebraic varieties over number
fields with lots of symmetries which play a very important role in the Langlands correspondence.

A major area of research is developing an “arithmetic” θ-correspondence and “arithmetic” Siegel-
Weil formula. Shimura varieties are essential in this.

These Shimura varieties (for appropriate choices of V ) can be interpreted as moduli spaces of
polarized K3 surfaces. This has been used to complete the proof of the Tate conjecture over finite
fields for K3 surfaces. The Tate conjecture is one of the most important conjectures about the
cohomology of algebraic varieties. It is as important, and as difficult as the Hodge conjecture, so
its solution is a very big deal.
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1.4 Goals for this course
We won’t get into any of the above applications. We’ll instead study the fundamentals of quadratic
forms and their classification over number fields. Having a firm grasp on these basic topics will
allow one to define Shimura varieties, automorphic forms, and understand the embedding (1.5).

We will also study aspects of the integral theory, over Z or OK the ring of integers of a number
field. This includes things like genus, Spin groups, spinor genus, and strong approximation.

2 Quadratic forms over a field
Let k be a field of characteristic not equal to 2.

2.1 Basics
Definition 2.1. Two quadratic forms f, g are equivalent if there exists P ∈ GLn(k) such that
Ag = P tAfP . This is the same as f and g being related by a linear change of variables given by
P . We write f ∼ g or f ∼k g if we want to emphasize the isomorphism is defined over k.

If a ∈ k, we say that f represents a if there exists v ∈ kn \ {0} such that f(v) = a.
If f represents 0, we say that f is isotropic. Otherwise we say that f is anisotropic.

Definition 2.2. A morphism of quadratic spaces α : (V, ψ)→ (V ′, ψ′) is a linear map α : V → V ′

such that for all v, w ∈ V , ψ′(α(v), α(w)) = ψ(v, w).
We say that V, V ′ are equivalent and write V ∼ V ′ if they are isomorphic.
If a ∈ k, we say that V represents a if there exists v ∈ V \ {0} such that ψ(v, v) = a. V is

isotropic if it represents 0. Otherwise we say that V is anisotropic.

We can pass between quadratic spaces and quadratic forms.
Recall that if we fix a basis B = {e1, . . . , en} for V , so an isomorphism V ∼= kn, then f(x) =

ψ(
∑
xiei,

∑
xiei) is a quadratic form with matrix Af = [ψ]B . To go the other way, we have the

polarisation identity

ψ(v, w) =
1

2
(ψ(v + w, v + w)− ψ(v, v)− ψ(w,w))

=
1

2
(f(x+ y)− f(x)− f(y)) (2.1)

From this it is clear that characteristic 2 might cause us some problems, as we can pass from
quadratic spaces to quadratic forms, but we cannot go the other way as we cannot divide by 2.

Now, recall that a quadratic form f is regular if detAf ̸= 0, and a quadratic space (V, ψ) is
regular if det[ψ]B ̸= 0. We define the determinant

d(V ) = det[ψ]B mod (k×)2 ∈ k×/(k×)2. (2.2)

So V is regular if and only if d(V ) ̸= 0. If V ∼ V ′, then d(V ) ≡ d(V ′) (we sometimes write ≡
instead of = to emphasize that the equivalence is over k × /(k×)2.

Next we will discuss subspaces. The fact that subspaces of quadratic spaces are very nice is one
of the reasons the coordinate-free point of view is so useful.

Definition 2.3. Let (V, ψ) be a quadratic space, andW ⊆ V a k-linear subspace. Then (W,ψ|W×W
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1. We say that W ⊆ V is regular if it is regular as a quadratic space.

2. The orthogonal complement of W is

W⊥ = {v ∈ V | ∀w ∈W, ψ(v, w) = 0} (2.3)

3. If W ′ ⊆ V is another subsapce, we say that W,W ′ are orthogonal if W ⊆ (W ′)⊥, if and only
if W ′ ⊆W⊥, if and only if ψ(W,W ′) = 0.

Definition 2.4. If (V, ψ), (V ′, ψ′) are quadratic spaces, then V ⊕ V ′ = (V ⊕ V ′, ψ ⊕ ψ′) denotes
the orthogonal direct sum. ψ⊕ψ′ is the unique quadratic form which makes the natural projection
maps V ⊕ V ′ → V and V ⊕ V ′ → V ′ morphisms of quadratic spaces.

Lemma 2.5. Let V be a regular quadratic space, and W ⊆ V a regular subspace. Then V =
W ⊕W⊥.

Proof. First, we can use that fact that W is regular to check that W ∩W⊥ = 0.
Next we can check that V = W +W⊥. If v ∈ V , then ψ(v, ·)|W ∈ W ∗. Thus as W is regular,

there exists w ∈W such that ψ(v, w′) = ψ(w,w′) for all w′ ∈W . Then v − w ∈W⊥.

Definition 2.6. If A ∈ Mn×n(k) is symmetric, then ⟨A⟩ = (kn, vtAw) is the quadratic space
associated with A (so ψ(v, w) = vtAw).

In particular, if n = 1, then A = a ∈ k, and ⟨a⟩ = (k, vaw).

Corollary 2.7. If V is regular quadratic space, then there exists a1, . . . , an ∈ k× such that V ∼
⟨a1⟩ ⊕ · · · ⊕ ⟨an⟩.

What this corollary says is that there is a basis for V such that the associated Gram matrix is
diagonal. The associated quadratic form is then f(x) = a1x

2
1 + · · ·+ anx

2
n.

Proof. Induction on n. The base case n = 1 is done as the matrix is already diagonal.
Now for the inductive step. Since V is regular, there exists v ∈ V such that ψ(v, v) ̸= 0. Then

kv ⊆ V is a one-dimensional regular subspace, so V = (kv) ⊕ (kv)⊥. Then (kv)⊥ is (n − 1)-
dimensional, so we are done by the induction hypothesis.

We are going to define some invariants associated with quadratic forms which are quite simple.
But it’s going to be the case that these invariants these invariants completely determine quadratic
forms of rank at most 3. However, if k is a field of low cohomological dimension such as a number
field or a local field, then these invariants characterize quadratic forms of all rank, which allows us
to prove the Hasse-Minkowski theorem.

The following lemma is the first example of the above behavior.

Lemma 2.8. Let V be a regular quadratic space of dimension 2. The following are equivalent:

(i) d(V ) ≡ −1.

(ii) V is isotropic.

(iii) V ∼
〈(

0 1
1 0

)〉
.
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Proof. (iii) → (ii): If V =

〈(
0 1
1 0

)〉
, then ψ(e1, e1) = 0, so we are done.

(ii) → (iii): Let v ∈ V \ {0} be such that ψ(v, v) = 0. Then V is regular, so there exists v ∈ V
such that ψ(v, w) ̸= 0, and we can rescale so that ψ(v, w) = 1. Then {v, w} is a basis. Also,
ψ(v, w + λv) = 1 and ψ(w + λv,w + λv) = ψ(w,w) + 2λ so we can replace w by w + λv without
changing the property that ψ(v, w) = 1. So after replacing w by w − 1

2ψ(w,w)v, we can assume

that ψ(w,w) = 0, so [ψ]{v,w} =

〈(
0 1
1 0

)〉
(iii) → (i): det

(
0 1
1 0

)
= −1.

(i) → (ii): V ∼ ⟨a1⟩ ⊕ ⟨a2⟩ for some a1, a2 ∈ k. Then d(V ) = a1a2 ≡ −1 by assumption, so

a2 ≡ −a1 mod (k×)2. Taking change of variables matrix P =

(
1 0
0 a1

)
gives that ⟨a1⟩ ⊕ ⟨a2⟩ ∼

⟨a1⟩ ⊕ ⟨−a1⟩. But the associated quadratic form is then a1x21 − a1x22, so (1, 1) ∈ ⟨a1⟩ ⊕ ⟨−a1⟩ is an
isotropic vector, so V is isotropic.

Definition 2.9. Let H =

〈(
0 1
1 0

)〉
be the two-dimensional quadratic space define above. H is

the hyperbolic plane. The previous lemma shows that H is the unique regular isotropic quadratic
space of rank 2, and the unique regular quadratic space with d(V ) ≡ −1. The quadratic form
associated with H is f(x) = 2x1x2, so H represents every element of k.

The next lemma is very useful, as it shows that any isotropic quadratic space contains a copy
of H.

Lemma 2.10. Let V be a regular quadratic space. The following are equivalent:

(i) V is isotropic.

(ii) There’s an isomorphism V = H ⊕ V ′ for some subspace V ′ ⊆ V .

Proof. (ii) → (i) is immediate as H is isotropic.
(i) → (ii): We can find v ∈ V \ {0} such that ψ(v, v) = 0. As before, we can find w ∈ V such

that ψ(v, w) = 1 and ψ(w,w) = 0. Then v, w are linearly independent and ⟨v, w⟩ ⊆ V is a regular
quadratic space congruent to H. Then V ∼ H ⊕H⊥.

Corollary 2.11. Let (V, ψ) be a regular quadratic space and a ∈ k×. The following are equivalent:

(i) V represents a.

(ii) V ⊕ ⟨−a⟩ is isotropic.

Proof. (i) → (ii): If ψ(v, v) = a, then (v, 1) ∈ V ⊕ ⟨−a⟩ is isotropic.
(ii) → (i): As V ⊕ ⟨−a⟩ is isotropic, we can find v ∈ V , λ ∈ k× not both zero such that

ψ(v, v)− λ2a = 0 (recall the definition of a quadratic form on the direct sum).
If λ ̸= 0, then ψ(λ−1v, λ−1v) = a, so ψ represents a
If λ = 0, then there exists v ∈ V \{0} such that ψ(v, v) = 0, so V is isotropic. Thus V = H⊕V ′

by Lemma 2.10. H represents every element of k (see Definition 2.9), so we are done.
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Let (V, ψ) be a regular quadratic space with matrix Aψ. Recall the definition of the groups
O(V ) and SO(V ). If g ∈ O(V ), then gtAψg = Aψ, so det(g)2 = 1, so det(g) = ±1.

Now, if ψ(v, v) ne0, then V = (kv) ⊕ (kv)⊥. There exists a unique τV : V → V preserv-
ing this decomposition, such that τv(v) = −v, and τv|(kv)⊥ = idV |(kv)⊥ . This preserves ψ as
ψ(τv(v), τv(v)) = ψ(−v,−v) = ψ(v, v) and τv is the identity on (kv)⊥. Also, det τv = −1, so
τv ∈ O(V ) \ {SO}(V ). We call τv a simple reflection.

Lemma 2.12. Suppose v, w ∈ V , ψ(v) = ψ(w) ̸= 0, and ψ(v − w) ̸= 0. Then τv−w(v) = w.

Proof. In general, we have that if x ∈ V and ψ(x) ̸= 0, then we have the reflection formula

τx(y) = y − 2ψ(x, y)

ψ(x, x)
· x. (2.4)

We have that ψ(v − w) = ψ(v) − 2ψ(v, w) + ψ(w) = 2ψ(v) − 2ψ(v, w) = 2ψ(v, v − w), so putting
x = v − w and y = v in the above formula gives τv−w(v) = w as desired.

Proposition 2.13. Let V be a regular quadratic space of dimension n ≥ 1.

1. Suppose n ≥ 2. If v, w ∈ V and ψ(v) = ψ(w) ̸= 0, then there exist simple reflections
τ, τ ′ ∈ O(V ) such that ττ ′(v) = w. In particular, if a ∈ k×, then SO(V ) acts transitively on
{v ∈ V | ψ(v) = a}.

2. O(V ) is generated by simple reflections.

Proof.
1. We have that ψ(v + w) + ψ(v − w) = 2ψ(v) + 2ψ(w) ̸= 0 so either ψ(v + w) or ψ(v − w) is
nonzero.

First suppose ψ(v − w) ̸= 0. Then τv−w(v) = w. We have that V = kw ⊕ (kw)⊥, and we can
choose u ∈ (kw)⊥ such that ψ(u) ̸= 0. Then τu(w) = w so τuτv−w(v) = w.

Next suppose that ψ(v + w) ̸= 0> Then τv+w(v) = −w, τw(w) = −w, so τwτv+w(v) = w so we
are done.
2. If n = 1, then O(V ) = {±1} so we are done. If n > 1, we argue by induction. Choose g ∈ O(V )
and v ∈ V such that ψ(v) ̸= 0. Then ψ(v) = ψ(gv), so by part 1 there exists τ, τ ′ ∈ O(V )
such that ττ ′v = gv, so τ ′τgv = v. Then τ ′τg ∈ O(V ). We have the direct sum decomposition
V = (kv) ⊕ (kv)⊥. Since τ ′τg ∈ O(V ) and τ ′τgv = v, we have that τ ′τg preserves the direct sum
decomposition. Thus (τ ′τg)|(kv)⊥ ∈ O((kv)⊥).

By induction, there exists w1, . . . , wr ∈ (kv)⊥ such that (τ ′τg)|(kv)⊥ = τw1
· · · τwr

. Then we can
consider τwi

as an element of O(V ) which preserves the decomposition V = (kv)⊕ (kv)⊥ and fixes
v. So τ ′τg = τw1 · · · τwr as elements of O(V ), so g is the product of simple reflections.

Theorem 2.14 (Witt’s lemma). Let V be a regular quadratic space. Let W1,W2 ⊆ V be regular
subspaces. Let α : W1 → W2 be an isomorphism of quadratic spaces. Then there exists g ∈ O(V )
such that g|W1

= α.

The above theorem tells us that the orthogonal group acts transitively on isomorphic subspaces.
The first part of the previous proposition told us that the orthogonal group acts transitively on
vectors of the same nonzero length (one-dimensional regular subspaces), this is a generalization of
that.
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Proof. We argue by induction on n = dimW1. If n = 1, then w1 = kv, ψ(v) ̸= 0, and W2 = kα(v),
and ψ(v) = ψ(α(v)) as α is an isomorphism of quadratic spaces. By the proposition, there exists
g ∈ SO(V ) such that g(v) = α(v), so we are done.

If n > 1, choose a decomposition W1 = U ⊕ U ′, where dimU,dimU ′ ≥ 1. Consider α|U : U →
α(U). By induction, we can find β ∈ O(V ) such that β|U = α|U .

We now consider β−1 ◦α :W1 → V . We have that (β−1 ◦α)|U = id |U . Therefore β−1 ◦α sends
U ′ = (U⊥ ∩W1)→ U⊥ ⊆ V as β−1 ◦ α preserves ψ.

By the induction hypothesis applied to U ′ ⊆ U⊥, and (β−1 ◦ α)|U ′ , we can find β′ ∈ O(U⊥)
such that β′ = β−1 ◦ α|U ′ . We extend β′ to an element of O(V ) in the unique way such that β′

preserves the decomposition V = U ⊕ U⊥ and β′|U = idU (in matrix form this looks like a block
diagonal with β′ in the first block and the identity in the second block).

Thus we have that β−1 ◦ α|U = idU and β−1 ◦ α|U⊥ = β′|U⊥ . Then β ◦ β′ ∈ O(V ), and
ββ′|U = α|U . Also, as β′ = (β−1 ◦ α)|U ′ and U ′ = U⊥ ∩W1, we have that

ββ′|U ′ = ββ−1α|U ′α|U ′ . (2.5)

As W1 = U ⊕ U1, we have that ββ′|W1 = α|W1 as desired.

Corollary 2.15 (Witt’s cancellation theorem). If V , V ′, V ′′ are regular quadratic spaces and
V ⊕ V ′′ ∼ V ′ ⊕ V ′′, then V ∼ V ′.

Proof. Let V ⊕ V ′′ ∼ V ′ ⊕ V ′′ ∼ W . Let W1,W2 denote the images of the two copies of V ′′ in W
for V ⊕ V ′′ and V ′ ⊕ V ′′, respectively. Then there is an isomorphism α : W1 → W2, so by Witt’s
lemma there is g ∈ O(V ) such that g|W1

= α. Then g|V : V →W has image V ′, so V ∼ V ′.
This is confusing but the point is you have an isomorphism between the two copies of V ′′, which

extends to an isomorphism of the entire quadratic space by Witt’s lemma, and this isomorphism
restricts to an isomorphism from V → V ′.

Recall the definition of the hyperbolic plane Definition 2.9.

Corollary 2.16. If V is a regular quadratic space, then there exists an anisotropic quadratic space
V ′ and an r ≥ 0 such that V ∼ V ′ ⊕Hr. Moreover, the isomorphism class of V ′ and the integer r
are determined uniquely by V .

Proof. Such a decomposition exists because if V is isotropic then V ∼ V ′ ⊕ H, and we can keep
splitting off copies of H until we get something anisotropic.

If V ′⊕Hr ∼ V ′′⊕Hs are two different decompositions, then WLOG r ≥ s. Then V ′⊕Hr−s ∼ V ′′

by Corollary 2.15, so r = s because V ′′ is anisotropic, so V ′ ∼ V ′′.

Definition 2.17. The Witt group of k, denoted W (k), is the we set of equivalence classes [V ] of
regular quadratic spaces over k, where [V ] = [V ′] if and only if there exists r, s ≥ 0 such that
V ⊕Hr ∼ V ′ ⊕Hs.

The group operation is defined by [V ] + [V ′] = [V ⊕ V ′]. We have that −[V ] = [⟨−1⟩ ⊗k V ]. To
see this, let e1, . . . , en be a basis for V , and 1⊗ e1, . . . , 1⊗ en be a basis for ⟨−1⟩ ⊗k V . Then the
span of ei, 1⊗ei is two dimensional and isotropic, hence isomorphic to H, so [V ]− [V ] = [Hn] = [0].

• The Witt group is functorial in k : if K/k is a field extension then there is a morphism

W (k)→W (K)

[V ] 7→ [V ⊗k K] (2.6)
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• We can additionally endow the Witt group with a ring structure using the tensor product.

• By Corollary 2.16, there is a unique anisotropic representative of each equivalence class [V ] ∈
W (k). Thus describing the elements of the Witt group is the same as classifying the quadratic
forms over k, and this is a decent approach.

However, the Witt group is not well-suited to proving the Hasse-Minkowski theorem, as it is
hard to apply class field theory. Instead, we use the Clifford invariant, defined in the next section.

2.2 Clifford Algebra
We first make precise the notion of a k-algebra.

Definition 2.18. A k-algebra A is a k-vector space (A,+, 0A) together with a k-bilinear form
x : A × A → A and 1A ∈ A such that for all a ∈ A 1A × a = a × 1A = a and for all a, b, c ∈ A,
a× (b× c) = (a× b)× c.

We do not assume that algebras are commutative!

Example 2.19. Mn(k) is a k-algebra for any n ≥ 1. It is a finite k-algebra, as dimk A <∞.

Example 2.20. If X1, . . . , Xn are symbols, the free k-algebra k{X1, . . . , Xn} has k-basis the set of
all monomials {Xi1 · · ·Xim}. Since we do not assume commutativity we have that XiXj ̸= XjXi

for i ̸= j. This k-algebra is not finite.

We can also define the free k-algebra without using coordinates, using the tensor algebra

Definition 2.21. Let V be a k-vector space. The tensor algebra is

T (V ) =
⊕
m≥0

V ⊗m (2.7)

with multiplication given by concatenation of tensors. If x1, . . . , xn is a k-basis of V , then T (V ) ∼=
k{x1, . . . , xn}.

T (V ) has the following universal property: if A is a k-alg, then there is a canonical isomorphism

Homk−alg(T (V ), A) ∼= Hom(V,A) (2.8)

Remark 2.22 (Ignore). T (V ) is a representation (?) of the adjunct of the forgetful functor from
k-algebras to k-vector spaces.

Definition 2.23. A 2-sided ideal I ⊆ A is a k-linear subspace such that for all a ∈ A, aI ⊂ I and
Ia ⊂ I.

If I ⊆ A is two sided, then A/I can be given the structure of a k-algebra.

Definition 2.24. If A has no proper 2-sided ideals, then A is simple.

Example 2.25. Mn(k) is a simple k-algebra

Definition 2.26. Let a, b ∈ k×. Then a quaternion algebra over k is a k-algebra of the form

(a, b)k = k{i, j}/⟨i2 − a, j2 − b, ij + ji⟩. (2.9)
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Lemma 2.27.

1. (a, b)k is a simple k-algebra with basis {1, i, j, k = ij}.

2. (a2,−a2)k ∼=M2(k).

Remark 2.28.

1. It is unfortunate that we use the symbol k for a standard basis element of quaternion algebras
and for our base field.

2. (−1,−1)R = H is the algebra of Hamiltonian quaternions.

3. Class field theory gives a classification of quaternion algebras over K a number field.

Proof. 1, i, j, ij span (a, b)k as a k-vector space, so (a, b)k has dimension at most 4.

2. Let A =

(
a 0
0 −a

)
and B =

(
0 a
−a 0

)
. Then A2 = a2I, B2 = −a2I, AB =

(
0 a2

a2 0

)
and

BA = −AB. Thus i 7→ A and j 7→ B gives a map ⟨i, j⟩ → M2(k). By the universal property of
tensor algebras, this extends to a map φ̃k{i, j} →M2(k) which is in fact surjective (as A2, A,B,AB
form a basis for M2(k)). Now, as A2 = a2I and B2 = −a2I and AB = −BA, ker φ̃ contains
⟨i2−a2, j2+a2, ij+ ji. Thus φ̃ descends to a surjection φ : (a2,−a2)k ↠M2(k). But as (a2,−a2)k
has dimension at most 4 and M2(k) has dimension 4, φ is an isomorphism.

1. Let k/k be an algebraic closure. Then a,−b are squares in k. If a = c2 and −b = d2 in k.
As (a, b)k is spanned by {i, j}, replacing j by dj/c we get that (a, b)k

∼= (a,−a)k. But (a,−a)k ∼=
(c2,−c2) ∼=M2(k) by part 1. So (a, b)k ⊗k k ∼= (a, b)k

∼= (a,−a)k ∼=M2(k). Then dimk(a, b)k = 4.
If I ⊆ (a, b)k is a 2-sided ideal, then I ⊗k k ⊆ (a, b)k

∼= M2(k) is a 2-sided ideal, so I ⊗k k = 0

or I ⊗k k = (a, b)k, so I = 0 or I = (a, b)k, so (a, b)k is simple.

Definition 2.29. Let V be a quadratic space. The Clifford algebra C(V ) is

C(V ) = T (V )/⟨v2 − ψ(v, v) | v ∈ V ⟩. (2.10)

The Clifford algebra has the following universal property: if A is a k-algebra, then

Homk−alg(C(V ), A) = {α ∈ Hom(V,A) | ∀v ∈ V, α(v)2 = ψ(v, v)} (2.11)

C(V ) has a Z/2Z-grading, inherited from the Z-grading of T (V ): we have that C(V ) = C0(V )⊕
C1(V ), where C0(V ) = Spank(v1 · · · v2m | vj ∈ V,m ≥ 0) and C1(V ) = Spank(v1 · · · v2m+1 | vj ∈
V,m ≥ 0). We have C0 · C0 ⊆ C0, C0 · C1 ⊆ C1, and C1 · C1 ⊆ C0.

We have a natural embedding V ↪→ C(V ) induced by the natural embedding V ↪→ T (V ), so
any v ∈ V can be considered as an element of C(V ).

Lemma 2.30.

1. For all v, w ∈ V , vw + wv = 2ψ(v, w).

11



2. If v1, . . . , vn is a k-basis of V , then

{vi1 · · · vin | i1 < · · · < im, m ≥ 0} (2.12)

spans C(V ), so dimC(V ) ≤ 2n.

Proof.

1. For all v, w ∈ V , in C(V ) we have that (v + w)2 = ψ(v + w, v + w) = ψ(v) + ψ(w) + 2ψ(v, w),
and (v + w)2 = v2 + vw + wv + w2 = ψ(v) + ψ(w) + vw + wv, so 2ψ(v, w) = vw + wv.

2. Let W = Spank{vi1 · · · vin | i1 < · · · < im} ⊆ C(V ).
We claim that for any monomial we have that vi1 · · · vir ∈W . We show the claim by induction

on r ≥ 0. If r = 0 we are done.
In general, take vi1 · · · vir ∈ C(V ) to be any monomial. Then vij · vij+1

= −vij+1
· vij =

2ψ(vij , vij+1
). So

vi1 · · · vir = vi1 · · · vij+1vij · · · vir mod W (2.13)

by induction, so we can assume that i1 ≤ · · · ≤ ir. But if ij = ij+1, v2ij = ψ(vij ), so vi1 · · · vir =

ψ(vij )vi1 · · · vij−1vij+2 · · · vir . Then we are done by the induction hypothesis.

Definition 2.31. Let A,B be Z/2Z-graded k-algebras. Then the graded tensor product A⊗̂kB is
the Z/2Z-graded k-algebra with underlying vector space A⊗k B and rth graded part

(A⊗̂kB)r =
⊕
i+j=r

Ai ⊗k Bj . (2.14)

Multiplication is given by the unique k-bilinear operation satisfying

(x⊗ bj)(ai ⊗ y) = (−1)ij(xai)⊗ (bjy) (2.15)

for x ∈ A, y ∈ B, ai ∈ Ai, bj ∈ Bj . We can check that this gives a graded k-algebra.
The graded tensor product has the following universal property: Let C be a Z/2Z-graded k-

algebra and fA : A → C and fB : B → C be graded homomorphisms such that for all ai ∈ Ai,
bj ∈ Bj we have that fA(ai)fB(bj) = (−1)ijfB(bj)fA(ai). Then there exists a unique graded
homomorphism f : A⊗̂kB → C such that for all a ∈ A, f(a ⊗ 1) = fA(a) and for all b ∈ B,
f(1⊗ b) = fB(b).

Example 2.32. Let a, b ∈ k×. If we consider k[x]/(x2 − a) and k[y]/(y2 − b) as k-algebras with
the standard grading deg x = 1 and deg y = 1, then we have that

(a, b)k = k[x]/(x2 − a)⊗̂kk[y]/(y2 − b). (2.16)

Note that if we instead take the ordinary tensor product k[x]/(x2 − a)⊗k k[y]/(y2 − b), we get
a commutative ring (which will be a field if a and b are in distinct classes of k×/(k×)2).

The Clifford algebra has the following nice decomposition property.

Proposition 2.33. If V = U ⊕W , the C(V ) ∼= C(U)⊗̂kC(W ) as Z/2Z-graded algebras.
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Proof. We first want to construct a map C(V ) → C(U)⊗̂kC(W ). By the universal property of
Clifford algebras it suffices t construct a map V → C(U)⊗̂kC(W ) such that α(v)2 = ψ(v). Let
v = (u,w) ∈ V = U ⊕W . Then sending (u,w) 7→ u⊗ 1 + 1⊗ w, we have that

(u⊗ 1 + 1⊗ w)2 = u2 ⊗ 1 + u⊗ w − u⊗ w + 1⊗ w2

= u2 ⊗ 1 + 1⊗ w2

= (ψ(u) + ψ(w))(1⊗ 1)

= ψ(u) + ψ(w)

= ψ(v) (2.17)

so we are all good (1⊗ 1 is the unit in C(U)⊗̂kC(W ) so we can drop it by abuse of notation).
Thus by the universal property of Clifford algebras we get a map

g : C(V )→ C(U)⊗̂kC(W ). (2.18)

Next we want to construct the inverse map C(U)⊗̂kC(W )→ C(V ). By the universal property
of the graded tensor product it suffices to give fU : C(U) → C(V ) and fW : C(W ) → C(V ) such
that for all u ∈ Ci(U), w ∈ Cj(w),

fU (u)fW (w) = (−1)ijfW (w)fU (u). (2.19)

The maps fU and fW are the obvious ones induces by the inclusions U → V → C(V ) and W →
V → C(V ). Consider u = u1 · · ·ui ∈ Ci(U) and w = w1 · · ·wj ∈ Cj(W ) where uk ∈ U , wℓ ∈ W .
By Lemma 2.30 we have that

ukwℓ + wℓuk = 2ψ(uk, wℓ) = 0 (2.20)

as V = U ⊕W so uk and wℓ are orthogonal. Thus ukwℓ = −wℓuk, so

fU (u)fW (w) = u1 · · ·uiw1 · · ·wj
= (−1)ijw1 · · ·wju1 · · ·ui
= (−1)ijfW (w)fU (u) (2.21)

as desired. Thus by the universal property of the graded tensor product we get a map

f : C(U)⊗̂kC(W )→ C(V ). (2.22)

We can check that these maps are inverses of each other. First, if v1 · · · vn ∈ C(V ), we have that

f ◦ g(v1 · · · vn) = f((u1 ⊗ 1 + 1⊗ w1) · · · (un ⊗ 1 + 1⊗ wn))
= (u1 + w1) · · · (un + wn)

= v1 · · · vn. (2.23)

Next, if u1 · · ·un ⊗ w1 · · ·wm ∈ C(U)⊗̂kC(W ), we have that

g ◦ f(u1 · · ·un ⊗ w1 · · ·wm)

= g ◦ f((u1 ⊗ 1) · · · (un ⊗ 1)(1⊗ w1) · · · (1⊗ wm))

= g(u1 · · ·un · · ·w1 · · ·wm)

= u1 · · ·un ⊗ w1 · · ·wm. (2.24)

13



Corollary 2.34. dimk C(V ) = 2dimk(V ). If v1, . . . , vn is a k-basis for V , then {vi1 · · · vir | 1 ≤ i1 <
· · · < ir ≤ n} is a k-basis for C(V ).

Proof. We have V ∼= ⟨a1⟩ ⊕ · · · ⊕ ⟨an⟩, ai ∈ k. Then C(V ) ∼= C(⟨a1⟩)⊗̂k · · · ⊗̂kC(⟨an⟩). Also, we
have that C(⟨a⟩) = T (k)/(v2 − ψ(v)) = k[x]/(x2 − a) is 2-dimensional. The result follows from
Lemma 2.30.

Example 2.35. Let V = ⟨a⟩ ⊕ ⟨b⟩ = ⟨a, b⟩ with a, b ∈ k×. We have that ⟨a⟩ is spanned by x
with ψ(x) = a, and ⟨b⟩ is spanned by y with ψ(y) = b. So in C(V ) we have that x2 = a, y2 = b,
xy + yx = 2ψ(x, y) = 0, so xy = −yx. Thus C(V ) has basis 1, x, y, xy, and C(V ) ∼= (a, b)k as
k-algebras.

Example 2.36. Let V = ⟨a, b, c⟩, spanned by x, y, z. We have that C(V ) = C0(V )⊕C1(V ). C0(V )
is spanned by 1, xy, yz, xz. We have that (xy)2 = xyxy = −x2y2 = −ab. Similar computations
show that C0(V ) = (−ab,−bc)k.

For C1, we have that (xyz)2 = −abc, and x(xyz) = (xyz)x and so on. It follows that xyz is in
the center of C(V ), so the center is nontrivial (so C(V ) is not central). So we get a map

C0(V )⊗̂kk[α]/(α2 + abc)→ C(V )

α 7→ xyz (2.25)

This map is an isomorphism for dimension reasons.

2.3 The Brauer group and the Clifford invariant
We have constructed the Clifford algebra and shown that it has some nice properties. Similar to
how regular quadratic spaces live inside the Witt group, we want our Clifford algebra to live inside
some nice group. This is the Brauer group, although we need to do some work to make this precise.
First we introduce the notion of a central simple algebra.

Definition 2.37. Let A be a k-algebra. Then A is a central simple k-algebra (CSA) if it is simple
and the center ZA = k is trivial.

If A⊗k K ∼=Mn(K) for some field extension K/k, then we say that A is split over K.

Proposition 2.38. Let A be a finite k-algebra. The following are equivalent:

(i) A is a CSA.

(ii) For some n ≥ 1, there is an isomorphism A⊗k k ∼=Mn(k) as k-algebras.

Proof. Omitted.

Example 2.39. Mn(k) is a CSA split over k
The quaternion algebras (a, b)k are CSAs (see the proof of Lemma 2.27), but not necessarily

split over k.

Definition 2.40. Let A be a k-algebra. The opposite algebra Aop is equivalent to A as a vector
space, with multiplication given by a×op b = b× a.

Proposition 2.41.
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1. If A,B are CSAs over k, then A⊗k B is a CSA.

2. If A is a CSA, then A⊗k Aop is split.

Proof.

1. We can pass to the algebraic closure and assume that A ∼= Mn(k), B ∼= Mm(k). We want to
show that Mn(k)⊗kMm(k) ∼=Mmn(k).

We use the map

Mn(k)⊗kMm(k)→ Endk(Mn×m(k)) ∼=Mmn(k)

a⊗ b 7→ (x 7→ ax(bt)). (2.26)

2. We use the map

A⊗k Aop → Endk(A)

a⊗ b 7→ (x 7→ axb) (2.27)

Definition 2.42. The Brauer group Br(k) is the group of equivalence classes [A] of CSAs A over
k, where [A] = [B] if any of the equivalent conditions are satisfied:

(i) There exists r, s ≥ 1 such that Mr(A) ∼= Ms(B) as k-algebras. We have that Mr(A) =
Mr(k)⊗k A.

(ii) A⊗k Bop is split.

(iii) There exists a division CSAD over k (an algebraD is a division algebra if for every d ∈ D\{0},
there exists e ∈ D such that de = ed = 1D) and r, s ≥ 1 such that A ∼= Mr(D), B ∼= Ms(D),
so that [A] = [B] = [D]. The division algebra D is a canonical representative for the class.

The group operation in the Brauer group is [A] + [B] = [A⊗k B]. From this it is clear that the
identity element is [k], and by Proposition 2.41 we have that −[A] = [Aop].

We would like the Clifford algebra to lie in the Brauer group, but Example 2.36 shows that this
is not always true. However, Example 2.36 does show that if V is a 3-dimensional quadratic space,
then C0(V ) is a CSA. The following proposition generalizes this example.

Proposition 2.43. Let V be a regular quadratic space. Then

1. If dimk V is even, then C(V ) is a CSA, isomorphic to the tensor product of quaternion
algebras.

2. If dimk V is odd, then C0(V ) is a CSA, isomorphic to the product of quaternion algebras.

Proof. dimk V = 1 is trivial as C0(V ) ∼= k, and we’ve done dimensions 2 and 3 in Examples 2.35
and 2.36, respectively.

In the general case, we argue by induction. Let dimk V > 3, and choose a decomposition
V = U ⊕W , where dimU = 3. Then C(V ) = C(U)⊗̂kC(W ), and C(U) = AU ⊗̂kk[x]/(x2 + d(U))
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(see Example 2.36) where AU = C0(U) with the trivial grading (everything has degree 0). In
particular, AU is a quaternion algebra. So

C(V ) = AU ⊗̂kC(⟨−d(U)⟩)⊗̂kC(W )

= AU ⊗̂kC(W ⊕ ⟨−d(U)⟩). (2.28)

and W ⊕ ⟨−d(U)⟩ is a quadratic space of dimension dimV − 2.
If dimV is even, then C(V ) ∼= AU ⊗k C(W ⊕ ⟨−d(U)⟩) as k-algebras. This is because we can

forget about the grading, as the trivial grading of AU means that the graded tensor product is the
same as the ordinary tensor product. AU is a CSA as it is a quaternion algebra, and by induction
C(W ⊕ ⟨−d(U)⟩) is a CSA, so C(V ) is a CSA by Proposition 2.41.

If dimV is odd, then we similarly have that C0(V ) ∼= AU ⊗k C0(W ⊕ ⟨−d(U)⟩) as k-algebras,
so C0(V ) is a CSA by induction and Proposition 2.41.

Thus to any regular quadratic space V we can associate a CSA, which we define below as the
Clifford invariant.

Definition 2.44. Let V be a regular quadratic space. The Clifford invariant c(V ) ∈ Br(k) is

c(V ) =

{
[C(V )] dimV is even
[C0(V )] dimV is odd

(2.29)

The Clifford invariant is very useful when proving the Hasse-Minkowski theorem, as the Brauer
group plays very nicely with class field theory. This is not true of the Witt invariant (the class
of V in the Witt group), which is why we have put in the extra effort to define the slightly more
confusing Clifford invariant.

Lemma 2.45. c(V ) = c(V ⊕H), where H is the hyperbolic plane (cf. Definition 2.9).

Proof. This proof was left as an exercise so I’m not sure it is entirely correct.
We have that C(V ⊕H) = C(V )⊗̂kC(H) by Proposition 2.33. We also have H ∼= ⟨1⟩⊕ ⟨−1⟩ by

Lemma 2.8, and so C(H) ∼= (1,−1)k by Example 2.35.
Let A be any finite Z/2Z-graded k-algebra. We claim that A⊗̂k(1,−1)k ∼= A ⊗k (1,−1)k as

graded k-algebras. We have a morphism fB : (1,−1)k → A⊗k (1,−1)k given by v 7→ 1⊗ v, and a
morphism fA : A→ A⊗k (1,−1)k given by a0 7→ a0⊗1 and a1 7→ a1⊗xy for a0 ∈ A0 and a1 ∈ A1.
We can verify that fA and fB satisfy the conditions for the universal property of the graded tensor
product (cf. Definition 2.31), so we obtain a morphism f : A⊗̂k(1,−1)k → A⊗k (1,−1)k. We can
verify that f is surjective, and since A⊗̂k(1,−1)k and A ⊗k (1,−1)k are finite dimensional vector
spaces of the same dimension, f is an isomorphism. This proves the claim.

Thus we have that C(V ⊕H) ∼= C(V )⊗k C(H) as graded k-algebras.
If dimV is even, then c(V ) = [C(V )] and c(V ⊕ H) = [C(V ⊕ H)] = [C(V ) ⊗k C(H)] =

[C(V )] + [C(H)]. But C(H) ∼= (1,−1)k ∼=M2(k), so [C(H)] = [k] = 0, so c(V ) = c(V ⊕H).
Now suppose dimV = 1, so that V = ⟨a⟩. We have that c(V ) = [k] = 0. We have that

H ∼= ⟨a⟩⊕⟨−a⟩, so V ⊕H ∼= ⟨a⟩⊕⟨a⟩⊕⟨−a⟩, so c(V ⊕H) = [C0(V ⊕H)] = [(a2,−a2)k] = [M2(k)] = 0
by Example 2.36 and Lemma 2.27.

Now suppose that dimV ≥ 3 is odd. As in the proof of Proposition 2.43, we write V = U ⊕W
where dimU = 3. Then C0(V ) ∼= AU ⊗k C0(W ⊕ ⟨−d(U)⟩), and C1(V ) ∼= AU ⊗k C1(W ⊕ ⟨−d(U)⟩)
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where AU = C0(U) with the trivial grading. As C(V ⊕ H) ∼= C(V ) ⊗k C(H), we have that
C0(V ⊕H) = (C0(V )⊗k C0(H))⊕ (C1(V )⊗k C1(H)). Thus we have that

C0(V ⊕H) = (C0(V )⊗k C0(H))⊕ (C1(V )⊗k C1(H))

= (AU ⊗k C0(W ⊕ ⟨−d(U)⟩ ⊗k C0(H))⊕ (AU ⊗k C1(W ⊕ ⟨−d(U)⟩ ⊗k C1(H))

= AU ⊗k
(
(C0(W ⊕ ⟨−d(U)⟩ ⊗k C0(H))⊕ (C1(W ⊕ ⟨−d(U)⟩ ⊗k C1(H))

)
= AU ⊗k C0(W ⊕ ⟨−d(U)⟩ ⊕H) (2.30)

so c(V ⊕H) = [AU ] + c(W ⊕ ⟨−d(U)⟩ ⊕H). As W ⊕ ⟨−d(U)⟩ is a quadratic space of dimension
dimV − 2, by induction we have that c(W ⊕ ⟨−d(U)⟩ ⊕H) = c(W ⊕ ⟨−d(U)⟩). We then have that

c(V ⊕H) = [AU ] + c(W ⊕ ⟨−d(U)⟩)
= [AU ] + [C0(W ⊕ ⟨−d(U)⟩)]
= [AU ⊗k C0(W ⊕ ⟨−d(U)⟩)]
= [C0(V )]

= c(V ) (2.31)

as desired.

The previous lemma shows that c factors through a map W (k)→ Br(k), but this is not a group
homomorphism in general (c is a map from the set of regular quadratic spaces to Br(k)).

2.4 Quaternion arithmetic
In order to complete the classification of quadratic forms of rank at most 3 in the next section,
we will exploit the fact that low rank quadratic forms are connected to quaternion algebras. This
requires a couple lemmas.

Lemma 2.46. Let a, b ∈ k×, and let A = (a, b)k. Then A = k ⊕ P , where

P = {0} ∪ {α ∈ A \ k | α2 ∈ k} (2.32)

Proof. Let (a, b)k be spanned by 1, x, y, xy with x2 = a and y2 = b. We need to check that P is the
k-span of x, y, xy. Let α = κ+ λx+ µy + νxy. We have that

(κ+ λx+ µy + νxy)2 = κ2 + λ2a+ µ2b− ν2ab+ λνxy − λνxy + λνx2y − λνx2y + µνyxy − µνyxy
+ 2κ(λx+ µy + νxy)

= κ2 + λ2a+ µ2b− ν2ab+ 2κ(λx+ µy + νxy). (2.33)

Thus α2 ∈ k if and only if α ∈ k or α ∈ P . Thus P = Spank(x, y, xy).

P is the “subspace of Pure quaternions”

Corollary 2.47. If V is a regular quadratic space, then c(V ) ∈ Br(k)[2].

Proof. We showed that the c(V ) is the tensor product of quaternion algebras in Proposition 2.43. So
if we want to show that c(V ) ∈ Br(k)[2], it suffices to show that if A = (a, b)k, then [A] ∈ Br(k)[2].
We have that A = k ⊕ P . Define f : A→ A by f(λ, µ) = (λ,−µ). This is a k-linear isomorphism,
but not a k-algebra isomorphism as we have that f(xy) = −xy = yx = f(y)f(x). In fact, it is a
k-algebra isomorphism f : A→ Aop. Thus [A] = [Aop] = −[A], so [A] ∈ Br(k)[2].
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Lemma 2.48. Let a, b, c, d ∈ k×. The following are equivalent:

(i) (a, b)k ∼= (c, d)k as k-algebras.

(ii) ⟨a, b,−ab⟩ ∼= ⟨c, d,−cd⟩ as quadratic spaces.

(iii) ⟨1,−a,−b, ab⟩ ∼= ⟨1,−c,−d, cd⟩ as quadratic spaces.

Proof. (ii) ⇐⇒ (iii): We have that ⟨a, b,−ab⟩ ∼= ⟨c, d−cd⟩ if and only if ⟨−a,−b, ab⟩ ∼= ⟨−c,−d, cd⟩
if and only if ⟨1,−a,−b, ab⟩ ∼= ⟨1,−c,−d, cd⟩ by Witt’s cancellation theorem Corollary 2.15.

(i) → (ii): We have that (a, b)k = k ⊕ P and (c, d)k = k ⊕ P ′. As (a, b)k ∼= (c, d)k we have that
P ∼= P ′. Now, P and P ′ have a quadratic form defined by f : α 7→ α2. As P ∼= P ′ as k-algebras,
we also have that P ∼ P ′ as quadratic spaces.

The quadratic form f induces the symmetric bilinear form

ψ(α, β) =
1

2
(f(α+ β)− f(α)− f(β))

=
1

2
(αβ + βα). (2.34)

If P = Spank(x, y, xy) with x2 = a and y2 = b, then we have that x, y, xy are mutually orthogonal
under ψ, so ⟨a, b,−ab⟩ ∼ P ∼ P ′ ∼ ⟨c, d,−cd⟩.

(ii) → (i): We are given an isomorphism g : P → P ′ of quadratic spaces where P , P ′ are
equipped with the quadratic form ψ define above. Set X = g(x), Y = g(y). Then X2 = x2 = a,
Y 2 = y2 = b, and as XY + Y X = 2ψ(X,Y ) = 2ψ(x, y) = 0. Thus X,Y satisfy the quaternion
relations for (a, b)k, so we obtain an induced k-algebra homomorphism g̃ : (a, b)k → (c, d)k. As g is
an isomorphism (injective, surjective), g̃ must be as well.

Corollary 2.49. Let a, b ∈ k×. The following are equivalent:

(i) (a, b)k ∼= (−1, 1)k ∼=M2(k).

(ii) ⟨a, b,−ab⟩ is isotropic.

(iii) b ∈ im(N : k(
√
a)× → k×).

Proof. (i) → (ii): If (a, b)k ∼= (1,−1)k, then ⟨a, b,−ab⟩ ∼= ⟨1,−1, 1⟩ by Lemma 2.48, which is
isotropic.

(ii) → (i): If P = ⟨a, b,−ab⟩ is isotropic, then H ⊆ P by Lemma 2.10, so P ∼ ⟨1,−1,−d(V )⟩ ∼
⟨1,−1, 1⟩, so (a, b)k ∼= (1,−1)k by Lemma 2.48.

(ii) ⇐⇒ (iii): We have that ⟨a, b,−ab⟩ is isotropic if and only if ⟨(ab)a, (ab)b, (ab)(−ab)⟩ ∼
⟨a, b,−1⟩ is isotropic. Now, ⟨a, b,−1⟩ is isotropic if and only if ax2 + by2 − z2 = 0 has a nontrivial
solution, if and only if by2 = z2 − ax2 has a nontrivial solution. Let (x, y, z) be such a solution.
If y = 0, then a ∈ (k×)2. If y ̸= 0, then we can divide to get a solution to b = z2 − ax2. Thus
by2 = z2 − ax2 has a nontrivial solution if and only if a ∈ (k×)2 or b = z2 − ax2 has a nontrivial
solution.

If a ∈ (k×)2, then k(
√
a) = k, so N : k× → k× is just the identity, so b ∈ imN . If a /∈ (k×)2

and b = z2 − ax2 has a nontrivial solution, then k(
√
a) is a quadratic extension and N(z+ x

√
a) =

(z + x
√
a)(z − x

√
a) = z2 − ax2.

Likewise, if b ∈ imN , then either a ∈ (k×)2 or b = N(z + x
√
a).
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2.5 Low rank quadratic forms
We are now ready to complete the classification of quadratic forms or rank at most 3 using the
determinant and Clifford invariant. We also classify isotropic quadratic forms of rank at most 4.

Theorem 2.50. Let V , V ′ be regular quadratic spaces of dimension n with 1 ≤ n ≤ 3. The
following are equivalent:

(i) V ∼ V ′.

(ii) d(V ) ≡ d(V ′) and c(V ) = c(V ′).

Proof. (i) → (ii): done.
(ii) →(i): If n = 1, then V = ⟨d(V )⟩, so we are done.
If n = 2, then V = ⟨a, b⟩ and V ′ = ⟨c, d⟩. We have that c(V ) = [(a, b)k] = c(V ′) = [(c, d)k].

Now, as (a, b)k is either a division algebra or split, we have that [(a, b)k] = [(c, d)k] implies that
(a, b)k ∼= (c, d)k (see Definition 2.42). Thus ⟨a, b,−ab⟩ ∼ ⟨c, d,−cd⟩ by Lemma 2.48. As d(V ) ≡
ab ≡ cd ≡ d(V ′), we have that ⟨a, b,−ab⟩ ∼ ⟨c, d,−ab⟩, so ⟨a, b⟩ ∼ ⟨c, d⟩ by Witt’s cancellation
theorem (Corollary 2.15).

If n = 3, then V = ⟨a, b, c⟩ and V ′ = ⟨d, e, f⟩. Then c(V ) = [(−ab,−bc)k] and c(V ′) =
[(−de,−ef)k] by Example 2.36. Then arguing as in the n = 2 case we have that ⟨−ab,−bc,−ac⟩ ∼
⟨−de,−ef,−df⟩. We also have −d(V ) ≡ −abc ≡ −def ≡ −d(V ′). Thus we have that

V ∼ ⟨c, a, b⟩
∼ ⟨(−abc)(−ab), (−abc)(−bc), (−abc)(−ac)⟩
∼ ⟨(−def)(−de), (−def)(−ef), (−def)(−df)⟩
∼ ⟨f, d, e⟩
∼ V ′ (2.35)

as desired.

Remark 2.51.

1. The previous result holds for n > 3 if k is a local field, which we prove in Theorem 4.5.

2. The regular quadratic spaces of rank n are classified by H1(k,On) where On is the orthogonal
group associated with a quadratic space of rank n.

3. The central simple algebras of rank n2 are classified by H1(k,PGLn).

4. The reason the above argument works is that there is an exceptional isomorphism SO3
∼=

PGL2, which is why the Clifford invariant is related to quadratic spaces in low dimension.

We now classify isotropic quadratic spaces of rank at most 4. This can be seen as a low rank
version of the Hasse-Minkowski theorem.

Theorem 2.52. Let V be a regular quadratic space of rank n. Then

1. If n = 2, then V is isotropic if and only if d(V ) ≡ −1.

2. If n = 3, then V is isotropic if and only if c(V ) = [k] = 0.
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3. If n = 4, then V is isotropic if and only if c(VK) = [K] = 0 in Br(K), where K = k(
√
d(V ))

and VK = V ⊗k K.

Proof.

1. This is Lemma 2.8.

2. Assume n = 3 and suppose that V is isotropic. Then V = ⟨1,−1,−d(V )⟩ because H ⊆ V by
Lemma 2.10. We have that c(V ) = [(1,−d(V ))k] by Example 2.36, and (1,−d(V ))k ∼= M2(k) by
Corollary 2.49, so c(V ) = [M2(k)] = [k].

Now suppose that V = ⟨a, b, c⟩ and c(V ) = [(−ab,−bc)k] = [k], so that (−ab,−bc)k is split.
Then (−ab,−bc)k ∼= (−1, 1)k, so comparing pure quaternions gives ⟨−ab,−bc,−ac⟩ ∼ 1,−1, 1⟩.
Multiplying through by −abc gives ⟨a, b, c⟩ ∼ ⟨−abc, abc,−abc⟩, which is isotropic.

3. First assume that d(V ) ≡ 1 mod (k×)2, so K = k(
√
d(V )) = k.

Suppose V is isotropic, then H ⊆ V so V ∼ ⟨1,−1, a,−a⟩ for some a ∈ k×, so V ∼ H ⊕H, and
c(V ) = [k] by Lemma 2.45.

Now suppose V = ⟨a, b, c, d⟩ and c(V ) = [k] is trivial. We can calculate that (using something
like (4.5))

C(V ) ∼= (−ab,−bc)k ⊗k (d,−abc)k. (2.36)

We have that d ≡ abc mod (k×)2, so (d,−abc)k ∼= (abc,−abc)k ∼= M2(k) by Corollary 2.49. Thus
c(V ) = [(−ab,−bc)k]. Since this is trivial, we have that (−ab,−bc)k ∼= (1,−1)k, so (−ab,−bc,−ac) ∼=
(1,−1, 1) by Lemma 2.48. Multiplying by abc gives ⟨a, b, c⟩ ∼ ⟨−abc, abc,−abc⟩, which is isotropic.
As ⟨a, b, c⟩ ⊆ V , V is isotropic.

We have completed the case where d(V ) ∈ (k×)2. Assume that d = d(V ) /∈ (k×)2, so K =
k(
√
d) is a quadratic extension, and

√
d /∈ k. It suffices to show that V is isotropic if and only if

VK = V ⊗k K is isotropic, as then we can pass to the quadratic extension where d(V ) ∈ (K×)2.
If V is isotropic, then clearly VK is isotropic.
Now suppose VK is isotropic. Then there exists u, v ∈ V not both 0 such that ψ(u+

√
dv, u+√

dv) = 0. So ψ(u) + dψ(v) + 2
√
dψ(u, v) = 0, so ψ(u) + dψ(v) = 0 and ψ(u, v) = 0. If ψ(u) = 0 or

ψ(v) = 0 we are done, so we may assume ψ(u), ψ(v) ̸= 0, and that u, v are linearly independent over
k. Then U = Spank(u, dv) ∼ ⟨ψ(u),−dψ(u)⟩ ⊆ V , so V = U ⊕W , where W is the complementary
space. We have that d(U) ≡ −d(V ), so d(W ) ≡ −1, so W ∼ H is isotropic, so V is isotropic.

3 Quadratic forms over finite fields
Let k = Fq for q an odd prime (so that char k ̸= 2). Utilizing the machinery of the previous section,
we can now develop a short and sweet classification of quadratic forms over k.

Fqd is any field extension, the norm map N : F×
qd
→ F×

q is surjective. Thus by Corollary 2.49,
any quaternion algebra over k is split. In fact we have that Br(k) = 0, but this is a bit harder to
prove and we won’t need this.

Theorem 3.1.

1. If V is a regular quadratic space over Fq of dimension n ≥ 3, then V is isotropic.
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2. If V, V ′ are regular quadratic spaces over Fq of dimension n, then V ≡ V ′ if and only if
d(V ) ≡ d(V ′).

Thus up to equivalence, the only regular quadratic forms are x21 + · · ·+ x2n and x21 + · · ·+ ux2n
with u ∈ F×

q (F×
q )

2, as F×
q /(F×

q )
2 has two elements.

Proof.

1. WLOG we may assume n = 3 (as we can always take a 3-dimensional subspace). Then by
Theorem 2.52 we have that V is isotropic if and only if c(V ) = [k], which is always the case.

2. If n ≤ 3 we are done by Theorem 2.50, as c(V ) = c(V ′) = [k].
If n ≥ 4, then V and V ′ are isotropic by Part 1, so V = H ⊕ W and V ′ = H ⊕ W ′ with

d(W ) ≡ −d(V ) and d(W ′) ≡ −d(V ′), so by induction W ∼W ′ so V ∼ V ′.

4 Quadratic forms over p-adic fields
Let k/Qp be a finite extension. The classification of quadratic forms over p-adic fields is fairly nice
and will allows us to prove things about number fields. First we recall the following theorems from
class field theory:

Theorem 4.1.

1. (Brauer group) There’s a canonical isomorphism invk : Br(k)→ Q/Z. In particular, Br(k)[2] ∼=
1/2Z/Z ∼= Z/2Z.

invk is the invariant map.

2. (Artin reciprocity) For any quadratic extension E/k, there’s a canonical isomorphism

Artk : k×/NE/k(E
×) ∼= Gal(E/k) (4.1)

Remark 4.2. Thus if we choose a ∈ k× \ (k×)2 and b ∈ k× \N(k(
√
a)×), then [(a, b)k] represents

the unique non-trivial element of Br(k)[2] (see Corollaries 2.47 and 2.49).

Lemma 4.3. Let V, V ′ be regular quadratic spaces of dimension 3 such that d(V ) ≡ d(V ′). The
following are equivalent:

(i) V ∼ V ′.

(ii) Either V, V ′ are both isotropic, or both anisotropic.

Proof. (i) → (ii): Done.
(ii) → (i): If V , V ′ are both isotropic, then V ∼= H ⊕ ⟨−d(V )⟩, so V ∼= V ′. If V , V ′ are both

anisotropic, so that c(V ), c(V ′) ̸= 0. Then c(V ) = c(V ′) as there is only 1 non-trivial class in
Br(k)[2], so V ∼= V ′ by Theorem 2.50.

Proposition 4.4.

1. There exists a unique anisotropic quadratic space W/k of dimension 4. It is W = ⟨1,−a,−b, ab⟩,
where (a, b)k is non-split. W represents every element of k×.
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2. Any regular quadratic space W ′ over k of dimension n ≥ 5 is isotropic.

Proof.
1. Let A = (a, b)k, so that A = k ⊕ P where P are the pure quaternions. Let f : A → A be
the map f(λ, µ) = (λ,−µ) for λ ∈ k, µ ∈ P . We have that (λ + µ)f(λ + µ) = λ2 − µ2 because
λ is a scalar, and hence commutes with µ. So ψ : (λ, µ) 7→ λ2 − µ2 is a quadratic form, given
by W = ⟨1,−a,−b, ab⟩. It is anisotropic: otherwise H ⊆ W , so W ∼ ⟨1,−1, c,−c⟩ ∼ H ⊕ H, so
(a, b)k ∼= (−1, 1)k ∼=M2(k) would be split by Corollary 2.49.

Let α, β ∈ A \ {0}. We have that αβf(αβ) = αβf(β)f(α)αf(α)βf(β) as f : A → Aop is a
k-algebra homomorphism (see the proof of Corollary 2.47), and f(α) ∈ k× is a scalar and hence in
the center of A. Thus the map

A \ {0} → k×

(λ, µ) 7→ (λ+ µ)f(λ, µ) (4.2)

is a homomorphism.
We want to show that W represents every element of k×. We have a k-algebra embedding

k(
√
a)→ A
√
a 7→ x (4.3)

The restriction of the quadratic form ψ to k(
√
a) is Nk(√a)/k, as (λ+µx)(λ−µx) = λ2−aµ2. Thus

W represents every element of N(k(
√
a)×), an index 2 subgroup.

Now, for any c ∈ k× \ (k×)2, then there exists d ∈ k× \ N(k(
√
c)×), so (c, d)k is a non-split

quaternion algebra over k. Thus [(a, b)k] = [(c, d)k], so (a, b)k ∼= (c, d)k (this follows from part 3 of
Definition 2.42), so ⟨1,−a,−b, ab⟩ ∼= ⟨1,−c,−d, cd⟩, so W represents every element of N(k(

√
c)×),

so W represents every norm of every quadratic extension:

S :=
⋃

c∈k×\(k×)2

N(k(
√
c)×) ⊆ ψ(W ). (4.4)

We need to show that S = k×. We use the existence theorem from class field theory: any index
2 subgroup of k× is of the form N(k(

√
c)×) for some c ∈ k×. Thus it suffices to show that k× is

covered by its index 2 subgroups. This is true as k×/(k×)2 ∼= (Z/2Z)r with r ≥ 2.
Now, let V be an anisotropic quadratic space of dimension 4 and let K = k(

√
d(V )). Then by

Theorem 2.52, we have that c(VK) ̸= [K], and hence c(V ) ̸= [k] is nontrivial. Suppose d(V ) ̸≡ 1.
Then as d(V ) ∈ k× \ (k×)2, we have that there exists e ∈ k× such that [(d(V ), e)k] is nontrivial,
and hence c(V ) = [(d(V ), e)k] (see Remark 4.2). Then as d(V ) is a square in K, we have that
c(VK) = [(d(V ), e)K ] = [K], a contradiction. Thus d(V ) ≡ 1.

Let α ∈ k× be represented by V . Then we can write V = ⟨α⟩ ⊕ V ′, and W = ⟨α⟩ ⊕W ′. As
V ′,W ′ have the same determinant and are anisotropic of rank 3, so by Lemma 4.3 we have that
V ∼=W .
2. We can assume that n = 5 and show that V is isotropic. Let α ∈ k× be represented by V , and
write V = ⟨α⟩ ⊕ V ′. If V ′ is isotropic, we are done. If V ′ is anisotropic, then V ′ ∼=W as in Part 1,
so V ′ represents −α, so V ∼= ⟨α,−α⟩ ⊕ V ′′, and ⟨α,−α⟩ ∼= H, so V is isotropic.

Theorem 4.5. Let V be a regular quadratic space of dimension n ≥ 1. Then V is determined up
to isomorphism by d(V ) and c(V ).
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Proof. This is true for any k when n ≤ 3 by Theorem 2.50.
Suppose n = 4. Then V is isotropic if and only if c(VK) = [K] whereK = k(

√
d(V )) by Theorem

2.52. If d(V ) ̸≡ 1, then V is isotropic by Proposition 4.4, so V = H ⊕W , and d(W ) ≡ −d(V ),
and c(W ) = c(V ). So V is determined. If d(V ) ≡ 1, then either V is isotropic, so c(V ) = [k] and
V = H2, or V is anisotropic, and V ∼ ⟨1,−a,−b, ab⟩ as in Proposition 4.4.

If n ≥ 5, then V is isotropic by Proposition 4.4, so V ∼ H ⊕ W and d(W ) ≡ −d(V ) and
c(W ) = c(V ), so V is determined by induction.

Next we will show that every combination of determinant and Clifford invariant does in fact
occur.

Theorem 4.6. Let n ≥ 3, d ∈ k×, and c ∈ Br(k)[2]. Then there exists a regular quadratic space V
over k of dimension n such that d(V ) ≡ d and c(V ) = c.

This theorem is so nice because when n ≥ 3, we have that SOn is a semisimple algebraic group,
and we have that H1(k, SOn) classifies the regular quadratic spaces.

We’ll use the following formula in the proof, which is valid for any k : If W is a regular quadratic
space over k, and a ∈ k×, then

c(W ⊕ ⟨a⟩) = c(W ) +

{
[(a, (−1)rd(W ))k] dimW = 2r + 1

[(−a, (−1)rd(W ))k] dimW = 2r
(4.5)

Proof of Theorem 4.6. First suppose n = 3. Then V is isotropic if and only if c(V ) = [k]. There
exist isotropic and anisotropic regular quadratic spaces of dimension 3, so we can freely choose the
Clifford invariant. Now, for any a ∈ k× we have that d(⟨a⟩ ⊗ V ) ≡ ad(V ) and c(⟨a⟩ ⊗ V ) = c(V ),
so we can pick any d(V ).

If n = 2r + 1 ≥ 5 is odd, let W be a regular quadratic space of dimension n − 2 ≥ 3. Then
d(W ⊕H) = −d(W ) and c(W ⊕H) = c(W ). By induction we may choose W such that d(W ) ≡ −d
and c(W ) = c, so V =W ⊕H does the job.

If n = 2r ≥ 4 is even, let W be a regular quadratic space of dimension n − 1 ≥ 3. Then
d(W ⊕ ⟨1⟩) = d(W ), and

c(W ⊕ ⟨1⟩) = c(W ) + [(1, (−1)r−1d(W ))k]

= c(W ) (4.6)

as 1 is always a norm, so [(1, (−1)r−1d(W ))k] is split by Corollary 2.49. So setting V = W ⊕ ⟨1⟩
works.

In the case k = Qp, we can define the Hasse invariant of V = ⟨a1, . . . , an⟩, which is

ϵ(V ) =
∏
i<j

(ai, aj)p (4.7)

where (ai, aj)p is the Hilbert symbol. For a, b ∈ Qp, the Hilbert symbol is defined as (a, b)p = 1 if
z2 = ax2 + by2 has a nontrivial solutions (x, y, z) ∈ Qp and -1 otherwise. (a, b)p = 1 if and only if b
is a norm in Qp(

√
a). By Corollary 2.49, we then have that (a, b)p = 1 if and only if [(a, b)Qp ] = 0

in Br(k)[2] = 1.
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5 Quadratic forms over number fields
Let k/Q be a finite extension, and let Mk be the set of places of k. We have the following facts
from global class field theory.

There’s an exact sequence

0→ Br(k)

⊕
v∈Mk

resv
−−−−−−−−→

⊕
v∈Mk

Br(kv)

⊕
v∈Mk

invv

−−−−−−−−→ Q/Z→ 0 (5.1)

[A] 7→ ([Akv ])v∈Mk
(5.2)

invk is the invariant map. The maps resv : Br(k)→ Br(kv) are the natural restriction maps.
If kv = C, then Br(kv) = 0 because C is algebraically closed.
If kv = R, then Br(kv) =

1
2Z/Z, with nontrivial element represented by (−1,−1)R the Hamilto-

nian quaternions.
In 2-torsion, we have

0→ Br(k)[2]→
⊕
v∈Mk

Br(kv)[2]→
1

2
Z/Z→ 0. (5.3)

Thus we have a bijection

Br(k)[2]↔ {Finite subsets S ⊆Mk of even cardinality, such that if v ∈ S =⇒ kv ̸∼= C} (5.4)

We need even cardinality as that way our element will be in Br(k)[2] = ker
⊕

invk (we are adding
up an even number of 1/2s). We take kv ̸≡ C as if kv ≡ C then Br(kv) is trivial, so in order to get
a unique representation we just exclude all the complex places.

Explicitly the map is given by

[A] 7→ {v ∈Mk | Akv is non-split} (5.5)

If E/k is a quadratic extension, then the Artin map gives an isomorphism

Artk =
∏
v∈Mk

Artkv : A×
k /k

×NE/k(A×
E)

∼=−→ Gal(E/k) (5.6)

Now, the goal of this section is to prove the following result.

Theorem 5.1 (Hasse-Minkowski). Let V be a regular quadratic space of dimension n ≥ 1. Then
V is isotropic if and only if v ∈Mk, Vkv = V ⊗k kv is isotropic.

This theorem is useful as while it is difficult to verify that V is isotropic, Vkv is easily isotropic
for all but finitely many places. For the other places, we can compute whether or not Vkv is isotropic
using the Clifford invariant and the other local tools developed in the last section.

Proof. The forward direction is trivial.
Now we prove the backwards direction.
If n = 1 then nothing is isotropic.
If n = 2, then by Theorem 2.52 V is isotropic if and only if d(V ) ≡ −1. So we need to show that

−d(V ) ∈ (k×)2 if and only if −d(V ) ∈ (k×v )
2 for all v ∈ Mk. We have that −d(V ) ∈ (k×v )

2 if and
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only if v splits in k(
√
−d(V )). The Chebotarev density theorem says that if [k(

√
−d(V )) : k] = 2,

then the primes that split in k(
√
−d(V )) have Dirichlet density 1/2. So if all places split, then

k(
√
−d(V )) = k and −d(V ) ∈ (k×)2.

If n = 3, then by Theorem 2.52, V is isotropic if and only if c(V ) = [k], if and only if c(Vkv ) = kv
for all v by the fundamental exact sequence (5.4), if and only if Vkv is isotropic for all v.

If n = 4, then we know that V is isotropic if and only if c(VK) = [K] where K = k(
√
d(V )). As

K is a number field, we may argue as above using the fundamental exact sequence (5.4).
If n ≥ 5 we argue by induction. We utilize the weak approximation theorem, which states that

if T ⊆Mk is a finite set of places, then k ↪→
∏
v∈T kv has dense image.

First, choose a decomposition V = U ⊕W with dimU = 2. We assume that Vkv is isotropic for
all v ∈Mk, and we need to show that V is isotropic. If U or W is isotropic we are done, so we may
assume that U and W are anisotropic.

Let S = {v ∈ Mk | Wkv is anisotropic} . Let W ′ be any 3-dimensional subspace of W (which
exists because dimW ≥ 3), and S′ the analogue of S for W ′. Then S ⊆ S′. But v ∈ S′ if and only
if c(W ′

kv
) is nontrivial, and by (5.4) this is a finite set of places. Thus S is finite.

Now take some v ∈ S. Then Vkv is isotropic, so we can find cv ∈ k×v such that cv is represented
by Ukv and −cv is represented by Wkv .

We can find ϵ > 0 such that for all v ∈ S and dv ∈ k×v , then |cv − dv|v < ϵ implies that
cv/dv ∈ (k×v )

2. If v is non-Archimedean, we can do this with Hensel’s lemma. If v is archimedean,
we take a small ball not containing 0. Then by weak approximation, we can find some u ∈ U such
that for all v ∈ S, ψ(u, u)/cv ∈ (k×v )

2.
We look at the subspace ku ⊕W ⊆ V , which is a regular quadratic of dimension n − 1 as u is

anisotropic. We claim that for all v ∈Mk, (ku⊕W )kv is isotropic. If v /∈ S, then Wkv is isotropic.
If v ∈ S, then kvu represents cv by construction, and Wkv represents −cv, so (ku⊕W )kv represents
0 and hence is isotropic.

Then by induction, ku⊕W is isotropic, so V is isotropic.

We will now derive some consequences of the Hasse-Minkowski theorem.

Theorem 5.2 (Weak Hasse-Minkowski). Let V, V ′ be regular quadratic spaces of dimension n.
Then V ∼ V ′ if and only if for all v ∈Mk, Vkv ∼ V ′

kv

Proof. The forward direction is trivial.
Now suppose that for all v ∈Mk, Vkv ∼= V ′

kv
. We prove the result by induction on the dimension

n ≥ 1.
If n = 1, then V ∼ V ′ if and only if V ⊕ (⟨−1⟩ ⊗ V ′) is isotropic. Applying Theorem 5.1

completes the proof.
Now for the inductive step. Let n > 1 and choose some a ∈ k× represented by V , and write

V = ⟨a⟩ ⊕W . Note that V ′ represents a if and only if V ′ ⊕ ⟨−a⟩ is isotropic by Corollary 2.11. As
Vkv ∼ V ′

kv
for all v ∈Mk, we have that V ′

kv
⊕⟨−a⟩ ∼ Vkv ⊕⟨−a⟩ is isotropic over kv for all v ∈Mk,

so V ′ ⊕ ⟨−a⟩ is isotropic by Theorem 5.1. Thus V ′ represents a, so we can write V ′ ∼ ⟨a⟩ ⊕W ′.
If v ∈ Mk, then V ′

kv
= ⟨a⟩ ⊕W ′

kv
∼ Vkv = ⟨a⟩ ⊕Wkv . Then applying Witt’s cancellation theorem

gives W ′
kv
∼Wkv for all v ∈Mk, so by induction W ∼W ′, so V ∼ V ′.

Corollary 5.3. If V, V ′ are regular quadratic spaces over k of dimension n ≥ 1. Then V ∼ V ′ if
and only if d(V ) ≡ d(V ′), c(V ) = c(V ′), and for all infinite places v|∞ we have that Vkv ∼= V ′

kv
.
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Proof. We need to check that Vkv ∼ V ′
kv

for every v ∈ Mk. We already have this for the infi-
nite places. If v is a finite place, then as d(V ) ≡ d(V ′) mod (k×)2 we have that d(V ) ≡ d(V ′)
mod (k×v )

2. We also have that the restriction resv c(V ) = resv c(V
′), so c(Vkv ) = c(V ′

kv
). Then

applying Theorem 4.5 gives that Vkv ∼ V ′
kv

, so we can apply Theorem 5.1.

Remark 5.4. We need the condition that Vkv ∼ V ′
kv

at all v | ∞ as the archimedean places are
less well behaved. This is a standard phenomenon in number theory that the archimedean places
behave poorly from the perspective of Galois cohomology.

In particular, any regular quadratic space over R is isomorphic to ⟨1⟩p ⊕ ⟨−1⟩q for a unique
p, q ≥ 0. Thus there are n+1 regular quadratic spaces over R of dimension n. But there are 2 choices
of Clifford invariant, as |Br(R)| = 2, and there are 2 choices of determinant, as |R × /(R×)2| = 2.
Thus only knowing c(V ) and d(V ) is not enough to determine Vkv for v a real place. However, as
there is a unique quadratic space of rank n over C, it is always true that Vkv ∼ V ′

kv
if V, V ′ are

regular quadratic spaces of rank n and v is a complex place. Thus we can restrict to only real places
in the statement of Corollary 5.3 and in the following theorem.

We can now prove an existence theorem similar to Theorem 4.6.

Theorem 5.5. Let n ≥ 3, d ∈ k×, c ∈ Br(k)[2], and choose for each v | ∞ a regular quadratic
space Wv over kv of dimension n such that d(Wv) ≡ d mod (k×v ) and c(Wv) = resv(c). Then there
exists a regular quadratic space V over k such that d(V ) ≡ d mod (k×)2, c(V ) = c and for all
v | ∞, Vkv ∼Wv.

Remark 5.6. 1. By the previous corollary, any quadratic space V satisfying the above proper-
ties is determined uniquely up to isomorphism.

2. If n = 3, then the Clifford invariant is a quaternion algebra, so this theorem tells us that any
2-torsion element of the Brauer group is represented by a quaternion algebra.

Proof. First we will define a quadratic space V which satisfies all the conditions above except for
the one on the Clifford invariant. Then we will “twist” V to define a quadratic space V ′ which also
satisfies the Clifford invariant condition. The second part will take a bit of muscle.

For all v | ∞, write Wv ∼ ⟨av,1, . . . , av,n⟩. Choose a1, . . . , an ∈ k× such that for all v | ∞,
ai/av,i ∈ (k×v )

2 (this is possible by weak approximation, see the proof of Theorem 5.1). Let
V = ⟨a1, . . . , an−1, da1 · · · an⟩. Then d(V ) ≡ d mod (k×)2, and Vkv ∼Wv for all v | ∞.

Now, let
S = {v ∈Mk | c(Vkv ) ̸= resv(c)}. (5.7)

If S is empty we are done. So assume that S is non-empty. We have that

S = {v ∈Mk | resv(c(V )− c) ̸= 0}. (5.8)

Thus S is finite and of even cardinality by (5.4).
Choose α ∈ k× such that α /∈ (k×v )

2 if v ∈ S and α ∈ (k×v )
2 if v | ∞. This is possible by weak

approximation and because S does not contain any infinite places by construction.
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Claim 1: There exists β ∈ k× such that (α, β)kv = [kv] if and only if v /∈ S.
Proof: By Corollary 2.49, an equivalent statement is that there exists β ∈ k× such that for all

v ∈Mk, β /∈ N(kv(
√
α)×) if and only if v ∈ S.

We show this using the properties of the global Artin map. Let E = k(
√
α). Then Artk =∏

v Artkv gives a surjection
A×
k /N(A×

E)→ Gal(E/k) (5.9)

with kernel the image of k× embedded diagonally in A×
k .

We have that
A×
k /N(A×

E) =
⊕
v∈Mk

k×v /N(kv(
√
α)×) (5.10)

By local class field theory, k×v /N(kv(
√
α)×) is trivial or a cyclic group of order 2 depending on if v

splits in E or not (if v splits in E then α is a square in kv so kv(
√
α) ∼= kv).

So (5.9) and some other properties of the global Artin map give an exact sequence

k×
φ−→

⊕
v∈Mk

v not split in E

Z/2Z Σ−→ Z/2Z→ 0 (5.11)

Then our claim is equivalent to the statement that there exists β ∈ k× such that the image of β
under φ is (av)v, where av = 1 if v ∈ S and av = 0 if v /∈ S. The claims are equivalent because
then β /∈ N(kv(

√
α)×) if and only if av = 1, and we want to show that β /∈ N(kv(

√
α)×) if and

only if v ∈ S.
But as the sequence is exact, (av)v ∈ im k× if and only if

∑
v av = 0. So Claim 1 holds as |S| is

even.
Now, let P = ⟨1,−β⟩ and P ′ = ⟨α,−αβ⟩. Then d(P ) ≡ d(P ′) ≡ −β.

Claim 2: P ′ embeds in V ⊕ P .
Proof: The same argument as in the proof of the weak Hasse-Minkowski theorem shows that it

suffices to check this locally over kv for all v ∈ Mk, as being represented by a quadratic space is a
local condition. In particular, P ′ embeds in V ⊕ P if and only if ⟨α⟩ is represented by V ⊕ P and
−αβ is represented by W , where ⟨α⟩⊕W ⊆ V ⊕P is the complement. Thus P ′ embedding in V ⊕P
is equivalent to certain elements being represented by certain quadratic spaces. By Corollary 2.49,
an element is represented by a quadratic space if and only if a certain quadratic space is isotropic,
and by the Hasse-Minkowski theorem 5.1 being isotropic is a local condition. Thus we can check
that P ′ embeds in V ⊕ P locally.

If v | ∞, then α ∈ (k×v )
2, so Pkv ∼ P ′

kv
.

If v ∤∞, then dimV ⊕P ≥ 5, and we know that any regular quadratic space over kv of dimension
at least 4 represents every element of k×v . This follows from Proposition 4.4, as an isotropic space
represents every element of k×v (by Corollary 2.11, for instance), and we have directly verified the
claim for the unique anisotropic space of dimension 4. Thus we can write (V ⊕P )kv ∼ ⟨α⟩⊕W , and
W will have dimension at least 4 so we can further write (V ⊕P )kv ∼ ⟨α⟩⊕⟨−αβ⟩⊕V ′

v ∼ P ′
kv
⊕V ′

v .
Thus P ′ embeds locally, so it embeds globally. This completes the proof of Claim 2.

Thus we have that V ⊕ P ∼ V ′ ⊕ P ′. We want to verify that V ′ satisfies the conditions of the
theorem. We have that d(V ) ≡ d(V ′) mod (k×)2. If v | ∞, then Vkv ∼ V ′

kv
by Witt’s cancellation

theorem as Pkv ∼ P ′
kv

. Thus as V satisfies the determinant and infinite place conditions of the
theorem, V ′ does as well.
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It remain to check that c(V ′) = c. Using (4.5) we can calculate that

c(V ⊕ P ) = c(V ) + c(P ) + (ϵ(n)d(V ),−d(P ))k
c(V ′ ⊕ P ′) = c(V ′) + c(P ) + (ϵ(n)d(V ′),−d(P ′)) (5.12)

where ϵ(n) ∈ {±1} only depends on the dimension of the quadratic space. As d(V ) ≡ d(V ′),
d(P ) ≡ d(P ′) and V ⊕ P ∼ V ′ ⊕ P ′, we have that (recall that the Clifford invariants are all
2-torsion)

c(V ′) = c(V ) + c(P ) + c(P ′) = c(V ) + c(P ′) (5.13)

as c(P ) = [(1,−β)k] = [k] = 0 by Corollary 2.49. By Lemma 2.48 we have that c(P ′) =
[(α,−αβ)k] = [(α, β)k]. Recall the definition of S (5.7). By construction (see Claim 1), we have
that

S = {v ∈Mk | resv c(P
′) ̸= [kv]} = S. (5.14)

Thus for all v ∈ Mk, resv c(V ′) = resv c. But equivalence in the Brauer group is a local condition
(see (5.1)), so c(V ′) = c.

Example 5.7. As an application, we can ask which n ∈ N are represented by x2 + y2 + z2, e.g.
are the sum of 3 rational squares?

This is equivalent to determining for which n ∈ N ⟨1, 1, 1,−n⟩ is isotropic. By the Hasse-
Minkowski theorem, we can check this locally.

Over R,C this is always true.
Over Qp with p odd, we claim that ⟨1, 1, 1⟩ is isotropic. ⟨1, 1, 1, ⟩ is isotropic if and only if

c(⟨1, 1, 1⟩) = [Qp] by Theorem 2.52. We have that c(⟨1, 1, 1⟩) = [(−1,−1)Qp
], so it suffices to show

that (−1,−1)Qp
is split. We verify this by verifying that −1 is a norm in Qp(

√
−1) and using

Corollary 2.49. If p ≡ 1 mod 4 Qp(
√
−1) = Qp, so −1 is a norm. If p ≡ 3 mod 4, Qp(

√
−1) is

the unique unramified quadratic extension Qp2 . But N(Q×
pn) = pnZ × Z×

p where n is the unique
unramified extension of degree n (this is a standard fact from local fields). So −1 is a norm.

It remains to check Q2. Over Q2, ⟨1, 1, 1,−n⟩ is isotropic if d(⟨1, 1, 1,−n⟩) ≡ −n ̸≡ 1 mod (Q×
2 )

2.
This follows from Theorem 4.4, as there is a unique degree 4 anisotropic quadratic form V over Q2,
and it has d(V ) ≡ 1, so if d(⟨1, 1, 1,−n⟩) ̸≡ 1 then ⟨1, 1, 1,−n⟩ is isotropic.

If −n ∈ (Q×
2 )

2, then ⟨1, 1, 1,−n⟩ ∼ ⟨1, 1, 1, 1⟩. We claim that ⟨1, 1, 1, 1⟩ is the unique anisotropic
quadratic space of rank 4. From the proof of Theorem 4.4, we have that if (a, b)Q2

is non-split,
then W = ⟨1,−a,−b, ab⟩ is the unique anisotropic quadratic space of rank 4 over Q2. Thus it
suffices to show that (−1,−1)Q2

is non-split. By Corollary 2.49, it suffices to show that −1 is not a
norm in Q2(

√
−1)/Q2. The norm form in Q2(

√
−1)/Q2 is given by N(x + y

√
−1) = x2 + y2, and

x2 + y2 = −1 has no solutions modulo 4, so −1 is not a norm.
Thus n ∈ N is a sum of 3 rational squares if and only if −n /∈ (Q×

2 )
2. We have that −n ∈ (Q×

2 )
2

if and only if −n = 4ac with c ∈ (Z×
2 )

2. Using Hensel’s lemma, we can show that c ∈ (Z×
2 )

2 if and
only if c ≡ 1 mod 8.

Thus n ∈ N is a sum of 3 rational squares if and only if n is not of the form 4a(8b− 1).

We also would like to know which n ∈ N are a sum of 3 integer squares. In order to answer
this question, we need to develop the theory of quadratic forms over rings, which we do in the next
section.
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6 Quadratic forms over rings
The theory of quadratic forms over rings is a bit trickier than over fields and we will define some
things from scratch.

Let k be a field of characteristic not equal to 2. Let R be an integral domain with field of
fractions FracR = k.

6.1 Basics
Definition 6.1. A quadratic form of rank n ≥ 1 over R is a polynomial f(x1, . . . , xn) =

∑
Aijxixj ,

where A ∈Mn×n(R) is a symmetric matrix.
We say that f represents a ∈ R if there exists b ∈ Rn \ 0 such that f(b) = a.
We say that two quadratic forms f, g are equivalent if there exists P ∈ GLn(R) such that

P tAfP = Ag.

Remark 6.2.

1. We can also consider proper equivalence of quadratic forms, which is equivalence by an element
of SLn(R).

2. There are quadratic forms over k which are not quadratic forms over R. The form x1x2 over
Q is not a quadratic form over Z because the associated matrix is(

0 1
2

1
2 0

)
(6.1)

However, all the theory developed in this section can be applied to the “form” x1x2, so we
will not worry too much about this.

Definition 6.3. A quadratic module M of rank n ≥ 1 over R is a pair (M,ψ), where M is a free
R-module of rank n and ψ :M ×M → R is an symmetric R-bilinear form.

A quadratic module M represents a ∈ R if there exists m ∈M such that ψ(m,m) = a.
A morphism α : (M,ψ) → (M ′, ψ′) of quadratic modules is a morphism α : M → M ′ of

R-modules such that for all m1,m2 ∈M , ψ′(α(m1), α(m2)) = ψ(m1,m2).

Lemma 6.4. For all n ≥ 1, there is a a bijection between quadratic forms over R of rank n modulo
equivalence and quadratic modules over R of rank n modulo isomorphism.

Proof. Omitted. Similar to the case for fields.

Remark 6.5. We can extend scalars to obtain quadratic spaces over fields. For instance, if M is
a quadratic module over R, M ⊗R k is a quadratic space over k.

Two quadratic modules might be equivalent over some extension but not over the base ring. We
write M ∼M ′ or M ∼R M ′ to denote isomorphism over R.

Definition 6.6. A quadratic module M has a determinant d(M) ∈ R/(R×)2 defined as the de-
terminant of the Gram matrix. Likewise we define d(f) = detAf for a quadratic form f . We say
that M or the associated form f is regular if d(M) ̸= 0, if and only if V = M ⊗R k is a regular
quadratic space.

However, even if d(M) ̸= 0 we don’t necessarily have d(M) ∈ R× as R is not necessarily a field.
We say that M is unimodular if d(M) ∈ R×, if and only if ψ gives an isomorphism M →M∗.
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For the remainder of the course, we will be motivated by the classification of regular quadratic
modules over Z. We will also try to determine whether a given quadratic module over Z represents
a given integer. A special case of this question is the integer analogue of Example 5.7. All of this
can be generalized to work over the ring of integers of a number field, but we work over Q for
simplicity.

Naive hope: If M , M ′ are quadratic modules over Z, then M ∼Z M
′ if and only if MR ∼R M

′
R

and MZp ∼Zp M
′
Zp

for all primes p. This is a sort of analogue of the Hasse-Minkowski theorem.
But this is not true! And not even close to being true, even in the simplest cases.

Example 6.7. Let n ≥ 1 be a squarefree integer with n ≡ 1 mod 4. Consider the set Xn of
quadratic forms f/Z of rank 2, determinant n, such that fR is positive definite. As the elements of
Xk are positive definite, they are all equivalent over R. The group GL2(Z) acts on Xn.

Let E = Q(
√
−n). We know that there are bijections (this is a “well-known classical fact”)

SL2(Z)\Xn ↔ Cl(E) (6.2)
GL2(Z)\Xn ↔ Cl(E)/{±1} (6.3)

Here, Cl(E)/{±1} is the set Cl(E) with each element identified with its inverse. Note that none of
the quotients above are group quotients.

We can also show that if f, g ∈ Xn, then f ∼Zp
g for all p if and only if f, g have the same

image in Cl(E)/2Cl(E). So our “naive hope” is equivalent to asking that the map Cl(E)/{±1} →
Cl(E)/2Cl(E) is bijective. But this is not true. Gauss showed that #Cl(E)/2Cl(E) = 2r, where
r = #{p | n} = τ(n). Also, by the Brauer Siegel theorem we have that

lim
n→∞

log#Cl(E)

log
√
4n

= 1 (6.4)

so the size of |Cl(E)| → ∞ as n→∞. If we let let n be a prime and let n→∞, then Cl(E)/2Cl(E)
has 2 elements, but Cl(E)/{±1} has more than 2 elements for n sufficiently large.

Concretely, if n = 29, then Cl(E) = 6 and |Cl(E)/2Cl(E)| = 2, and GL2(Z)\Xn is represented
by x2 +29y2, 2x2 +2xy+15y2, 5x2 +2xy+6y2, and 3x2 +2xy+10y2. Thus the four forms above
split into two equivalence classes in Cl(E)/2Cl(E).

Thus we can’t prove an analogue of the Hasse-Minkowski theorem, so we develop more machinery
the failure of the local-global principle

Definition 6.8. Let f be a regular quadratic form over Z. The genus of f , denoted by gen(f), is
the set of quadratic forms g over Z such that f ∼R g and f ∼Zp g for every prime p.

GLn(Z) acts on gen(f), so gen(f) splits into equivalence classes.

Lemma 6.9. If g ∈ gen(f), then d(f) = d(g) as elements of Z/(Z×)2 = Z.

Proof. If f, g are equivalent locally, then d(f) ≡ d(g) mod R>0, and d(f) ≡ d(g) mod (Z×
p )

2 for
all p. Then d(f) = d(g). This is because equivalence over R gives that d(f) and d(g) have the same
sign, and equivalence over Zp gives that they have the same p-divisibility.

Corollary 6.10. For any regular quadratic form f , GLn(Z)\ gen(f) is finite.

Proof. For any d ∈ Z \ {0}, n ≥ 1, the set of quadratic forms of fixed determinant d modulo
equivalence is finite. This is a consequence of “reduction theory”, and we won’t prove this. As all
the forms in a given genus have the same determinant, we are done.
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Principle: Enumerating genera (the plural of genus) is easy, and a consequence of the Hasse-
Minkowski theorem. But computing GLn(Z)\ gen(f) is hard, which represents the difficult in
working over a ring versus a field. Recalling the key Example 6.7, we have that calculating the
number of genera in rank 2 is equivalent to Cl(E)/2Cl(E), which is fairly easy. But calculating
elements in each genus is essentially as difficult as calculating Cl(E), which is very hard.

Observation: Suppose M,M ′ are quadratic modules over Z that correspond to quadratic forms
in the same genus. Then M ⊗Z R ∼R M

′ ⊗Z R, and MZp
⊗Zp

M ′
Zp

. In particular, if V = M ⊗Z Q
and V ′ = M ′ ⊗Z Q, then VR ∼R V ′

R, and VQp ∼Qp V
′
Qp

for all p. So then V ∼Q V ′ by the weak
Hasse-Minkowski theorem 5.2. Let α : V → V ′ be the isomorphism defined over Q. Now, V and
V ′ are Q-vector spaces which contain M and M ′ as quadratic submodules. Then α restricts to an
isomorphism of quadratic modules α−1(M ′)→M ′. Thus any quadratic module in the same genus
as M is a quadratic submodule of V . This will be one of our guiding principles.

6.2 Lattices
Definition 6.11. Let R be an integral domain with fraction field k, and V a quadratic space over
k. An R-lattice M ⊆ V is a free R-submodule of the same rank as V , which spans V as a k-vector
space, such that ψ|M×M takes values in R. M naturally has the structure of a quadratic module
over R.

In order to find R-lattices, we can take a basis for V , and check that ψ|M×M has values in R.

Definition 6.12. Let V be a regular quadratic space over Q and M ⊆ V a Z-lattice. Then the
genus gen(M) of M is the set of Z-lattices M ′ ⊆ V such that for all primes p, there’s an isomorphism
MZp

∼M ′
Zp

of quadratic modules over Zp.
We have that MR ∼ VR ∼M ′

R, so equivalence over the reals is automatically satisfied.

If M,M ′ ⊆ V are R-lattices and we have an isomorphism α : (M,ψ|M ) → (M ′, ψ|M ′) of
quadratic modules, then tensoring by k gives

α⊗R k :M ⊗R k = V →M ′ ⊗R k = V ∈ O(V ) (6.5)

an element of the orthogonal group of V , as clearly distances are preserved.
Conversely, if β ∈ O(V ), then β(M) ⊆ V is another R-lattice, isomorphic to M as a quadratic

module over R. Thus the orthogonal group acts on the set of R-lattices in V , and two R-lattices
are isomorphic as quadratic modules if and only if they are in the same orbit. This allows us to
give the following characterization of the genus:

gen(M) = {M ′ ⊆ V Z-lattice | ∀p, ∃gp ∈ O(VQp
) such that M ′

Zp
= gp(MZp

)}. (6.6)

This follows from the above discussion as M ′
Zp
∼MZp

if and only if such a gp ∈ O(VQp
) exists.

A priori we do not know that the genus of a Z-lattice and the associated quadratic form are the
same. The next proposition shows this. Thus if we want to enumerate the equivalence classes in
gen(f), it suffices to enumerate the equivalence classes of lattices in gen(M). This is the first step
towards a group-theoretic description of the equivalence classes of gen(f), which will eventually
lead to a connection with automorphic forms.
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Proposition 6.13. Let V be a regular quadratic space over Q, M ⊆ V a Z-lattice, e1, . . . , en a
Z-basis for M , and f =

∑
ψ(ei, ej)xixj the associated quadratic form over Z. Then there’s a

bijection between

1. O(V )\ gen(M), the genus of M up to isomorphism of quadratic modules over Z.

2. GLn(Z)\ gen(f), the genus of f up to isomorphism of quadratic forms over Z.

The map is given by

gen(M)→ gen(f)

M ′ = SpanZ(e
′
1, . . . , e

′
n) 7→ f ′ =

∑
ψ(ei, xj)xixj (6.7)

Proof. Given M ′ ∈ gen(M), choose a basis e′1, . . . , e′n, and let f ′ =
∑
ψ(e′i, e

′
j)xixj be the as-

sociated quadratic form. If γ ∈ O(V ), then γM ′ ∈ gen(M) has basis γ(e′1), . . . , γ(e′n), and the
associated quadratic form is the same as ψ(γe′i, γe′j) = ψ(e′i, e

′
j). Thus we have a well-defined map

O(V )\ gen(M)→ GLn(Z)\ gen(f).
If M ′,M ′′ ∈ gen(M) give rise to the same quadratic form, then they are isomorphic as quadratic

modules by Lemma 6.4, and so by the discussion above they are in the same orbit of the orthogonal
group. Thus the map is injective.

Now let f ′ ∈ gen(f). Then there exists a quadratic module N over Z with basis b1, . . . , bn
giving rise to the quadratic form f ′ by Lemma 6.4. As f ′ ∈ gen(f), we have that NR ∼ VR, and
NZp

∼ MZp
for all primes p. In particular, if V ′ = NQ, then V ′

R ∼ VR, and V ′
Qp
∼ VQp

for all p.
Then by the weak Hasse-Minkowski Theorem 5.2, there exists an isomorphism α : V → V ′. Then
α−1(N) ∈ gen(M) gives rise to the form f ′.

This is a very useful characterization of the genus, as we will now show.

Proposition 6.14. Let f be a regular quadratic form over Z and a ∈ Z. The following are
equivalent:

(i) f represents a over R and over Zp for all p.

(ii) There exists f ′ ∈ gen(f) which represents a over Z.

Before we prove this proposition, we need a lemma.

Lemma 6.15. Let V be a quadratic space over Q and M ⊆ V a Z-lattice. Then there exists a
bijection between:

1. {M ′ ⊆ V Z-lattice}.

2. {(M ′
p)p | ∀p, M ′

p ⊆ VQp
is a Z-lattice, and for all but finitely many p, M ′

p =MZp
}.

This is a generalization of the fact that the image of the map

Z→ ZZ

n 7→ vp(n) (6.8)

has image equal to those tuples which are 0 for all but finitely many indices.
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Slogan: Any element of gen(M) is only finitely many primes away from M .
Slogan: Elements of gen(M) differ by a denominator.

Proof. The map 1→ 2 is given by M ′ 7→ (M ′
Zp
)p.

First we will show the map is well-defined. For each M ′, we can find N such that NM ⊆M ′ ⊆
1
NM . This is true because we can find γ ∈ GLn(Q) mapping M →M ′, and the denominators of γ
will be bounded. Thus we have that MZp

= M ′
Zp

for any p ∤ N , as if p ∤ N then NMZp
= MZp

=
1
NMZp .

Next we will show injectivity. Once N is fixed (so once the finite set of primes for which
M ′
p ̸= MZp

is bounded), M ′ is determined by M ′/NM ⊆ 1
NM/NM (this is equivalent to the

statement that if A/H = B/H ⊆ G/H then A = B). 1
NM/NM is a finite abelian group, so it

decomposes as a sum of its p-parts:

1

N
M/NM =

⊕
p|N

(
1

N
M/NM)[p∞]

=
⊕

p | N 1

N
MZp

/NMZp
. (6.9)

Also, M ′/NM ⊆ 1
NM/NM is determined by its p-parts, and

M ′/NM [p∞] =M ′
Zp
/NMZp

, (6.10)

so M ′ is determined by (M ′
Zp
)p. Thus if (M ′

Zp
)p = (M ′′

Zp
)p then M ′ =M ′′, so the map is injective.

Finally we show surjectivity. Given some (Lp)p in set 2, we can find N ∈ N such that for all p,

NMZp
⊆ Lp ⊆

1

N
MZp

. (6.11)

This is true because at the primes where MZp
= Lp, we can take vp(N) = 0. At the finite set of

primes where MZp
̸= Lp, we have that 1

pepMZp
⊆ Lp ⊆ pepMZp

for some ep, and taking N =
∏
pep

gives the desired N . Set M ′ = L + NM , where L ⊆ 1
NM/NM is the unique subgroup such that

L/NM [p∞] = Lp/NMZp
for all primes p. Then arguing as above we have that M ′

Zp
= Lp for all

p. We also need to show that M ′ is a Z-lattice, so that the form ψ takes integer values on M ′.
But ψ takes Zp-values on Lp = M ′

Zp
as Lp is a Zp-lattice, and if a ∈ Q then a ∈ Z if and only if

a ∈ Zp ⊆ Qp for all p, so we are done.

We can now prove the proposition.

Proof of Proposition 6.14. Using Proposition 6.13, we have the following coordinate free formula-
tion:

Let V be a regular quadratic space over Q, M ⊆ V a Z-lattice, and a ∈ Z. Then we want to
show that MZp

represents a for all p and MR represents a if and only if there exists M ′ ∈ gen(M)
such that M ′ represents a.

If there exists M ′ ∈ gen(M) that represents a, then M ′
Zp
∼ MZp represents a for all p and

M ′
R ∼MR represents a, so we are done.
Now suppose MZp

represents a for all p and MR represents a. By the Hasse-Minkowski theorem
we have that V represents a, so there exists u ∈ V \ {0} such that ψ(u, u) = a.
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Let S = {p | u /∈ MZp}. Let e1, . . . , en be a Z-basis for M . Then as u ∈ V , we have that
u = a1e1 + · · · + anen for some ai ∈ Q. Let N be the least common multiple of the denominators
of the ais. Then if p ∤ N , u ∈ MZp

. Thus S is the set of primes dividing N , so S is a finite set.
If p ∈ S, then MZp

represents a, so there exists up ∈ MZp
\ {0} such that ψ(up, up) = a. Then by

Witt’s lemma Theorem 2.14, there exists gp ∈ O(VQp
) such that gp(up) = u.

By Lemma 6.15, there exists a Z-lattice M ′ ⊆ V such that M ′
Zp

= MZp if p /∈ S and M ′
Zp

=

gp(MZp
) if p ∈ S. Then by (6.6) we have that M ′ ∈ gen(M).

To complete the proof, we need to show that u ∈ M ′, so that M ′ represents ψ(u, u) = a. We
have that u ∈ V =M ⊗ZQ, so fixing a Z-basis e′1, . . . , e′n for M ′, we have that u = b1e

′
1+ · · ·+ bne′n

for some bi ∈ Q, and we have that u ∈M if and only if bi ∈ Z. We can instead check that bi ∈ Zp
for all p, or equivalently that u ∈ M ′

Zp
for all p. If p /∈ S, then u ∈ MZp

= M ′
Zp

. If p ∈ S, then
up ∈MZp , and gp(up) = u by construction, so u ∈M ′

Zp
as gp(MZp) =M ′

Zp
also by construction.

The previous proposition demonstrates the general Principle 6.1 stated above that to work with
quadratic forms over Z we first enumerate the genera, and then work within each genus.

6.3 Representating integers by a sum of 3 squares
We now demonstrate that we have actually done something useful by returning to the problem of
representation of integers by the sum of three integers squares.

Proposition 6.16. Let p be a prime and a ∈ Zp \ {0}. Then a is represented by x2 + y2 + z2 over
Zp if and only if either p is odd, or p = 2 and −a /∈ (Z2)

2.

Proof. First note that if b ∈ Zp \ {0}, then b is represented by x2 + y2 if and only if
always p ≡ 1 mod 4

vp(b) is even p ≡ 3 mod 4

b ∈ 2m(1 + 4Z2) for some m ≥ 0 p = 2

(6.12)

If p ≡ 1 mod 4, we have that i ∈ Zp, so we can take x = (b + 1)/2 and y = i(b − 1)/2. If p ≡ 3
mod 4 or p = 2, this follows from the fact that x2 + y2 is the norm form for Zp[i], so b ∈ Zp is
represented if and only if b is a norm. See Example 5.7 for the details.

We use the representation of x2 + y2 to deduce that of x2 + y2 + z2.
If p ≡ 1 mod 4, then x2 + y2 + z2 represents Z.
If p ≡ 3 mod 4, then all elements with even valuation are represented by x2 + y2, so it suffices

to show that pu with u ∈ Z×
p . But pu = (−1 + pu) + 1, and (−1 + pu) is represented by x2 + y2,

and 1 is represented by z2, so we are done.
If p = 2, we need to check that 3 + 8v, 2(3 + 8v) with v ∈ Z2 are represented. This is because

we already know that −a /∈ (Z2)
2 is a necessary condition, as it is a necessary condition over Q2

(see Example 5.7). To show that it is a sufficient condition, we need to check the cases not already
covered by x2 + y2, which are precisely 3 + 8v and 2(3 + 8v). We have that 3 + 8v = 2 + 8v + 1 =
2(1 + 4v) + 1. The first term is represented by x2 + y2, and the second by z2. Likewise, we have
that 2(3 + 4v) = (5 + 8v) + 1.

Using Proposition 6.14 and a bit of Hensel’s Lemma magic, we have the following corollary:
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Corollary 6.17. If a ∈ N, then a is represented by gen(x2 + y2 + z2) if and only if a is not of the
form 4b(7 + 8c) with b, c ∈ Z.

In fact, gen(x2 + y2 + z2) has only one element, so a is represented by x2 + y2 + z2 if and only
if a is not of the form 4b(7 + 8c) with b, c ∈ Z. We will now show this. We will need the following
theorem, which we will not prove.

Theorem 6.18 (Minkowski). Let C ⊆ Rn be a compact, centrally symmetric (so that C = −C),
convex subset with vol(C) ≥ 2n. Then C ∩ (Zn \ {0}) is nonempty.

Proposition 6.19. gen(x2 + y2 + z2) = GL3(Z) · (x2 + y2 + z2).

Proof. We’ll show that if g is a positive definite quadratic form of rank 3 over Z with d(g) = 1,
then g ∼ f = x2 + y2 + z2. Then as gen(x2 + y2 + z2) is a subset of this set of forms, this claim
implies the proposition.

Claim 1: It suffices to show that there exists x ∈ Z3 such that g(x) = 1.
Proof: Suppose such an x ∈ Z3 exists. We have that Q3 = (Qx)⊕ (Qx)⊥, and if v ∈ Z3, then

v = (ψ(v,x)x) + (v − ψ(v,x)

ψ(x,x)
x)

= (ψ(v,x)x) + (v − ψ(v,x)x) (6.13)

We have that v−ψ(v,x)x ∈ ((Qx)⊥∩Z3), so Z3 = (Zx)⊕((Qx)⊥∩Z3). Z3 = (Zx)⊕((Qx)⊥∩Z3) is
a rank 2 positive definite lattice of determinant 1. Any rank 2 positive definite lattice of determinant
1 is equivalent to x2 + y2, so we have that g ∼ x2 + y2 + z2 as desired.

Thus is suffices to prove the following claim.

Claim 2: there exists x ∈ Z3 such that g(x) = 1.
Proof: We use Minkowski’s theorem. Let

Cλ = {v ∈ R3 | |g(v)|1/2 ≤ λ}. (6.14)

Over R, g is equivalent to x2 + y2 + z2, so Cλ is the image of the unit ball under some linear map
with determinant 1. Then vol(Cλ) =

4
3πλ

3. We want 4
3πλ

3 ≥ 23, so λ ≥ 2

3 3
√

4
3π

= 1.24.... <
√
2.

Choose λ ≥ 2

3 3
√

4
3π

. Then Minkowski’s Theorem 6.18 implies that there exists v ∈ Z3 \ {0} such

that |g(v)|1/2 <
√
2, so |g(v)| < 2, so g(v) = 1 because g is positive definite and integer valued.

This completes the proof of the claim and hence the proposition.

Proposition 6.19 allows us to give the following strengthening of Corollary 6.17.

Corollary 6.20. If a ∈ N, then a is represented by x2 + y2 + z2 if and only if a is not of the form
4b(7 + 8c) with b, c ∈ Z.

Thus we have shown how the theory of genera can be used to solve the representation problem,
at least in a special case.

We now study classification of quadratic forms over rings. We first give a group theoretic
description of genera.
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6.4 Group-theoretic description of genera
LetM ⊆ V be a Z-lattice in a regular quadratic space V . We have that following group schemes/group
functors:

GLV : commutative Q−alg→ Group (6.15)
R 7→ AutR(V ⊗Q R)

GLM : commutative Z−alg = Ring→ Group (6.16)
R 7→ AutR(M ⊗Z R)

We have, for example, GLM ×SpecZ SpecQ = GLV , and GLV (Qp) = GL(VQp
).

We want to take R to be the ring of finite adeles, which is defined as

A∞ =
∏
p

′
Qp

= {(xp)p ∈ Qp | xp ∈ Zp for all but finitely many p}. (6.17)

We then have that

GLV (A∞) =
∏
p

′
GL(VQp

) = {(gp)p ∈
∏
p

GL(VQp
) | gp ∈ GL(MZp

) for all but finitely many p}

(6.18)
and the definition is independent of the choice of lattice.

Lemma 6.15 gives a bijection between the set of all lattices M ′ ⊆ V and the set of tuples (M ′′
p )p

of Zp-lattices M ′′
p ⊆ VQp such that M ′′

p = MZp for all but finitely p. Thus the GLV (A∞) acts
transitively on the set of lattices in V by

(gp)p · (M ′′
p )p = (gp(M

′′
p ))p (6.19)

The action is transitive because we can map any two Zp-bases to each by some element of GL(VQp
),

and any two lattices only differ by finitely many primes. The stabilizer will be the set of matrices
which do not change Mp for each p, which are

StabGLV (A∞)(M) =
∏
p

GLM (Zp) = GLM (Ẑ), (6.20)

where Z =
∏
p = lim←−Z/nZ are the profinite integers. Thus the orbit stabilizer theorem gives a

bijection between lattices M ⊆ V and GLV (A∞)/GLM (Ẑ).
Furthermore, we know that if M ′ ⊆ V is a Z-lattice in V , then it lies in gen(M) if and only if

for all p, there exists gp ∈ O(VQp
) such that gp(MZp

) =M ′
Zp

. So there’s a bijection

gen(M)⇔ OV (A∞)/OM (Ẑ)
(gp(MZp

))p ← (gp)p (6.21)

This gives a group theoretic description of the genus, and we want to descend to a group theoretic
description of the equivalence classes of the genus. By the discussion at the start of Section 6.2,
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two lattices are equivalent as quadratic modules over Z if and only if they are conjugate under the
action of the orthogonal group O(V ). So taking quotients gives a bijection

O(V )\ gen(M)⇔ OV (Q)\OV (A∞)/OM (Ẑ). (6.22)

This gives a purely group-theoretic description of the equivalence classes in the genus. The right
hand side is a space which supports automorphic representations, which we will discuss more later.

Now, let’s return to classification problem.

6.5 Classification
Let’s look at the genera of unimodular Z-lattices M ⊆ V . We have the following invariants:

1. The discriminant d(M) ∈ {±1}.

2. (r, q)-signature: VR ∼R ⟨−1⟩r ⊕ ⟨−1⟩q (recall the classification of quadratic forms over R).

3. Parity: We say that M is even if for all v ∈ MZ2 , ψ(v, v) ∈ 2Z2. Otherwise it is odd. The
module is even if all the diagonal entries are even, and odd otherwise.

Example 6.21. The form 2xy corresponding to the matrix
(
0 1
1 0

)
is even and the form x2 − y2

corresponding to the matrix
(
1 0
0 −1

)
is odd. These two modules are equivalent over Q and even

over R, but they lie in different genera.

These 3 invariants are sufficient to classify all unimodular genera.

Proposition 6.22. Let n ≥ 3, r, q ∈ Z≥0 with r + q = n. Then

1. There exists a unique genus of odd unimodular Z-lattices of signature (r, q).

2. There exists a genus of even unimodular Z-lattices if and only if r ≡ q mod 8. In this case,
the genus is unique.

Proof sketch.

1. We need to exhibit a regular quadratic space V/Q such that there exists an odd unimodular
lattice M ⊆ V with VR ∼ ⟨−1⟩r ⊕ ⟨−1⟩q. Then we need to show that any other V ′ with this
property satisfies V ′ ∼ V and that for all p, O(VQp) acts transitively on the unimodular Zp-lattices
in VQp

, as then all the lattices in V lie in the same genus (see (6.6)). So we will show that V is
determined, and then that M is determined.

If M ⊆ V is odd unimodular, then d(M) ≡ (−1)q. In order to show that V is determined, it
suffices to show that it is determined locally by the weak Hasse-Minkowski theorem 5.2.

If p is odd, we can use the following version of Hensel’s lemma.

Lemma 6.23 (Hensel’s lemma for unimodular quadratic forms over Zp). If f, g are quadratic forms
over Zp with p odd, d(f), d(g) ∈ Z×

p , and f mod p ∼Fp g mod p, then f ∼Zp g.
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In Section 3 we determined that quadratic forms over finite fields of characteristic not 2 are
classified by their determinant. Thus if such a V and such an M exist, we must have

MZp
∼Zp
⟨1⟩r ⊕ ⟨−1⟩q (6.23)

Then tensoring up to Qp we have that

VQp ∼Qp ⟨1⟩r ⊕ ⟨−1⟩q (6.24)

So if M and V exist, then the determinant is fixed, VR is fixed, and VQp
is fixed for all odd p. We

know by Corollary 5.3, 5.5 that V is determined by d(V ) and c(V ), and we can freely choose d(V )
and c(V ) as long as they are compatible over R. Thus there’s a unique V up to isomorphism such
that d(V ) ≡ (−1)q, VR ∼R ⟨1⟩r ⊕ ⟨−1⟩q, and VQp ∼Qp ⟨1⟩r ⊕ ⟨−1⟩q for any odd prime p. At p = 2
everything works out also as there is only one choice for the Clifford invariant by (5.4). Thus V is
uniquely determined.

To show that this V admits an odd unimodular Z-lattice, by Lemma 6.15 we need to check that
VQp

admits a unimodular Zp-lattice for every prime p which is odd for p = 2. To show uniqueness,
by (6.6) we need to show that locally the Zp-lattices are unique up to the action of O(VQp).

If p is odd, the existence is clear, and the uniqueness follows from the version of Hensel’s lemma
stated above. If p = 2, we can show that any regular quadratic space W over Q2 admits a unique
O(W )-orbit of odd unimodular Z2-lattices. To our knowledge, there is not a nice proof of this
result, so we won’t prove it. This proves part 1.

2. If W is a regular quadratic space of rank n over Q2, it is a fact that W has an even unimodular

Z2-lattice if and only if n = 2m is even and W ∼ Hm, or W ∼ Hm−1 ⊕
〈(

2 1
1 2

)〉
. We can check

that in this case, the lattice is unique up to the action of O(W ).
In part 1, we explicitly determined the unimodular lattice at every odd prime, and showed that

there was only one choice at p = 2, if such a choice existed. We then were saved by the result that
any regular quadratic space over Q2 admits an unique odd unimodular lattice, so such a choice does
exist.

But in this case, we need to determine when there exists a regular quadratic space V over Q
such that

1. VR ∼ ⟨1⟩r ⊕ ⟨−1⟩q

2. VQp
∼ ⟨1⟩r ⊕ ⟨−1⟩q for all odd primes p

3. VQ2 ∼ Hm or VQ2 ∼ Hm−1 ⊕
〈(

2 1
1 2

)〉
.

4. d(V ) ≡ (−1)q.

But Hm−1⊕
〈(

2 1
1 2

)〉
has determinant 3 so we can remove it immediately. We can compute the

Clifford invariant in each case, and we need to decide if the local Clifford invariants come from an
element of Br(Q)[2]. If we do this computation, we find that such a V exists if and only if r ≡ q
mod 8, and in this case it is uniquely determined up to isomorphism. Then the work we have done
shows that there is a unique genus of even unimodular lattices in V .
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Let Ir,q denote the unique genus of odd unimodular forms of signature (r, q), and IIr,q denote
the unique genus of even unimodular forms of signature (r, q), which exists if and only if r ≡ q
mod 8. Classifying equivalence classes within each genus is difficult, and depends on (r, q). We’ll
introduce the notion of the spin group and the spinor genus, and use them to show that if r, q ̸= 0,
so the form is (positive/negative) definite, then Ir,q and IIr,q have a single equivalence class. In
the definite case where r = 0 or q = 0, computing the equivalence classes is a hard computational
problem, and we’ll develop a reasonable method of doing so.

Before we do that, we’ll give an example to show that computing the genus in the definite case
is difficult. In this case, some information is given by the Smith-Minkowski-Siegel mass formula.

Definition 6.24 (Smith-Minkowski-Siegel mass formula). Let M ⊆ V be a Z-lattice, where VR is
positive definite, n ≥ 3. Then there is a canonical measure, the Tamagawa measure, on the group
SOV (A) with the property that

vol(SOV (Q)\SOV (A)) = 2 (6.25)

Remark 6.25. A measure if a functional on the space of continuous compactly supported functions.
It is a fact that any locally compact topological group G has a unique measure (up to rescaling), the
Haar measure, which is invariant under left translation. If G is compact, then there is a canonical
normalization which gives the group volume 1. The group SOV (A) is not compact, but there is
canonical normalization the Haar measure on this group which works over any number field. Under
the Tamagawa measure, the group will have a certain volume, the Tamagawa number, which is very
difficult to compute.

We want to compute the closely related quantity

#OV (Q)\OV (A∞)/OM (Ẑ) (6.26)

as this is the number of equivalence classes of lattices in the genus. We can compute this as some
sort of volume. This is a bit tricky as the points of (6.26) don’t have measure 1. If we use the
Tamagawa measure, we get ∑

M ′∈O(V )\ gen(M)

1

#OM ′(Z)
= (⋆), (6.27)

where (⋆) is some quantity which we can compute. In the case where gen(M) = IIn,0 with n ≡ 0
mod 8, we have that

(⋆) = 2−n/2

∣∣∣∣∣∣ζ
(
1− n

2

) n/2−1∏
j=1

ζ(1− 2j)

∣∣∣∣∣∣ (6.28)

where ζ is the Riemann zeta function. The zeta function terms arise from certain Euler products
appearing in the Tamagawa measure formula.

If n = 8, we get that

(⋆) =
1

214 · 35 · 52 · 7
=

1

#OE8
(Z)

(6.29)

where E8 is the famous root lattice. Thus II8,0 has a unique equivalence class because the left hand
side of the formula is “exhausted”. This was first proved by Mordell. We also have that

#(II16,0 / ∼) = 2 (6.30)
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as proved by Witt,
#(II24,0 / ∼) = 24 (6.31)

as proved by Niemier (the Leech lattice is one), and

#(II32,0 / ∼) =? (6.32)

but we know that it is in the millions, which we can show using the mass formula.

7 Spin groups and spinor genus
Let k be a field of characteristic not 2 and V a regular quadratic space over k of rank n ≥ 3.

7.1 Spin groups and spinor norms
We start off with a bit of motivation because the spin group is a bit weird. Recall (Proposition 2.13
that O(V ) is generated by simple relfections τw, where w ∈ V is an anisotropic vector.

Proposition 7.1. Define a map

sn : SO(V )→ k×/(k×)2

g = τw1
· · · τwr

7→ ψ(w1) · · ·ψ(wr) mod (k×)2 (7.1)

Then sn is a well-defined group homomorphism.

Even the fact that this is well-defined is a bit surprising. sn is the spinor norm, and its existence
reflects the existence of the spin group. We will define a few things and then see that the spinor
norm emerges naturally from these definitions.

Example 7.2. Assume k = C. Then any finite dimensional irreducible representation of SO(V )
gives rise to a finite dimensional representation of the simple Lie algebra so(V ) by differentiation.
We know that two representations of SO(V ) are isomorphic if and only if the representations of Lie
algebras are isomorphic, and we know that we can classify the representations of so(V ) using the
theory of roots and weights (cf. Lie algebras). Associated to the fundamental weights of the Lie
algebra we have the fundamental representations. There is a fundamental representation of so(V )
that does not integrate to a representation of SO(V ). If we want to get a representation of a group
from this representation of so(V ), we need to replace SO(V ) by its universal cover. As SO(V ) is a
complex algebraic group, its universal cover will have the structure of a complex algebraic group.
We call this group the spin group Spin(V ).

Now lets return to the case where k is any field of characteristic not equal to 2.
Recall the universal property of the Clifford algebra C(V ): maps C(V ) → A are in bijection

with maps α : V → A such that α(V )2 = ψ(v, v). Taking α = −1, which maps v 7→ −v, we get a
map

C(−1) : C(V )→ C(V )

v1 · · · vr 7→ (−1)rv1 · · · vr. (7.2)
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Likewise, the natural inclusion V ↪→ C(V ) induces a map

(·)′ : C(V )→ C(V )op

v1 · · · vr 7→ vr · · · v1. (7.3)

We then devine x = (C(−1)(x))′, so that v1 · · · vr = (−1)rvr · · · v1.

Definition 7.3. The Clifford group is defined as follows:

ΓV = {x ∈ C(V )× | ∀v ∈ V, C(−1)(x)vx−1 ∈ V } (7.4)

The Clifford norm of an element x ∈ ΓV is defined as N(x) = xx.

Lemma 7.4.

1. ΓV is a group, which acts on V , so there exists a group homomorphism ρ : ΓV → Autk(V ).

2. If w ∈ V is anisotropic, then w ∈ ΓV , N(w) = ψ(w,w), and for all v ∈ V , ρ(w)(v) = τw(v).

3. ρ takes values in O(V ), and gives a surjective homomorphism ΓV → O(V ) with kernel k×,
and N : ΓV → k× is a homomorphism.

Proof.

1. This follows from definitions. We clearly have that 1 ∈ ΓV , and if x ∈ ΓV then x−1 ∈ ΓV . Note
that the action on V is essentially just conjugation twisted by multiplication by (−1)r, and it’s easy
to see this defines a group action.
2. If w ∈ V is anisotropic, then w2 = ψ(w,w), so w−1 = w · ψ(w,w)−1. Also, if v ∈ V , as
vw + wv = 2ψ(v, w), we have that

C(−1)(w)vw−1 = C(−1)(w)vwψ(w,w)
= −(2ψ(v, w)− vw)wψ(w,w)−1

= v − 2ψ(v, w)

ψ(w,w)
w

= τw(v). (7.5)

Thus w ∈ ΓV , and ρ(w)(v) = τw(v).
Also, we have that N(w) = w(C(−1)(w))′ = −w2 = −ψ(w,w).

3. If x ∈ ker(ρ), then for all v ∈ V , we have that C(−1)(x)vx−1 = v. Thus C(−1)(x)v = vx. Thus
if x = x0 + x1, where xi ∈ Ci(V ), then we have that C(−1)(x0) = x0 and C(−1)(x1) = −x1 so

x0v − x1v = vx0 + vx1. (7.6)

Comparing the C0(V ) and C1(V ) parts of both sides gives x0v = vx0 and x1v = −vx1. Then as
C(V ) is generated as an algebra by all v ∈ V , we have that x0 ∈ CentC0(V )(C(V )), the degree 0
part of the centralizer of C(V ). By some standard Clifford algebra computations we can determine
that CentC0(V )(C(V )) = k, and similarly that x1 = 0, so x ∈ k× as x is nonzero.

Next we check that N takes values in k× and is a homomorphism. As we have just shown that
the stabilizer of the group action is k×, it suffices to show that if x ∈ ΓV , then N(x) acts trivially
on V .
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Let x ∈ ΓV and v ∈ V . Set C(−1)(x)vx−1 = w for some w ∈ V . Then v = C(−1)(x−1)wx, so
v = x′wC(−1)(x−1)′ = C(−1)(x)w(x)−1. Thus C(−1)(xx)v(xx)−1 = C(−1)(x)wx−1 = v, so xx
acts trivially and xx ∈ k×. Then xxx = xxx, so xx = xx as x ∈ C(V )×. Thus N(x) = xx = xx ∈
k×. Then N(xy) = xy(xy) = xyyx = xxyy = N(x)N(y). We frequently utilize that k× is in the
center of V .

If x ∈ ΓV , w ∈ V is anisotropic, then

N(C(−1)(x)wx−1) = N(C(−1)x)N(w)N(x)−1

= N(w)

= −ψ(w,w) (7.7)

as N(C(−1)x) = N(x) ∈ k×. We also have that

N(C(−1)(x)wx−1) = N(ρ(x)(w))

= −ψ(ρ(x)(w), ρ(x)(w)). (7.8)

So ρ(x) acts on V and preserves ψ on the anisotropic vectors. Then it must also preserve ψ on
the isotropic vectors, so ρ(x) ∈ O(V ). ρ is surjective as τw = ρ(w) for w anisotropic, and simple
reflections generate the orthogonal group.

The above lemma has a lot of parts. To summarize, we have the following diagram with exact
rows

1 k× ΓV O(V ) 1

k× k× k×/(k×)2 1

ρ

N sn

where the map k× → k× on the bottom row is given by λ 7→ λ2. sn is the spinor norm, it is the
unique map which makes the diagram commute. It is calculated as follows.

Any γ ∈ O(V ) can be written as τw1
· · · τwr

for some anisotropic wi ∈ V . The preimage in Γ(V )
is w1 · · ·wr, and we have that N(w1 · · ·wr) = (−1)rψ(w1) · · ·ψ(wr). We then have that

sn(γ) = sn(τw1
· · · τwr

) = (−1)rψ(w1) · · ·ψ(wr) mod (k×)2. (7.9)

This completes the proof of Proposition 7.1.
As a consequence of the surjectivity of ρ, we have that

ΓV = {w1 · · ·wr ∈ C(V ) | r ≥ 0, wi ∈ V anisotropic}. (7.10)

We now define the spin group.

Definition 7.5. The spin group Spin(V ) is defined as

Spin(V ) = {x ∈ ΓV ∩ C0(V ) | N(x) = 1}. (7.11)

As a consequence of (7.10), we have that

Spin(V ) = {w1 · · ·wr | r ≥ 0 even, ψ(w1) · · ·ψ(wr) = 1}. (7.12)
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Define the map
θ : O(V )

sn× det−−−−−→ k×/(k×)2 × {±1}. (7.13)

Then we have an exact sequence

1 {±1} Spin(V ) O(V ) k×/(k×)2 × {±1}ρ θ

The {±1} arises as the kernel of ρ : ΓV → O(V ) is k×, and we have that k× ∩Spin(V ) = {±1}. By
exactness, the image of Spin(V ) in O(V ) is the elements of SO(V ) with trivial spinor norm. Thus
we have the following exact sequence:

1 {±1} Spin(V ) SO(V ) k×/(k×)2
ρ sn

Remark 7.6. Here is another perspective on the above exact sequence. We can define SpinV as
a linear algebraic group over k. Then we have a short exact sequence of group schemes (not of
groups!) over k:

1 µ2 SpinV SOV 1

If we take k points, then this will be an exact sequence of groups. But if we just take k-points, then
we obtain a connecting homomorphism δ : SO(V ) → H1(k, µ2). By Hilbert’s theorem 90 we have
that H1(k, µ2) = k×/(k×)2, and we can check that δ is in fact the spinor norm sn.

7.2 Spinor genus
Let V be a regular quadratic space over Q, and let

Ω(VQp
) = ρ(Spin(VQp

)) = ker(sn : SO(VQp
)→ Q×

p /(Q×
p )

2) ⊆ SO(VQp
) (7.14)

Definition 7.7. Let M,M ′ ⊆ V be Z-lattices. We say that M,M ′ are in the same spinor genus if
there exists γ ∈ O(V ), and for each prime p, ωp ∈ Ω(VQp

) such that MZp
= γωpM

′
Zp

.

Let’s show that being in the same spinor genus an equivalence relation. This follows from the fact
that Ω(VQp) is a normal subgroup, as it is the kernel of the spinor norm. Suppose MZp = γωpM

′
Zp

,
and M ′

Zp
= δηpM

′′
Zp

for all p. Then

MZp = γωpδηpM
′′
Zp

= γδδ−1ωpδηpM
′′
Zp
. (7.15)

We have that γδ ∈ O(V ) and δ−1ωpδηp ∈ ΩVQp
by normality, so M ∼M ′′.

Remark 7.8. The spinor genus is the set of lattices which differ locally by an element of the spin
group and globally by an element of the orthogonal group. We might think that a more natural
definition is to only check for local equivalence, but then the spinor genus might not be closed under
equivalence (recall that two lattices are equivalent if and only if they differ by an element of the
orthogonal group).
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If M,M ′ are in the same spinor genus, they are locally equivalent (they differ by an element of
the orthogonal group), so they are in the same genus. Thus gen(M) is a disjoint union of spinor
genera, denoted by spgen(M ′). We have a group theoretic description of the genus, and we want
to obtain a group theoretic description of the spinor genus. The following result gives this. First,
define

ΩV (A∞) =

(∏
p

Ω(VQp
)

)
∩OV (A∞) (7.16)

which is the product of the local Ωs with the adelic finiteness condition imposed by intersecting
with OV (A∞) (see (6.18)). Also, recalling the definition of the map θ in (7.13), define

θ′ =
∏
p

′
θ : OV (A∞)→

∏
p

′
(Q×

p /(Q×
p )

2 × {±1}) (7.17)

where the product on the right hand side is restricted so that∏
p

′
(Q×

p /(Q×
p )

2 × {±1}) = {(xp(Q×
p )

2, ϵp)p | xp ∈ Z×
p (Q×

p )
2 for all but finitely many p}. (7.18)

Proposition 7.9. Let M ⊆ V be a Z-lattice.
The following sets are in bijection:

1. The set of spinor genera in gen(M).

2. The quotient O(V )\OV (A∞)/ΩV (A∞)OM (Ẑ).

3. The quotient θ′(O(V ))\θ′(OV (A∞))/θ′(OM (Ẑ)).

Proof. Recall our work in Section 6.4, and (6.21) in particular.

1⇔2: If M ′,M ′′ ∈ gen(M), then M ′ = g′M and M ′′ = g′′M where g′, g′′ ∈ OV (A∞). By
definition, M ′ and M ′′ are in the same spinor genus if and only if there exists γ ∈ OV (Q) = O(V )
and ω = (ωp)p ∈ ΩV (A∞) such that for all p, M ′

Zp
= g′pMZp

= γωpM
′′
Zp

= γωpg
′′
pMZp

.
This is true if and only if there exists γ ∈ OV (A∞), ω = (ωp)p ∈ ΩV (A∞), κ = (κp)p ∈ OM (Ẑ)

such that g′ = γωg′′κ, where equality is taken in OV (A∞). This follows from the fact that OM (Ẑ)
is the stabilizer of (Mp)p up to equivalence.

Rearranging gives g′ = γg′′(g′′−1ωg′′)κ, and since ΩV is a normal subgroup, M ′ and M ′′ are in
the same spinor genus if and only if g′, g′′ have the same image in O(V )\OV (A∞)/ΩV (A∞)OM (Ẑ).
2⇔3: Note that θ′ is a group homomorphism with kernel ΩV (A∞). So the result follows from one
of the elementary group theory isomorphism theorems.

Remark 7.10. gen(M) is the union of finitely many equivalence classes, so each spinor genus is
the union of finitely many equivalence classes, and there are only finitely many spinor genera in
each genus. Thus the group appearing in part 3 of the above proposition is a finite abelian group.
It is sort of like the 2-torsion of the class group of a quadratic extension, and computing it should
be fairly routine.

The next proposition describes the image of sn(SO(V )) ⊆ Q×/(Q×)2
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Proposition 7.11. Let V be a regular quadratic space over Q of dimension n ≥ 4.

1. If VR is indefinite, then sn(SO(V )) = Q×/(Q×)2. If VR is definite, then sn(SO(V )) =
Q>0/(Q2

>0.

2. If M ⊆ V is a unimodular lattice, then gen(M) = spgen(M).

Proof.

1. Lets assume that VR is positive definite, the other cases follow similarly. Let v ∈ V be such that
ψ(v) = α > 0. Take any β ∈ Q>0. Then VR represents αβ, and VQp

represents αβ for every prime
p by Proposition 4.4. By the Hasse-Minkowski theorem we have that there exists w ∈ V such that
ψ(w) = αβ. Then τvτw ∈ SO(V ), and sn(τvτw) ≡ ψ(v)ψ(w) ≡ α2β ≡ β mod (Q×)2.

2. Let M ⊆ V be a unimodular Z-lattice. We claim that for any prime p, θ(OM (Zp)) = Z×
p /(Z×

p )
2×

{±1}.
If p is odd, then MZp

⊗Zp
Fp represents all of Fp. By Hensel’s Lemma 6.23, for any u ∈ Z×

p ,
there exists v ∈ MZp

such that ψ(v) = u (exercise). We have that τv ∈ O(VQp
), and we can check

that τv ∈ OM (Zp), and that θ(τv) = (u(Q×
p )

2,−1). It follows that θ(OM (Zp)), which proves the
claim.

If p = 2, then we need to be more careful, and we omit details. An easy case is whenMZ2 = Hn/2.
By Proposition 7.9, the set of spinor genera in gen(M) is in bijection with

θ′(O(V ))\θ′(OV (A∞))/θ′(OM (Ẑ)). (7.19)

Recalling the definition of θ′ (7.17), this is a subquotient (a quotient of a subgroup) of

Q>0

∖(∏
p

′
(Q×

p /(Q×
p )

2 × {±1})

)/∏
p

(Z×
p /(Z×

p )
2 × {±1}). (7.20)

Here, Q>0 is the diagonal embedding, and θ′(OV (A∞)) is a subgroup of the middle term as the
middle term is the target of θ′. Thus if we show that (7.20) is trivial then spgen(M) will have 1
element, so spgen(M) = gen(M). The {±1} terms all cancel, and after quotienting out by Z×

p we
are left with the valuations mod 2, so we have that(∏

p

′
(Q×

p /(Q×
p )

2 × {±1})

)/∏
p

(Z×
p /(Z×

p )
2 × {±1}) ∼=

⊕
p

(Z/2Z) (7.21)

(ap, ϵp)p 7→ (vp(ap) mod 2)p.

Thus it suffices to show that

Q>0 →
⊕
p

(Z/2Z) (7.22)

r 7→ (vp(r) mod 2)

is surjective, which is obvious, as for any (bp)p ∈
⊕

p(Z/2Z), only finitely many terms are nonzero.
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In general, there are multiple spinor genera in a genus.
The spinor genus is easier to work with than the genus, as the spin group satisfies the strong

approximation property.

Definition 7.12. Let G be a linear algebraic group of Q, and S ⊆MQ a finite set of places. Then
G satisfies the strong approximation property relative to S if the map

G(Q)→
∏
v/∈S

′
G(Qv) = G(AS) (7.23)

has dense image.

The strong approximation property is extremely powerful. Here is one elementary application.

Example 7.13. SLn satisfies the strong approximation property relative to S = {∞}.
As a consequence, for any N ∈ N, the map SLn(Z)→ SLn(Z/NZ) is surjective, as we will now

show. If g ∈ SLn(Z/NZ), it suffices to show that

SLn(Q) ∩ UN (7.24)

is nonempty, where

UN := {h ∈ SLn(Ẑ) =
∏
p

SLn(Zp) | ∀p | N, h ≡ g mod pvp(N)}. (7.25)

But UN is an open subgroup of SLn(A∞), so as SLn(Q) is dense in SLn(A∞) by strong approxima-
tion, SLn(Q) ∩ UN is nonempty.

The special orthogonal group does satisfy the strong approximation property, but the spin group
does.

Theorem 7.14 (Kneser). If V is a regular quadratic space over Q of dimension n ≥ 3, then SpinV
satisfies the strong approximation relative to S if and only if there exists v ∈ S such that VQv

is
isotropic.

For instance, if n ≥ 5, this is automatically satisfied by Proposition 4.4.
Strong approximation allows us to prove some nice results about spinor genera, as we now show.

Proposition 7.15. Suppose M ⊆ V is a Z-lattice of rank n ≥ 3 such that VR is indefinite. Then
spgen(M) consists of a single element.

Proof. Set S = {∞}. Then as VR = V∞ is indefinite, and hence isotropic, strong approximation
gives that SpinV (Q) ⊆ SpinV (A∞) is a dense subgroup.

If M ′ ∈ spgen(M), then by definition there exists g = (gp) ∈ SpinV (A∞) such that M ′
Zp

=

γρ(gp)MZp
. Now, we have that

StabSpinV (A∞)(MẐ) = ρ−1(SOM (Ẑ)) (7.26)

is an open subgroup. The translate by g is then an open subset of SpinV (A∞), so by strong
approximation there exists δ ∈ SpinV (Q) such that for all p, ρ(δ)(MZp

) = ρ(gp)(MZp
). Then

M ′
Zp

= γρ(δ)MZp for all p, so M ′ = γρ(δ)(M).
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Thus we have found an instance where the spinor genus has only one element. Proposition
7.11 gave a situation where the spinor genus was equal to the genus, and Proposition 6.22 gave a
classification of unimodular genera. Combining these results gives the following corollary.

Corollary 7.16. Let M ⊆ V and M ′ ⊆ V ′ be unimodular Z-lattices of rank n ≥ 4 such that VR, V ′
R

are indefinite. Then M ∼M ′ if and only if VR ∼ V ′
R and M,M ′ are either both even or both odd.

Proof. By Proposition 7.15, it suffices to show that M,M ′ are in the same spinor genus. But by
Proposition 7.11, it suffices to show that M and M ′ are in the same genus. The result then follows
from Proposition 6.22.

Thus we finally have a criteria to check whether two quadratic modules (or lattices) are equiv-
alent, albeit in a very specific case.

7.3 p-neighbors
Our goal is to develop some sort of classification of unimodular Z-lattices. We have done the case
where VR is indefinite. The case where VR is definie is much harder. Let’s discuss the case where
VR is positive definite, focusing on the genus IIn,0 = IIn of even unimodular lattices of rank n with
n ≡ 0 mod 8, living inside the quadratic space V = ⟨1, . . . , 1⟩. The mass formula (6.28) shows that
#O(V )\ IIn →∞ as n→∞.

The concept of p-neighbors provides a somewhat tractable way to calculate the elements of the
genus.

Definition 7.17. Let p be an odd prime. We say that M,M ′ ∈ IIn are p-neighbors if [M :
M ∩M ′] = p = [M ′ :M ∩M ′].

Let Np(M) denote the set of p-neighbors of M .

Proposition 7.18. Let M ∈ IIn. There is a bijection

Np(M)⇔ {[v] ∈ P(M/pM) | ψ(v, v) ≡ 0 mod p} (7.27)

Proof. If M ′ ∈ Np(M), then M/M ∩M ′ ∼=M ′/M ∩M ′ ∼= Z/pZ, so they are annihilated by p, so

pM ⊆M ∩M ′ ⊆M ′ (7.28)
pM ′ ⊆M ∩M ′ ⊆M (7.29)

Then pM ⊆M ′ ⊆ 1
pM , so MZq

=M ′
Zq

if q ̸= p is prime. Consider the map

M ′ →M/pM

m′ 7→ pm′ mod pM (7.30)

which is well-defined as M ′ ⊆ 1
pM so pM ′ ⊆M . The image of this map is

pM ′/pM = pM ′/(pM ′ ∩ pM)

= pM ′/p(M ′ ∩M)

=M ′/(M ′ ∩M) ∼= Z/pZ (7.31)

47



Choose m′ ∈M ′ such that pm′ ∈M \pM , and let v = pm′ mod pM . We have that ψ(pm′, pm′) =
p2ψ(m′,m′) ≡ 0 mod p2, so ψ(v, v) ≡ 0 mod p. Choose anotherm′′ ∈M ′ such that pm′′ ∈M\pM
and then set w = pm′′ mod pM . Then as pM ′/pM ∼= Z/pZ, v and w differ by a scalar. Thus
[v] = [w] as elements of P(M/pM), so we have a well-defined map between the sets in the statement
of the proposition.

Let’s show the map is injective. Let m′ ∈M be such that pm′ ∈M \ pM . We first claim that

M ′ = Zm′ +M ∩M ′ = Z
1

p
(pm′) + M̃(pm′) (7.32)

where
M̃(pm′) := {w ∈M | ψ(pm′, w) ≡ 0 mod p} (7.33)

The first inequality follows from (7.28). The second inequality follows from the fact that both
M ∩M ′ and M̃(pm′) have index p in M , and M ∩M ′ ⊆ M̃(pm′), so M ∩M ′ = M̃(pm′). This
proves the claim.

Now, given M ′,M ′′ ∈ Np(M), m′ ∈M ′, m′′ ∈M ′′ such that pm′, pm′′ ∈M \ pM , suppose that
pm′ ≡ pm′′ mod pM . Then using that pM ⊆ M̃(pm′) and M̃(pm′) = M̃(pm′′), (7.32) gives that
M ′ =M ′′. Thus the map is injective.

Now to show surjectivity. This will be a bit of a sketch. Let v ∈ M/pM such that ψ(v, v) ≡ 0
mod p. To construct M ′ it suffices to find M ′

p ⊆ VQp such that [M ′
p : MZp ∩M ′

p] = p, [MZp :
MZp ∩M ′

p] = p, and such that if m′
p ∈M ′

p \MZp , then pm′
p ≡ v mod pMZp .

To do so, we first split off a copy of the hyperbolic plane: we can find w ∈ M/pM such that
ψ(v, w) = 1 and ψ(w,w) = 0> Then Hensel’s lemma says that we can lift v, w to v, w ∈MZp

such
that ψ(v, v) = 0, ψ(v, w) = 1, ψ(w,w) = 0, and MZp

= (Zpv ⊕ Zpw) ⊕ Np as we are splitting a
lattice with unit determinant off from a lattice with unit determinant.

We can then take M ′
p = ⟨ vp ⟩ ⊕ ⟨pw⟩ ⊕Np. Then the obvious diagonal matrix which transforms

Mp →M ′
p does not change the Gram matrix, and hence is an element of O(VQp

), so M ′
p ∈ gen(MZp

).

The next proposition shows that any two elements of IIn are linked by a sequence of p-neighbors.

Proposition 7.19. Let M,M ′ ∈ IIn and p an odd prime. Then there exists M =M0,M1, . . . ,Mk ∈
IIn such that

1. For all i = 0, . . . , k − 1, Mi+1 ∈ Np(Mi).

2. Mk ∈ O(V ) ·M ′.

Proof. Let M ′ ∈ spgen(M), and recall that gen(M) = spgen(M) by Proposition 7.11. Then
there exists γ ∈ O(V ) and g = (gq)q ∈ SpinV (A∞) such that for all q, M ′(Zq) = γρ(gq)MZq

.
Then MZp

is isotropic, so SpinV satisfies strong approximation with respect to S = {p,∞}, so
SpinV (Q) ⊆ SpinV (AS) is dense. By the same argument as in the proof of Proposition 7.15, there
exists δ ∈ SpinV (Q) such that ρ(δ)(MZq ) = ρ(gq)(MZq ) if q ̸= p. Thus M ′

Zq
= γρ(δ)MZq if q ̸= p.

If we replace M ′ by (γρ(δ))−1(M ′) (which is equivalent to M ′ as it is conjugated by an element of
the orthogonal group), we have that M ′

Zq
=MZq

for all q ̸= p.
Equivalently, we have thatMZ[1/p] =M ′

Z[1/p]. In this case, we show by induction on [M :M∩M ′]

that M and M ′ can be linked by a chain of p-neighbors. If [M :M ∩M ′] = 1, then M =M ′ so we
are done.
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Suppose [M :M ∩M ′] > 1, and let pk be the exponent of M/M ∩M ′ ∼= (M +M ′)/M ′, so that
pkM ⊂M ∩M ′, but pk−1M ̸⊂M ∩M ′. In particular, we have that k ≥ 1. Consider the map

M →M ′/pM ′ (7.34)

m 7→ pkm.

This is well-defined because pkM ⊂ M ∩M ′. It is a nonzero map as otherwise pkM ⊂ pM ′, so
pk−1M ⊂M ′, a contradiction as we are choosing k to be as small as possible.

So there exists m ∈ M such that pkm ∈ M ′\pM ′. Then ψ(pkm, pkm) ≡ 0 mod p2, so arguing
as in the proof of Proposition 7.18 we have that

M ′′ := Zpk−1M + {w ∈M ′ | ψ(pkm,w) ≡ 0 mod p} ∈ Np(M ′) (7.35)

is a p-neighbor of M ′.
We claim that [M : M ∩M ′′] < [M : M ∩M ′]. If this holds, then we are done by induction.

The claim holds if and only if [M ′′ : M ∩M ′′] < [M ′ : M ∩M ′′], if and only if [M ′′ +M : M ] <
[M ′ +M :M ]. We have that M ′′ +M ⊆M ′ +M , so the claim holds if and only if the inclusion is
strict. The strict inclusion follows from the defining formula for M ′.

This proposition is powerful as it allows us to choose any odd prime p. Note how strong
approximation was essential in all this.

Remark 7.20. The proposition gives an algorithm to enumerate O(V )\ IIn. We start with some
“base point” lattice. For example, we can choose

En = {x ∈ Zn |
∑

xi ≡ 0 mod 2}+ Z(
1

2
, . . . ,

1

2
). (7.36)

We store a list ℓ of elements of IIn. To start we initialize ℓ = (En) and choose some odd prime
p. At each step, given ℓ = (M1, . . . ,Mk), we compute all the p-neighbors N1, . . . , Nr of Mk using
Proposition 7.18. We test to see whether any Mi, Nj are equivalent, and add any new equivalence
classes to the list ℓ. Then we calculate #OMi

(Z), and test to see if the mass formula holds.

Kneser used the above method to classify all unimodular Z-lattices of rank n ≤ 16.

Example 7.21. Set n = 24, and let v = (0, 1, 2, . . . , 23) ∈ E24. Then ψ(v, v) =
∑23
i=0 i

2 ≡ 0
mod 47. By Proposition 7.18, v is associated to a 47-neighbor L ∈ II2 4. This L is the Leech lattice,
the unique L ∈ II2 4 with no w ∈ L such that ψ(w,w) = 2.

By Proposition 7.18, we have that

#Np(M) = 1 + p+ · · ·+ pn/2−1, (7.37)

which is quite large. So instead of enumerating every element of Np(M), we might consider choosing
a random element of Np(M).

Definition 7.22. Let n ≡ 0 mod 8, p an odd prime. Define the graph Gn(p) with vertices
V = O(V )\ IIn and with [M ], [M ′] joined by one edge for each element M ′′ ∈ Np(M) such that
M ′′ ∼Z M

′ (thus we allow for self-edges and multiple edges).
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Choosing a p-neighbor successively is analogous to taking a random walk on this graph. We can
analyze the mixing time of this random walk using the adjacency operator. Set W = C[O(V )\ IIn],
and define Ap :W →W by A

Ap :W →W (7.38)

[M ] 7→
∑

M ′∈Np(M)

[M ′]

It’s known that we have “fast” mixing of a random walk if and only if Ap has a “large” spectral gap
(the gap between the largest eigenvalue and the second largest eigenvalue).

We can define W , Ap in terms of automorphic forms. There are a lot of things in number theory
which seem hard to compute explicitly, but automorphic forms allows us to do so anyway. By
Proposition 7.9, we have that

O(V )\ IIn ⇔ O(V )\OV (A∞)/OEn
(Ẑ) = O(V )\OV (A)/OEn

(Ẑ× R). (7.39)

So
W ∼= C[O(V )\OV (A)/OEn

(Ẑ× R)]. (7.40)

This is the space of everywhere unramified, OV (R)-invariant automorphic forms on O(V ). Under
this isomorphism, Ap is identified with a Hecke operator

Tp ∈ Cc (OEn(Zp)\OV (Qp)/OEn(Zp)) (7.41)

where Cc is the space of compactly supported functions on the space, which is fairly well studied. In
particular, the desired spectral gap property of Ap is equivalent to a statement about the eigenvalues
of Tp, which is equivalent to the Ramanujan conjecture.

Another relevant set of conjectures which are very important to number theorist are the Lang-
lands conjectures. These answer the questions of which eigenvalues of Tp can appear. The Lang-
lands functoriality conjecture posits that all automorphic forms on OV can be described as “lifts”
of automorphic forms from other, better understood groups, such as GLn.

Let’s give some explicit calculations.

Example 7.23. Let n = 16. Chenevier-Lannes showed that OV \ IIn = {[E16, [E8 ⊕ E8]}. In the
given basis, we have that

Ap = #Np ·
(
1 0
0 1

)
+ (1 + p+ p2 + p3) · 1 + p11 − τ(p)

691

(
−286 405
286 −405

)
(7.42)

where τ is the Ramanujan tau function, defined by the generating series

∆(q) = q

∞∏
n=1

(1− qn)24 =

∞∑
m=1

τ(m)qm (7.43)

∆ is a modular form on GL2 /Q, with Tp-eigenvalue τ(p). The appearance of τ(p) reflects the
relationship between automorphic forms on GL2 and those on OV , as conjectured by Langlands
functoriality.

For more information see the book of Chenevier and Lannes.
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Theorem 7.24. Let n ≡ 0 mod 8. For M,M ′ ∈ IIn, define

Np(M,M”) = {M ′′ ∈ Np(M) | M ′′ ∼Z M
′} (7.44)

Then “the probability that a random p-neighbor of M is M ′” is equal to

#Np(M,M ′)

#Np(M)
=

1/#OM ′(Z)
m(IIn)

+ On

(
1

p

)
(7.45)

where On is some unfortunate big O-notation, and

m(IIn) =
∑

[M ′′]∈OV \ IIn

1

#OM ′′(Z)
(7.46)

is the mass of the genus.
In particular, when p is large enough, then Gn(p) is complete, so any two vertices have an edge.

Example 7.25. G24(p) is complete if and only if p ≥ 47.

By doing some number theory in the spirit of what we have described above, Chenevier-Allombot
(2024) have extended the classification of all unimodular Z-lattices of rank n to every n ≤ 28.
Instead of randomly choosing a p-neighbor, they search a specific “region” of the graph Gn(p) which
is more likely to have undiscovered equivalence classes.
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