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Abstract. We study the nth centered moments of the 1-level density for the low-lying zeros
of L-functions attached to holomorphic cuspidal newforms of large prime level and fixed weight.
Assuming the Generalized Riemann Hypotheses, we compute this statistic for any n ≥ 1 and for
all test functions whose Fourier transforms are supported in (−2/n, 2/n). This is believed to be
the natural limit of the current technology. Our work significantly extends beyond the trivial range
(−1/n, 1/n) and surpasses the previous record of (−1/(n−1), 1/(n−1)) whenever n > 2. The Katz-
Sarnak philosophy predicts that the aforementioned statistic can be modeled by the corresponding
statistic for the eigenvalues of random orthogonal matrices. We prove that this is the case for
test functions with Fourier support contained in (−2/n, 2/n). The main technical innovation is a
tractable vantage to evaluate the combinatorial zoo of terms, similar to the work of Conrey-Snaith
[CS14] and Mason-Snaith [MS18]. As an application, our work provides better bounds on the order
of vanishing at the central point for the L-functions in our family.
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1. Introduction

1.1. Historical Perspectives. Since Montgomery and Dyson’s discovery that the two-point cor-
relation of the zeros of the Riemann zeta function agrees with the pair correlation function for
eigenvalues of the Gaussian Unitary Ensemble (see [Mon73]), the connection between the zeros of
L-functions and the zeros of random matrices has been a major area of study. It is now widely
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believed that the statistical behavior of families of L-functions can be modeled by ensembles of
random matrices. Based on the observation that the spacing statistics of high zeros associated
with cuspidal L-functions agree with the corresponding statistics for eigenvalues of random unitary
matrices under Haar measure (see [RS96], for example), it was originally believed that only the
unitary ensemble was important to number theory. However, Katz-Sarnak [KS99a, KS99b] showed
that these statistics are the same for all classical compact groups. These statistics, the n-level cor-
relations, are unaffected by finite numbers of zeros. In particular, they failed to identify differences
in behavior near the central point s = 1/2.

The n-level density statistic was introduced to distinguish the behavior of families of L-functions
close to s = 1/2. Based partially on an analogy with the function field setting, Katz-Sarnak
conjectured that the low-lying zeros (i.e., zeros near s = 1/2) of families of L-functions behave
like the eigenvalues near 1 of classical compact groups (unitary, symplectic, and orthogonal). The
behavior of the eigenvalues near 1 is different for each matrix group. A growing body of evidence
has shown that this conjecture holds for test functions with suitably restricted support for a wide
range of families of L-functions. For a non-exhaustive list, see [AM15, AAI+15, BBD+17, DFS22,
DPR23, DM06, DM09, ERGR13, FM15, Gao13, Gü05, HM07, ILS99, KR19, Mil04, MP10, OS93,
ÖS99, RR11, Roy01, Rub01, ST12, Wax21, Yan09, You04]. Much of the previous work is focused
on the n = 1 case. We study the nth centered moment of the 1-level density for any n ≥ 1, a
higher-order statistic first introduced by Hughes-Rudnick [HR03] which is combinatorially simpler
than the n-level density.

In this article, we consider the family of L-functions associated with holomorphic cusp forms.
We prove that the Katz-Sarnak conjecture holds for the nth centered moment of the 1-level density

for this family and for all test functions φ with Fourier transform φ̂ supported in
(
− 2
n ,

2
n

)
, which

represents the natural limit of the current analytic machinery based on the prior works of [HR03]
on the unitary family of primitive Dirichlet characters, as well as [Gao13], [ERGR13] and [LM13]
on the n-level density for the symplectic family of quadratic Dirichlet L-functions. Proving the
conjecture past this support likely requires new ideas or stronger hypotheses such as the ‘Hypothesis
S’ discussed in [ILS99, Sect. 10] (or more likely its generalizations, see [MMM24]).

Previously, Iwaniec-Luo-Sarnak [ILS99] and Hughes-Miller [HM07] examined the same family
and statistic addressed in this article (with the former limited to the case of n = 1). Under the

Generalized Rieman Hypothesis (GRH), [ILS99] prove the conjecture when n = 1 for φ̂ supported

in (−2, 2) when n = 1, and [HM07] prove the conjecture in the restricted range
(
− 1
n−1 ,

1
n−1

)
when n ≥ 2. In [HM07], the authors were unable to handle the new terms which emerge at
larger supports on both the number theory and random matrix theory side (nonetheless, the work
of [HM07] addressed some rather challenging combinatorics). Our work develops an approach to
handle all the combinatorial terms that arise when the Fourier support of the test function extends
up to 2/n, thus filling in a non-trivial gap in our current knowledge of higher-order statistics for
the zeros of L-functions in the orthogonal families.

To the best of the authors’ knowledge, apart from this work, the success of a purely combina-
torial venture (i.e., without passing to function field settings in the large q-limit and using the
equidistribution theorems à la Deligne and Katz) in verifying Katz-Sarnak’s philosophy through
higher-order statistics is somewhat limited. [CL20] calculate the n-level density for a unitary family
of Dirichlet L-functions. For the symplectic family, Levinson-Miller [LM13] calculated the n-level
density of a family of Dirichlet L-functions for n ≤ 7, extending the work of Gao [Gao13]. See
also the contributions of [CS14] and [MS18] in the realm of random matrix theory. The pioneering
work of [ERGR13] and [Ent14] calculated the n-level density for the symplectic family studied in
[LM13] and [Gao13] and showed it agreed with random matrix theory by passing to the function
field setting. However, their method has not yet been successfully applied to any of the orthogonal
families. Furthermore, the success of this article seems to suggest that the nth centered moment
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statistic might offer a viable means to overcome the combinatorial barriers encountered in [Gao13]
and [LM13] when verifying the higher-order Katz-Sarnak comparison for the symplectic family.

1.2. Number theory setup. We now describe the main objects of study. Let H∗k(N) be the set
of holomorphic cusp forms of weight k and level N (with trivial nebentypus) which are newforms.
For f ∈ H∗k(N), denote by L(s, f) the L-function attached to f . The completed L-function is given
by

Λ(s, f) :=

(√
N

2π

)s
Γ

(
s+

k − 1

2

)
L(s, f). (1.1)

It admits an entire continuation and satisfies the functional equation

Λ(s, f) = εf Λ(1− s, f), (1.2)

where εf = ±1 is the root number. The family H∗k(N) splits naturally into two disjoint sub-families:

H+
k (N) := {f ∈ H∗k(N) : εf = +1}, H−k (N) := {f ∈ H∗k(N) : εf = −1}. (1.3)

For each f ∈ H∗k(N), we denote the non-trivial zeros of L(s, f) by ρf = 1
2 + iγf . The Generalized

Riemann Hypothesis (GRH) for L(s, f) asserts that γf ∈ R.
As in [ILS99], we take

R = k2N (1.4)

as the working definition of the analytic conductor for the families H•k(N) (• ∈ {+,−, ∗}). Our
analysis is greatly simplified by all forms in the family having the same analytic conductor. Varying
conductors are easily handled in 1-level calculations, but cause technical difficulties through cross
terms once n ≥ 2, see [Mil04].

The one-level density of f ∈ H?
k(N) is a weighted sum over γf given by

D(f ;φ) :=
∑
γf

φ

(
logR

2π
γf

)
, (1.5)

where the test function φ : R → C is an even Schwartz function whose Fourier transform φ̂ has
compact support. We denote this class of test functions by Sec(R) and φ ∈ Sec(R). Because of the
rapid decay of φ, the low-lying zeros of L(s, f) contribute the most to the one-level density (1.5).

As in [HM07], we use the following shorthand for taking averages over H•k(N):

〈Q( · )〉• = 〈Q( · )〉H•k(N) :=
1

|H•k(N)|
∑

f∈H•k(N)

Q(f), (1.6)

where • ∈ {+,−, ∗} and Q is any complex-valued function defined on H•k(N), e.g., f 7→ D(f ;φ)
defined in (1.5).

In this article, we study the nth-centered moment of the one-level density, defined by

D•n(N ;φ) :=
〈 (

D( · ; φ ) − 〈D( · ; φ ) 〉H•k(N)

)n 〉
H•k(N)

(1.7)

where n ≥ 2 is an integer, N is prime, k ≥ 2 is even, and φ ∈ Sec(R) is a test function. Readers
should keep in mind that the weight k is kept fixed and the level N goes to ∞ through primes.
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1.3. Random matrix theory setup. Let φ ∈ Sec(R). The random matrix theory counterpart of
the one-level density D(f ;φ) is given by

Z(U ;φ) :=
M∑
n=1

∞∑
j=−∞

φ

(
M

2π
(θn + 2πj)

)
, (1.8)

where U is an M -by-M special orthogonal matrix with eigenvalues {eiθn : n = 1, . . . ,M}. In fact,
the eigenvalues of U always occur in complex-conjugate pairs. We have the following correspondence
when comparing (1.8) to (1.5):

M ←→ log (k2N)

U ∈ SO(M) ←→ f ∈ H∗k(N)

{θn + 2πj} j∈Z
1≤n≤M

←→ {γf}.

Here, it is more standard to use the notation

ESO(M) [Z( · ; φ )] :=

∫
SO(M)

Z(U ;φ) dU (1.9)

instead of the bracket of (1.6). The Haar measure dU on the compact Lie group SO(M) is nor-

malized to have total measure 1. When supp(φ̂) ⊆ [−1, 1], it is well-known that

µ± := lim±
M→∞

ESO(M) [Z( · ;φ)] = φ̂(0) +
1

2

∫ 1

−1
φ̂(y) dy, (1.10)

where lim+

M→∞
:= lim

M→∞
M≡0 ( mod 2)

and lim−
M→∞

:= lim
M→∞

M≡1 ( mod 2)

. Similar to (1.7), the nth-centered moment

of Z( · ;φ) is defined as

Zn(M ;φ) := ESO(M)

[ (
Z( · ; φ ) − ESO(M) [Z( · ; φ )]

)n ]
(M ∈ N). (1.11)

1.4. Main Results. We are now ready to present our main result, which extends and generalizes
[ILS99, Theorem 1.1] and [HM07, Theorem 1.6-1.7].

Theorem 1.1. Let k, n ≥ 2 be positive integers with k even. Assume GRH for L(s, f) for all
f ∈ H∗k(N), where N is any prime or N = 1. Assume also RH for ζ(s) and GRH for all primitive

Dirichlet L-functions. Then for φ ∈ Sec(R) with supp(φ̂) ⊂
(
− 2
n ,

2
n

)
, we have

lim
N→∞
N prime

D±n (N ;φ) = lim±
M→∞

Zn(M ;φ). (1.12)

The moments D±n (N ;φ) and Zn(M ;φ) are defined in (1.7) and (1.11).

Theorem 1.1 follows immediately from Theorems 1.2 and 1.3 below. In fact, we prove precise

formulae for each of the limits in (1.12) whenever supp(φ̂) ⊂
(
− 1
n−a ,

1
n−a

)
, where a is an integer

with 0 ≤ a ≤ n/2. These formulae might be of independent interest. To state these results, we
need to introduce the following quantities:

σ2
φ := 2

∫ ∞
−∞
|y|φ̂(y)2 dy, (1.13)
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and

R(m, i;φ) := 2m−1(−1)m+1
i−1∑
`=0

(−1)`
(
m

`

)(
−1

2
φ(0)m

+

∫ ∞
−∞
· · ·
∫ ∞
−∞

φ̂(x2) · · · φ̂(x`+1)

∫ ∞
−∞

φ(x1)m−`
sin(2πx1(1 + |x2|+ · · ·+ |x`+1|))

2πx1
dx1 · · · dx`+1

)
,

(1.14)

and

S(n, a;φ) :=

ba−1
2
c∑

`=0

n!

(n− 2`)!`!
R(n− 2`, a− 2`;φ)

(
σ2
φ

2

)`
, (1.15)

where φ ∈ Sec(R), 1 ≤ i ≤ m, and 0 ≤ a ≤ n/2.
We first state the number theory result.

Theorem 1.2. Let n, a be integers with n ≥ 2, 0 ≤ a ≤ n/2 and let φ ∈ Sec(R). Under the same

assumptions as Theorem 1.1, if supp(φ̂) ⊂
(
− 1
n−a ,

1
n−a

)
, then

lim
N→∞
N prime

D±n (N ;φ) = 1{even}(n) · (n− 1)!! (σ2
φ)n/2 ± S(n, a;φ) (1.16)

where 1{even}(n) is equal to 1 if n is even and is 0 if n is odd.

Next we state the random matrix theory result.

Theorem 1.3. Let n, a be integers with n ≥ 2, 0 ≤ a ≤ n/2 and let φ ∈ Sec(R). If supp(φ̂) ⊂(
− 1
n−a ,

1
n−a

)
, then

lim±
M→∞

Zn(M ;φ) = 1{n even} · (n− 1)!! (σ2
φ)n/2 ± S(n, a;φ) (1.17)

where 1{even}(n) is equal to 1 if n is even and is 0 if n is odd.

Hughes-Miller [HM07, Theorem E.1] prove an analogue of Theorem 1.1 for the full family H∗k(N)
under the restriction n ≤ 2k. We remove this restriction in the following theorem, whose proof is
given in Appendix B.

Theorem 1.4. Let k, n ≥ 2 be positive integers with k even and let φ ∈ Sec(R). Under the same

assumptions as Theorem 1.1, if supp(φ̂) ⊂
(
− 1
n−a ,

1
n−a

)
, then

lim
N→∞
N prime

D∗n(N ;φ) =
1

2

[
lim+

M→∞
Zn(M ;φ) + lim−

M→∞
Zn(M ;φ)

]
. (1.18)

The moments D±n (N ;φ) and Zn(M ;φ) are defined in (1.7) and (1.11).

1.5. Applications. As noted in [HM07] and [Mil09], another application of centered moments is
in bounding the order of vanishing of L-functions at the central point. In Appendix D, we show
how to use Theorem 1.2 to bound the probability that a newform with negative sign will have
order of vanishing exceeding some r at the central point. Similar calculations may be done for the
positive sign family. Our results provide the best known bounds (conditional on GRH) for order of
vanishing at the central point when r ≥ 5, surpassing [ILS99, HM07, BCD+20, LM23].
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1.6. Proof sketch and structure of the paper. We evaluate the limit (1.16) using the explicit
formula and the Petersson trace formula. We use the explicit formula to transform the sum over
zeros (1.5) into a weighted average of products of Hecke eigenvalues over primes in Lemma 2.11.
After removing many lower order subterms with Lemmas 3.1 and 3.2, we apply the Petersson trace
formula and study the resulting sums of Kloosterman sums over primes; see (3.4). We assume GRH
for L(s, f) when applying the Petersson trace formula; see Remark 2.9.

Using Lemma 2.2, we convert the Kloosterman sums into sums over Gauss sums. Assuming
GRH for Dirichlet L-functions, we show in Lemma 3.5 that the terms involving Gauss sums with

non-principal characters contribute negligibly in the limit when supp(φ̂) ⊂
(
− 2
n ,

2
n

)
. This requires

strong bounds for various character sums over primes, hence the need to assume GRH for Dirichlet
L-functions. Hughes-Miller [HM07, Thm. 1.1, Thm. 1.3] prove results without GRH for Dirichlet

L-functions for supp(φ̂) ⊂ (− 1
n ,

1
n) (i.e., the case where a = 0 in Theorem 1.2-1.3); we use GRH for

Dirichlet L-functions to extend the support to supp(φ̂) ⊂ (− 2
n ,

2
n).

We are left to handle certain smooth sums over primes (Proposition 4.1) and a convolution sum
of Ramanujan sums (Proposition 4.2). We arrive at Theorem 1.2 upon very careful bookkeeping of
the resulting combinatorics (see Sections 3.4 and 4).

Beyond the regime supp(φ̂) ⊂ (− 1
n−1 ,

1
n−1) proven by [HM07], more complicated terms emerge

as the size of supp(φ̂) increases. This serves as the primary obstacle to generalizing the work of
[HM07]. The main insight of our extension lies in the observation that many of these terms actually
vanish in the limit (see Lemma 3.1 and Proposition 3.6). This enables us to ignore the very intricate
combinatorics behind these terms. The remaining terms contribute to the limit and exhibit nicer
symmetries. We are able to obtain an integral representation for the these terms in Proposition
3.7 upon making our way through the combinatorial jungle. Our work features many elaborate
combinatorial simplifications that result in exact matching with the calculations from the random
matrix theory side. As with number theory, the key result that allows us to obtain greater support
in random matrix theory is the vanishing of many of the complicated terms which emerge at larger
supports (see Lemma 5.20).

The structure of this paper is as follows. In Section 2, we review the notations and conventions,
and state some needed estimates. In Section 3, we work with the geometric side of the Petersson
formula with the focus of locating the main contributions in the expansion. We also prove Theorem
1.2 assuming two key propositions (Prop. 3.6-3.7). In Section 4, we evaluate the main contributions
as well as complete the proofs of Propositions 3.6-3.7. In Section 5 we work on the random matrix
theory side and prove Theorem 1.3.

In Appendix A, we prove Lemma 3.1 regarding the combinatorial expansion for D∗n(N ;φ) which
serves as the starting point of the number-theoretic calculations. In Appendix B, we give a sketch
of proof for Theorem 1.4 regarding the non-split family. In Appendix C, we include more details
for the random matrix theory calculations. In Appendix D we use Theorem 1.2 to bound the
proportion of cuspidal newforms vanishing to a certain order at the central point.

2. Preliminaries

2.1. Notations and Conventions. In this article, e(x) := e2πix, the Fourier transform and its
inverse transform are given by

φ̂(y) :=

∫ ∞
−∞

φ(x)e(−xy) dx, φ(x) :=

∫ ∞
−∞

φ̂(y)e(xy) dy (2.1)

for x, y ∈ R. The Mellin transform and its inverse transform are

ψ̃(s) :=

∫ ∞
0

ψ(x)xs−1 dx, ψ(x) :=

∫
(σ)

ψ̃(s)x−s
ds

2πi
(2.2)
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for x > 0 and s ∈ C in a vertical strip, provided that the integrals of (2.1) and (2.2) converge
absolutely.

For A ⊂ R, let

1{x∈A} :=

{
1 if x ∈ A
0 otherwise.

(2.3)

We will suppress the argument of a characteristic function when it is clear from context. For
x, y ∈ R, let

δ(x, y) :=

{
1 if x = y

0 otherwise.
(2.4)

For x, y ∈ Z, let (x, y) denote the greatest common divisor of x and y. Set (x, y∞) = maxn∈N(x, yn)
and (x∞, y) = maxn∈N(xn, y).

To avoid potential confusion, we adopt the following set of conventions throughout this work.

(1) We will use ‘i’ to denote the imaginary unit (i.e., i2 = −1) and ‘i’ for the indices of
summations.

(2) We will use p, pi’s, qj ’s to denote prime numbers.

(3) The test function φ : R → C is an even Schwartz function with its Fourier transform φ̂
having compact support.

(4) The weight k is kept fixed and the level N goes to ∞ through primes
(5) A quantity is considered to be negligibly small if it is o(1) as N →∞.
(6) The implicit constants for O, �, �, �, etc. may depend on k, ε, n, a, and of course the

test function φ (cf. Theorem 1.2). We will omit such dependencies to simplify notations.
(7) We shall frequently adopt the ‘ε-convention’, i.e., ε > 0 is an arbitrary small quantity and

O(N−ε) ·O(N−C(k,ε,n,a)·ε) = O(N−ε) (say).
(8) We always assume GRH for L(s, f) for any f ∈ H∗k(N) with N = 1 and primes N .

2.2. Analytic Preliminaries. We will frequently encounter the following exponential/character
sums while proving our main theorems.

Definition 2.1. Let m,n, q ∈ Z with q ≥ 1 and χ (mod q) be a Dirichlet character. We define

Gχ(n) :=
∑

a mod q

χ(a)e(an/q), (2.5)

R(n, q) :=
∑∗

a mod q

e(an/q), (2.6)

S(m,n; q) :=
∑∗

a mod q

e

(
ma

q
+
nā

q

)
, (2.7)

where ∗ restricts the summation to the reduced residue classes a (mod q), and aā ≡ 1 (mod q).

The sums Gχ(n), R(n, q), and S(m,n; q) are commonly known as the Gauss sum, the Ramanujan
sum, and the Kloosterman sum respectively. When χ = χ0 (i.e., the principal character (mod q)),
we have Gχ0(n) = R(n, q). Also, R(n, q) = S(0, n; q). The Ramanujan sum admits the following
explicit evaluation:

R(n, q) =
∑
d|(n,q)

µ(q/d)d = µ

(
q

(q, n)

)
ϕ(q)

ϕ
(

q
(q,n)

) , (2.8)

where µ(·) and φ(·) are the Möbius µ-function and the Euler totient-function respectively. We will
need the multiplicativity of the Ramanujan sum as well:

R(n, q1q2) = R(n, q1)R(n, q2) (2.9)
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for (q1, q2) = 1 and n ∈ Z.
The following bounds are particularly handy in showing various sums and integrals to be negli-

gibly small. We have

|Gχ(n)| ≤ √q, (2.10)

and

|S(m,n; q)| ≤ (m,n, q)

√
min

{
q

(m, q)
,

q

(n, q)

}
τ(q), (2.11)

where τ(·) is the divisor function. The bound (2.11) is a convenient reformulation of a well-known
result of A. Weil, see [ILS99, eq. 2.13].

We often need to handle the Kloosterman sums in more refined ways than merely applying
(2.11). In the context of low-lying zeros (see [ILS99], [HM07]), it is advantageous to expand the
Kloosterman sums in terms of Dirichlet characters and Gauss sums. The following lemma is a
generalization of [HM07, Lemma C.1].

Lemma 2.2. Let N be a prime not dividing bQm. Then

S(m2, NQ;Nb) = − 1

ϕ(b)

∑
χ(b)

Gχ(m2)Gχ((Q, b∞))χ

(
Q

(Q, b∞)

)
χ(N). (2.12)

Proof. Set r = (Q, b∞) and Q′ = Q/r. Then (Q′, b) = 1. Using the orthogonality relation and
opening up the Kloosterman sum by its definition, observe that

S(m2, NQ;Nb) =
1

ϕ(b)

∑
χ(b)

∑∗

a (b)

χ(a)χ(Q′)S(m2, Nra;Nb)

=
1

ϕ(b)

∑
χ(b)

χ(Q′)
∑∗

d (Nb)

e

(
m2d

Nb

) ∑∗

a (b)

χ(a)

(
rad

b

)
. (2.13)

Making a change of variables a → ad in the a-sum and breaking up the d-sum by d = u1N + u2b
with (u1, b) = 1 and (u2, N) = 1, it follows that

S(m2, NQ;Nb) =
1

ϕ(b)

∑
χ (b)

χ(Q′)Gχ(r)
∑∗

d (Nb)

χ(d)e

(
m2d

Nb

)

=
1

ϕ(b)

∑
χ (b)

χ(Q′)Gχ(r)χ(N)
∑∗

u1(b)

χ(u1)e

(
m2u1

b

) ∑∗

u2 (N)

e

(
m2u2

N

)
. (2.14)

The u2-sum and u1-sum of (2.14) evaluate to −1 and Gχ(m2) respectively as (m2, N) = 1. The
result follows. �

Lemma 2.3. Let χ (mod b) be a primitive Dirichlet character. Under GRH for L(s, χ), we have∑
n≤x

Λ(n)χ(n)n−it = Oε

(
x1/2(bxt)ε

)
(2.15)

for any x ≥ 2 and t ∈ R.

Proof. This follows from a standard prime-number-theorem type argument, see [IK04, Chapter 5],
[Dav80], or [MV07, Chapter 13]. As a quick sketch, we have∑
n≤x

Λ(n)χ(n)n−it =

∫ 3
2

+ix

3
2
−ix

L′

L
(s+ it, χ)

xs

s
ds + O

(
x1/2

)
=

∑
|γ−t|≤x

xρ−it

ρ− it
+ Oε

(
x1/2(bxt)ε

)
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using GRH and the estimate
L′

L
(s, χ)� (log b|s|)2 (2.16)

for −1 ≤ Re(s) ≤ 2. The desired result then follows from the fact that the number of zeros
satisfying u ≤ γ − t ≤ u+ 1 is � log (b(|u|+ |t|). �

The Bessel functions of the first kind occur in the Petersson formula (see Lemma 2.8) and hence
frequently in this paper. We collect some results for them.

Lemma 2.4. Let k ≥ 2 be an integer. Then the following bounds are satisfied for x > 0:

(1) Jk−1(x)�k 1,
(2) Jk−1(x)�k x,
(3) Jk−1(x)�k x

k−1,

(4) Jk−1(x)�k x
− 1

2 .

Proof. See [GR65, Wat66]. �

We will also utilize the Mellin integral representation for the Bessel function.

Lemma 2.5. We have

Jk−1(x) =
1

2πi

∫
Re(s)=c

Gk−1(s)x−s ds (2.17)

for x > 0 and 1− k < c < 3
2 , where

Gk−1(s) := 2s−1 Γ

(
k − 1 + s

2

)/
Γ

(
k + 1− s

2

)
(2.18)

Proof. See [GR65, (6.561.14)]. �

2.3. Automorphic Preliminaries. We collect the essential results from the standard references
from [IK04, Chp. 14], [Iwa97, Chp. 6-7], [ILS99, Sect. 2-3].

Let k and N be positive integers with k even and N prime. Recall that H•k(N) (• ∈ {+,−, ∗})
denotes the set of holomorphic cuspidal newforms of weight k and level N , depending on the sign
of the functional equation. From [ILS99, eq. (2.73)], we have the following dimension formulae:

|H±k (N)| =
k − 1

24
N + O

(
(kN)5/6

)
, (2.19)

and

|H∗k(N)| =
k − 1

12
N + O

(
(kN)5/6

)
. (2.20)

Every f ∈ H∗k(N) has a Fourier expansion of the form

f(z) =

∞∑
n=1

λf (n)n
k−1
2 e(nz) (2.21)

for z ∈ H := {x+ iy : x ∈ R, y > 0}, where λf (1) = 1. The L-function associated with f is defined
by the Dirichlet series

L(s, f) =
∞∑
n=1

λf (n)n−s (2.22)

which converges absolutely on Re s > 1. The completed L-function is given by

Λ(s, f) :=

(√
N

2π

)s
Γ

(
s+

k − 1

2

)
L(s, f). (2.23)
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It admits an entire continuation and satisfies the functional equation

Λ(s, f) = εf Λ(1− s, f). (2.24)

The root number εf admits a nice formula in our case.

Lemma 2.6. If f ∈ H∗k(N) and N is prime, then

εf = −ikλf (N)
√
N. (2.25)

In particular, we have |λf (N)| = 1/
√
N .

Proof. See [ILS99, eq. 3.5]. �

The following Hecke relations will be crucial in demonstrating that the number theoretic combi-
natorics align with those of random matrix theory.

Lemma 2.7. Let f ∈ H∗k(N).

(1) For any any m,n ≥ 1,

λf (m)λf (n) =
∑

d|(m,n)
(d,N)=1

λf

(mn
d2

)
. (2.26)

In particular, if (m,n) = 1 then

λf (m)λf (n) = λf (mn). (2.27)

(2) For a prime p - N , we have

λf (p)2 = λf (p2) + 1. (2.28)

(3) For n ≥ 1 and a prime p - N , we have

λf (p)n =

[n/2]∑
α=0

[(
n

α

)
−
(

n

α− 1

)]
λf (pn−2α). (2.29)

Proof. Only the last property is less well-known, see [Guy00] for its proof. �

Now, consider

∆•k,N (n) :=
∑

f∈Hσ
k (N)

λf (n), • ∈ {+,−, ∗}. (2.30)

Splitting by sign with Lemma 2.6, we have

∆±k,N (n) =
∑

f∈H∗k(N)

1

2
(1± εf )λf (n) =

1

2
∆∗k,N (n) ∓ ik

√
N

2
∆∗k,N (nN) (2.31)

whenever N is a prime and (n,N) = 1. We have the following useful form of the Petersson formula.

Lemma 2.8. If N is prime and (n,N2) | N then

∆∗k,N (n) = ∆′k,N (n) + ∆∞k,N (n), (2.32)

where

∆′k,N (n) =
(k − 1)N

12
√
n

δn,�Y

+
(k − 1)N

12

∑
(m,N)=1
m≤Y

2πik

m

∑
c≡0 mod N

c≥N

S(m2, n; c)

c
Jk−1

(
4π

√
m2n

c

)
(2.33)
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with δn,�Y = 1 only if n = m2 with m ≤ Y and 0 otherwise, and ∆∞k,N (n) defined in [ILS99, Lem.

2.12].

Proof. See [ILS99, Prop. 2.1, 2.11 and 2.15]. �

Remark 2.9. The piece ∆∞k,N (n) is called the complementary sum. By [HM07, Lemma A.1],

assuming GRH for all L(s, f) with f ∈ H∗k(1)∪H∗k(N), the complementary sum does not contribute
in all cases appearing in this paper.

We have the following lemma.

Lemma 2.10. Assume (n,N) = 1. Then

1

|H∗k(N)|
∆′k,N (Nn) �

√
nN−

3
2

+ε. (2.34)

Proof. We take Y = N ε and write c = bN for c ≡ 0 mod N . Using (2.19), the Weil bound (2.11)
and the bound Jk−1(x)� x from Lemma 2.4, the result follows immediately. �

2.4. Density and moment sums. Let f ∈ H∗k(N) and φ ∈ Sec(R). Substituting the explicit
formula for L(s, f) (see [ILS99, Sect. 4]) into the one-level density function

D(f ;φ) :=
∑
γf

φ

(
logR

2π
γf

)
, (2.35)

we have

D(f ;φ) = φ̂(0) +
1

2
φ(0) − P (f ;φ) + O

(
log logR

logR

)
, (2.36)

where R = k2N and

P (f ;φ) :=
∑
p-N

λf (p)φ̂

(
log p

logR

)
2 log p
√
p logR

. (2.37)

See [ILS99, eq. (4.25)] and the relevant remarks of [ILS99, pp. 88] and [HM07, pp. 129]. Using
(2.36), [HM07] expresses the nth-centered moments in terms of sums over primes (see [HM07, Sect.
2.3]).

Lemma 2.11. If supp(φ̂) ⊂ (−1, 1), we have

lim
N→∞
N prime

D±n (N ;φ) = (−1)n lim
N→∞
N prime

S
(n)
1 (N) ± (−1)n+1 lim

N→∞
N prime

S
(n)
2 (N) (2.38)

provided the limits on the right side exist, where

S
(n)
1 (N) :=

∑
p1-N, ..., pn-N

n∏
j=1

(
φ̂

(
log pj
logR

)(
2 log pj√
pj logR

))〈 n∏
j=1

λf (pi)

〉
∗

(2.39)

and

S
(n)
2 (N) := ik

√
N

∑
p1-N,..., pn-N

n∏
j=1

(
φ̂

(
log pj
logR

)(
2 log pj√
pj logR

))〈
λf (N)

n∏
j=1

λf (pi)

〉
∗

. (2.40)

Proposition 2.12. Under the same assumptions of Theorem 1.1, we have

lim
N→∞
N prime

S
(n)
1 (N) =

{
(n− 1)!!(σ2

φ)n/2 if n is even

0 if n is odd
, (2.41)

for φ ∈ Sec(R) with supp(φ̂) ⊂
(
− 2
n ,

2
n

)
, where σ2

φ is defined in (1.13).
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Proof. See Appendix B. �

Remark 2.13. [HM07, Thm. E.1] prove an analogous result but with an extra restriction n ≤ 2k.

In Sections 3 and 4, we evaluate S
(n)
2 (N). The main result is Proposition 3.8, in which we express

S
(n)
2 (N) in terms of S(n, a;φ) (see (1.16)) .

3. Proof of Theorem 1.2 assuming Propositions 3.6 and 3.7

In this section, we prove Theorem 1.2 assuming the key Propositions 3.6 and 3.7. We prove

these propositions in Section 4. First we decompose S
(n)
2 (N) (see (2.40)) into subterms and show

that many of these subterms vanish as N → ∞ through primes. Then in Section 3.4, we apply
Propositions 3.6 and 3.7 to complete the proof of Theorem 1.2.

3.1. Combinatorial expansion and cleaning. We rewrite the sums over primes in (2.40) as sums
over powers of distinct primes. This facilitates the applications of the Hecke relations (Lemma
2.7) and the Petersson formula (Lemma 2.8). More precisely, suppose p1 · · · pn = qn1

1 · · · q
n`
` in

(2.40), where q1, . . . , q` are distinct primes, n ≥ 2 and ` ≥ 1. We have 〈λf (N)
∏n
j=1 λf (pi)〉∗ =

〈λf (N)
∏`
j=1 λf (qj)

nj 〉∗. We then apply the Hecke relations (2.29) to each λf (qj)
nj and then use

(2.27). Then we remove the distinctness condition from the sum over primes using a delicate
inclusion-exclusion process. We conclude this process with the following lemma.

Lemma 3.1. We have

S
(n)
2 (N) =

∑
0≤ω≤n

∑
0≤n′≤n

∑
~n:=(n1,...,nω)

nj>1
n1+···+nω=n′

∑
~m:=(m1,...,mω)
mj≡nj (mod 2)

0≤mj<nj

C~n,~mE(~n, ~m) (3.1)

for some explicit constants C~n,~m, where1

E(~n, ~m) := ik
√
N

∑
q1-N,...,qω -N

ω∏
j=1

(
φ̂

(
log qj
logR

)nj ( 2 log qj√
qj logR

)nj)

×
∑

p1-N,...,pn−n′ -N

n−n′∏
i=1

φ̂

(
log pi
logR

)(
2 log pi√
pi logR

)
〈λf (NQ)〉∗ (3.2)

and

Q :=

ω∏
j=1

q
mj
j ·

n−n′∏
i=1

pi. (3.3)

Lemma 3.1 is quite involved combinatorially, and we prove it in Appendix A. In particular, we

carefully decompose S
(n)
2 (N) into sums over distinct primes in order to establish the condition

mj < nj in (3.1).
Lemma 3.1 allows us to apply the Petersson trace formula in the following section, as we have

expressed S
(n)
2 (N) in terms of the average of a single Fourier coefficient λf (NQ), as opposed to

the product of Fourier coefficients in the definition (2.40). The coefficients C~n,~m are difficult to
calculate in general, but as a consequence of Proposition 3.6 we only need to determine them in
specific cases (see (3.24)).

1We have omitted the dependence on ω and n′ in the notation E(~n, ~m) as it is implicitly contained in ~n, ~m. We
have also suppressed the dependence on N for ease of notation.



On the moments of one-level densities in families of holomorphic cusp forms in the level aspect 13

3.2. Cleaning with Weil’s bound and Prime Number Theorem (PNT). The following
result states that E(~n, ~m) contributes to lim N→∞

N prime
D±n (N ;φ) only if “most” of the indices satisfy

nj = mj .

Lemma 3.2. Suppose supp(φ̂) ⊂
(
− 1
n−a ,

1
n−a

)
for some a ≤ n/2. If n′ ≥ a, then E(~n, ~m) =

O (N−ε).

Proof. Let supp(φ̂) ⊂ (−σ, σ) with σ < 1/(n − a). Using Lemma 2.10 and the PNT (with partial

summation), the sum over p1, . . . , pn−n′ in (3.2) is � N−3/2+ε (qm1
1 · · · qmωω )1/2Rσ(n−n′). For 1 ≤

j ≤ ω, we have nj −mj ≥ 2 as mj < nj and mj ≡ nj (mod 2). Using the PNT again for the sums

over q1, . . . , qω in (3.2), we have E(~n, ~m)� N−1+εRσ(n−n′). This is O (N−ε) if n′ ≥ a. �

We are now in a position to apply the Petersson formula (Lemma 2.8) to (3.2). We assume
GRH for L(s, f) so that the complementary sum ∆∞k,N does not contribute (see Remark 2.9). Since

|H∗k(N)| ∼ N(k − 1)/12 from (2.20), it follows that

E(~n, ~m) =
2n+1π√
N

∑
q1-N,...,qω -N

ω∏
j=1

(
φ̂

(
log qj
logR

)
log qj√
qj logR

)nj ∑
p1-N,...,pn−n′ -N

n−n′∏
i=1

φ̂

(
log pi
logR

)
log pi√
pi logR

×
∑
m≤Nε

1

m

∞∑
b=1

S(m2, NQ;Nb)

b
Jk−1

(
4πm
√
Q

b
√
N

)
+ O

(
N−ε

)
, (3.4)

where Q was defined in (3.3) and we set Y = N ε. Also, recall that n′ = n1 + · · ·+ nω.
We impose restrictions to the b-sum of (3.4) using the following two lemmas. We will also make

use of the following bounds from Section 2:

S(m2, NQ;Nb) �ε m
2b1/2(bN)ε, Jk−1(x) �k x. (3.5)

Lemma 3.3. If supp(φ̂) ⊆
(
− 5

2(n−n′) ,
5

2(n−n′)

)
, then the contribution from the terms in (3.4) with

(b,N) > 1 is O (N−ε).

Proof. This is a refinement of [HM07, Lem. 4.4]. Let supp(φ̂) ⊂ (−σ, σ). If the b-sum of (3.4) is
restricted to (b,N) > 1, i.e., b = cN for some c ≥ 1, then such a sum is � N−2+ε

√
Q using (3.5).

Combining this with the PNT and the fact that nj −mj ≥ 2, we find that the contribution to (3.4)

from terms with (b,N) > 1 is � N−5/2+εR(n−n′)σ, which is negligible when σ < 5
2(n−n′) . �

Lemma 3.4. If supp(φ̂) ⊂
(
− 1000
n−n′ ,

1000
n−n′

)
, then the contribution from the terms in (3.4) with

b ≥ N2022 is O(N−12).

Proof. This is a refinement of [HM07, Lem. 4.5]. Let supp(φ̂) ⊂ (−σ, σ). If the b-sum of (3.4) is
restricted to b ≥ N2022, then (3.5) implies such a sum is∑

b≥N2022

S(m2, NQ;Nb)

b
Jk−1

(
4πm

b
√
N

)
� N−1/2+ε

∑
b≥N2022

b−3/2+ε � b−1011−1/2+ε. (3.6)

When σ < 1000
n−n′ , the contribution of (3.4) with b ≥ N2022 is � N−1012+εR(n−n′)σ � N−12 using

(3.6), the PNT, and the fact that nj −mj ≥ 2. This completes the proof.
�
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3.3. Expanding the Kloosterman sums. Suppose supp(φ̂) ⊂
(
− 2
n ,

2
n

)
for n ≥ 2. In particular,

the assumptions of Lemma 3.3 and 3.4 are satisfied and we may impose the relevant restrictions on

the b-sum of (3.4). Also, because R = k2N and supp(φ̂) ⊂ (−1, 1), the conditions qj - N , pi - N in
(3.4) are automatically satisfied provided the primes N are sufficiently large, and thus they will be
dropped subsequently. Now, Lemma 2.2 allows us to convert the Kloosterman sums in (3.4) into
Gauss sums. We thus obtain

E(~n, ~m) = −2n+1π√
N

∑
q1,...,qω

ω∏
j=1

(
φ̂

(
log qj
logR

)
log qj√
qj logR

)nj ∑
p1,...,pn−n′

n−n′∏
i=1

φ̂

(
log pi
logR

)
log pi√
pi logR

×
∑
m≤Nε

1

m

∑
(b,N)=1
b<N2022

1

bϕ(b)

∑
χ(b)

Gχ(m2)Gχ((Q, b∞))χ

(
Q

(Q, b∞)

)
χ(N)Jk−1

(
4πm
√
Q

b
√
N

)
+O

(
N−ε

)
.

(3.7)

Denote by E(~n, ~m)|χ 6=χ0 the expression (3.7) but with an extra restriction χ 6= χ0 in the sum over
χ(b). The following lemma shows that E(~n, ~m)|χ 6=χ0 contributes negligibly as N →∞. The shape
of the expansion (2.12) allows us to capture cancellations in two different ways: first, from the sum
over χ(b) via

1

ϕ(b)

∑
χ(b)

|Gχ(x)Gχ(y)| � b, (3.8)

and second, the character sums over primes (see Lemma 2.3). The former follows simply from
Cauchy-Schwarz’s inequality and the orthogonality of characters, and the uniformity of (3.8) in
x, y is important. For the latter, we crucially make use of GRH for the Dirichlet L-functions, and

of course the restriction supp(φ̂) ⊂
(
− 2
n ,

2
n

)
. Additionally, the following proposition corrects an

error made in [HM07, Lem. 4.7].

Lemma 3.5. Assume GRH for the Dirichlet L-functions. If supp(φ̂) ⊂
(
− 2
n ,

2
n

)
, then

E(~n, ~m)|χ 6=χ0 = O
(
N−ε

)
. (3.9)

Proof. Upon rearranging the sums and taking absolute values, we find E(~n, ~m)|χ 6=χ0 is bounded by

max
0≤α≤n−n′

1√
N

∑
b<N2022

(b,N)=1

1

b

∑
q1,...,qω

ω∏
j=1

(∣∣∣∣φ̂( log qj
logR

)∣∣∣∣ log qj√
qj logR

)nj ∑
p1|b, ..., pα|b

α∏
i=1

∣∣∣∣φ̂( log pi
logR

)∣∣∣∣ log pi√
pi logR

×
∑
m≤Nε

1

m
· 1

ϕ(b)

∑
χ(b)
χ 6=χ0

∣∣Gχ(m2)Gχ ((Q, b∞))
∣∣

×

∣∣∣∣∣∣
∑

pα+1-b, ..., pn−n′ -b

n−n′∏
`=α+1

φ̂

(
log p`
logR

)
χ(p`) log p`√
p` logR

Jk−1

(
4πm
√
Q

b
√
N

)∣∣∣∣∣∣ . (3.10)

We estimate the sum over pα+1, . . . , pn−n′ in (3.10) with Lemma 2.3. To separate variables, we plug
in (2.17) with s = −1 + ε+ it. Interchanging the order of sums and integrals and taking absolute
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values, we have that

∑
pα+1-b, ..., pn−n′ -b

n−n′∏
`=α+1

φ̂

(
log p`
logR

)
χ(p`) log p`√
p` logR

Jk−1

(
4πm
√
Q

b
√
N

)

�
∫ ∞
−∞

(
4πm
√
Q′

b
√
N

)1−ε
|Gk−1(1− ε+ it)|

∣∣∣∣∣∣
∑
p - b

φ̂

(
log p

logR

)
χ(p) log p

p(ε+it)/2 logR

∣∣∣∣∣∣
n−n′−α

dt, (3.11)

where

Q′ :=
ω∏
j=1

q
mj
j ·

α∏
i=1

pi (3.12)

and Gk−1( · ) was given by (2.18). Suppose supp(φ̂) ⊂ (−σ, σ). By Lemma 2.3 (with partial
summation) and the fact that ∑

p | b

log p

logR
≤ log b

logR
, (3.13)

we find ∑
p - b

φ̂

(
log p

logR

)
χ(p) log p

p(ε+it)/2 logR
� Rσ/2(Rbt)ε. (3.14)

By the Stirling formula |Γ(x+iy)| �x (1+|y|)x−1/2e−
π
2
|y|, which holds for any x ∈ R−{0,−1,−2, . . .}

and y ∈ R (see [IK04, eq. 5.113]), we have

|Gk−1(1− ε+ it)| �k,ε (1 + |t|)−2+ε (3.15)

for any t ∈ R. Applying (3.14) and (3.15) to (3.11), we have

∑
pα+1-b, ..., pn−n′ -b

n−n′∏
`=α+1

φ̂

(
log p`
logR

)
χ(p`) log p`√
p` logR

Jk−1

(
4πm
√
Q

b
√
N

)
�
(
m
√
Q′

b
√
N

)1−ε
Rσ(n−n′)/2(Rb)ε.

(3.16)
From (3.10), (3.12), and (3.16), we have that E(~n, ~m)|χ 6=χ0 is bounded by

max
0≤α≤n−n′

Rε+σ(n−n′−α)/2

N

∑
b<N2022

1

b2

∑
q1,...,qω<Rσ

ω∏
j=1

(
log qj√
qj logR

)nj
q
mj/2
j

∑
p1|b, ..., pα|b

α∏
i=1

log pi
logR

×
∑
m≤Nε

m−ε · 1

ϕ(b)

∑
χ(b)
χ 6=χ0

∣∣Gχ(m2)Gχ ((Q, b∞))
∣∣ (3.17)

Apply (3.8),
∑

m≤Nε

m−ε � Rε, and (3.13) in sequence, the expression above is further bounded by

max
0≤α≤n−n′

Rε+σ(n−n′−α)/2

N

∑
q1,...,qω<Rσ

ω∏
j=1

(
log qj√
qj logR

)nj
q
mj/2
j

∑
b<N2022

1

b

(
log b

logR

)n−n′
. (3.18)

The contribution of the b-sum is O(Rε). Since nj −mj ≥ 2, it follows from the PNT that

E(~n, ~m)|χ 6=χ0 � N εNσ(n−n′)/2−1, (3.19)

which is negligible if σ < 2/(n− n′). The result follows. �
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We apply Lemma 3.5 to (3.7). This leaves only the contribution from χ0 (mod b) for each b <
N2022 and (b,N) = 1. Note that Gχ0(x) = R(x, b) is the Ramanujan sum and χ0(N) = 1. Hence,
we have under GRH that

E(~n, ~m) := −2n+1π√
N

∑
q1,...,qω

ω∏
j=1

(
φ̂

(
log qj
logR

)
log qj√
qj logR

)nj ∑
p1,...,pn−n′

n−n′∏
i=1

φ̂

(
log pi
logR

)
log pi√
pi logR

×
∑
m≤Nε

1

m

∑
(b,N)=1
b<N2022

R(m2, b)R((Q, b∞), b)

bϕ(b)
χ0

(
Q

(Q, b∞)

)
Jk−1

(
4πm
√
Q

b
√
N

)
,

+O
(
N−ε

)
, (3.20)

provided supp(φ̂) ⊂
(
− 2
n ,

2
n

)
.

We complete the calculation of E(~n, ~m) with the following two propositions, which we prove in
Section 4.

Proposition 3.6. Let E(~n, ~m) be as in (3.2) and suppose that there exists some 1 ≤ j ≤ ω for

which nj+mj > 2. Under the same assumptions of Theorem 1.1, if supp(φ̂) ⊂
(
− 2
n ,

2
n

)
with n ≥ 2,

then E(~n, ~m) = O(1/ logN).

Proposition 3.6 shows that many of the terms in the expansion (3.1) do not contribute in the
limit. We complete the proof of Proposition 3.6 in Section 4.3.

Proposition 3.7. Let E(~n, ~m) be as in (3.2) and suppose ω = n′ = 0. Under the same assumptions

of Theorem 1.1, if supp(φ̂) ⊂
(
− 1
n−a ,

1
n−a

)
with 1 ≤ a ≤ n/2, then

E(~n, ~m) = (−1)n+1R(n, a;φ) +O

(
(log logN)2

(logN)1/2

)
, (3.21)

where R(n, a;φ) was defined in (1.14).

We complete the proof of Proposition 3.7 in Section 4.5.

3.4. Concluding the proof of Theorem 1.2. We will now demonstrate how to use Propositions

3.6 and 3.7 to evaluate S
(n)
2 (N).

Proposition 3.8. Let S(n, a;φ) be defined in (1.15). Under the same assumptions of Theorem

1.1, if supp(φ̂) ⊂
(
− 1
n−a ,

1
n−a

)
with 1 ≤ a ≤ n/2, then

S
(n)
2 (N) = (−1)n+1S(n, a;φ) +O

(
(log logN)2

(logN)1/2

)
. (3.22)

Proof. By Lemma 3.1 and Proposition 3.6, S
(n)
2 (N) is a sum of terms of the form E(~n, ~m) with

nj + mj ≤ 2 for each j up to an error of O(1/ logN). Since nj ≡ mj (mod 2), then nj = mj = 1
or nj = 2 and mj = 0 for each j. Let E`(N) denote the term E(~n, ~m) in which nj = 2 and mj = 0
for exactly ` values of j. We have that

E`(N) =
∑

q1-N,...,q`-N

∏̀
j=1

(
φ̂

(
log qj
logR

)2( 2 log qj√
qj logR

)2
)

× ik
√
N

∑
p1-N,...,pn−2`-N

n−2`∏
i=1

φ̂

(
log pi
logR

)(
2 log pi√
pi logR

)
〈λf (Np1 · · · pn−2`)〉∗ . (3.23)
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By Lemma 3.2, the contribution to S
(n)
2 (N) from E`(N) with ` ≥ a/2 is negligible. We thus have

S
(n)
2 (N) =

ba−1
2
c∑

`=0

n!

2`(n− 2`)!`!
E`(N) + O(1/ logN). (3.24)

The combinatorial factor n!
2`(n−2`)!`!

arises from choosing the indices of the primes for which nj =

mj = 1, or nj = 2 and mj = 0. We choose the primes for which nj = mj = 1 in
(
n
2`

)
ways, and put

the remaining primes into pairs in (2`− 1)!! = (2`)!/(`!2`) ways. Multiplying and simplifying gives
the desired combinatorial coefficient. By Proposition 3.7, we have that

ik
√
N

∑
p1-N,...,pn−2`-N

n−2`∏
i=1

φ̂

(
log pi
logR

)(
2 log pi√
pi logR

)
〈λf (Np1 · · · pn−2`)〉∗

= (−1)n+1R(n− 2`, a− 2`;φ) +O

(
(log logN)2

(logN)1/2

)
. (3.25)

Applying (3.25) to (3.23) and factoring the sums over qj gives

E`(N) = (−1)n+1

[
R(n− 2`, a− 2`;φ) +O

(
(log logN)2

(logN)1/2

)]∑
q-N

φ̂

(
log q

logR

)2 4 log2 q

q log2R

` .
(3.26)

A standard partial summation argument gives∑
q-N

φ̂

(
log q

logR

)2 4 log2 q

q log2R
∼ 2

∫ ∞
−∞
|y|φ̂(y)2dy, (3.27)

which is precisely the quantity σ2
φ given by (1.13). Applying (3.27) to (3.26), we have that

E`(N) = (−1)n+1
(
σ2
φ

)`R(n− 2`, a− 2`;φ) +O

(
(log logN)2

(logN)1/2

)
. (3.28)

The proposition follows readily upon applying this to (3.24) and comparing with (1.15). �

Proof of Theorem 1.2. The proof follows immediately from Proposition 3.8, (2.38), and (2.41). �

4. Proof of Propositions 3.6 & 3.7

Throughout Section 4, we assume supp(φ̂) ⊂
(
− 1
n−a ,

1
n−a

)
with 1 ≤ a ≤ n/2 and we further

analyze the expression (3.20) for E(~n, ~m).
In Section 4.1, we rewrite the sums over primes in (3.20) into a more analytically tractable

expression. The key quantity to be considered is

B(α) := N−1/2
∑

pα+1,...,pn

Jk−1


4πm

√
c

n∏
i=α+1

pi

b
√
N


n∏

i=α+1

φ̂

(
log pi
logR

)
χ0(pi) log pi

p
1/2
i logR

, (4.1)

where the dependencies on N,m, c, b are conveniently suppressed in the notation B(α). We also
set Φr(x) := φ(x)r for r ≥ 0. The main result is the following.
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Proposition 4.1. Suppose supp(φ̂) ⊂
(
− 1
n−a ,

1
n−a

)
with 1 ≤ a ≤ n/2. Under RH for ζ(s), we

have

B(α) =
b

2πm
√
c

a−α−1∑
δ=0

(
n− α
δ

) a−α−δ−1∑
i=0

(−1)i
(
n− α− δ

i

) ∑
p1,...,pδ

δ∏
j=1

φ̂

(
log pj
logR

)
χ0(pj) log pj
pj logR

×
∫ ∞
x=0

Jk−1(x)Φ̂n−α−δ


2 log

(
bx

√
N/(c

δ∏
j=1

pj)/4πm

)
logR

 dx

logR
+ O

(
N−ε

)
. (4.2)

where the implicit constant does not depend on N,m, c, b, α.

The evaluation of B(α) requires a delicate inclusion-exclusion argument to convert the sums over
primes of (4.1) into sums over integers which appears on the left side of (4.12). This is followed
by Lemma 4.5 which expresses the sums over integers into integrals via a standard contour-shifting
argument (assuming RH). Then the proof of Proposition 4.1 is completed by further combinatorial
simplifications. The final step is crucial for matching the calculations with those from the random
matrix theory (see Section 5).

One must also evaluate the convolution sum of Ramanujan sums in (3.20). This task will be
carried out in Section 4.2 and the main result is stated as follows.

Proposition 4.2. Let φ ∈ Sec(R). Then as N →∞, we have∑
(b,M)=1

R(1, b)R(m2, b)

ϕ(b)

∫ ∞
0

Jk−1(y)φ̂

(
2 log(by

√
Q/4πm)

logR

)
dy

logR

= δ

(
m

(m,M∞)
, 1

)
ϕ(M)

M

(
−1

2

∫ ∞
−∞

φ(x) sin

(
2πx

log(k2Q/16π2m2)

logR

)
dx

2πx
+

1

4
φ(0)

)
+O

(
mε (log logM)2

(logR)1/2

)
(4.3)

uniformly for m,M,Q ≥ 1.

The contents of Sections 4.1 and 4.2 are independent of each other. The proofs of Propositions
3.6 and 3.7 crucially rely on Propositions 4.1 and 4.2. They are the subjects of Section 4.3 and
Section 4.4-4.5 respectively. It will be essential to break up the Ramanujan sums judiciously using
the multiplicativity (2.9) and perform a prime-by-prime analysis with the exact evaluation (2.8). In
Section 4.4, we managed to find an integral representation for E(~n, ~m). The proof of Proposition 3.7
follows from the combinatorial simplification in Section 4.5.

4.1. Sums over primes: Proof of Proposition 4.1. This subsection is dedicated to proving
Proposition 4.1. We begin by defining the following quantities:

C ′(α, β) := N−1/2
∑

pα+1,...,pn

∞∑
tα+1,...,tα+β=2

Jk−1


4πm

√
c

n∏
i=α+β+1

pi

b

√
N/

α+β∏
j=α+1

p
tj
j


×

α+β∏
j=α+1

φ̂

(
tj log pj
logR

)
χ0(pj) log pj

p
tj/2
j logR

n∏
i=α+β+1

φ̂

(
log pi
logR

)
χ0(pi) log pi

p
1/2
i logR

, (4.4)
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and

C(α, β) := N−1/2
∑

pα+1,...,pα+β

∞∑
tα+1,...,tα+β=2

∞∑
vα+β+1,...,vn=1

Jk−1


4πm

√
c

n∏
i=α+β+1

vi

b

√
N/

α+β∏
j=α+1

p
tj
j


×

α+β∏
j=α+1

φ̂

(
tj log pj
logR

)
χ0(pj) log pj

p
tj/2
j logR

n∏
i=α+β+1

φ̂

(
log vi
logR

)
χ0(vi)Λ(vi)

v
1/2
i logR

. (4.5)

Observe that C ′(α, β) is a generalized version of B(α) (see (4.1)) as B(α) = C ′(α, 0). Also,
the expression C(α, β) is obtained from C ′(α, β) by replacing the sums over primes pj ’s, where
α + β + 1 ≤ j ≤ n, by sums over positive integers vj ’s, as well as the weight log pj is replaced by
von Mangoldt’s function Λ(vj). We have the following relation between C ′(α, β) and C(α, β).

Property 4.3. We have that

C ′(α, β) = C(α, β)−
a−1−α−β∑

i=1

(
n− α− β

i

)
C ′(α, β + i) + O(N−ε). (4.6)

Proof. The property follows directly from the definition of von Mangoldt’s function and a parti-
tioning argument. The sum over i in (4.6) is restricted to i ≤ a−1−α−β because the contribution
from i > a− 1− α− β is O (N−ε), which follows readily from Jk−1(x)� 1. �

Property 4.3 can be applied repeatedly to obtain a relation between (4.1) and (4.5).

Property 4.4. We have that

B(α) =

a−1−α∑
i=0

(
n− α
i

)
C(α, i)(−1)i + O(N−ε). (4.7)

Proof. Define

B′(α, η) :=

η∑
i=0

(−1)i
(
n− α
i

)
C(α, i)−

a−1−α∑
i=η+1

(
n− α
i

)
C ′(α, i)

η∑
j=0

(−1)j
(
i

j

)
+O

(
N−ε

)
. (4.8)

We claim that B′(α, η) = B(α) and we proceed by induction on η. The base case η = 0 holds by
Property 4.3 and the fact thatB(α) = C ′(α, 0). For the inductive step, assume thatB′(α, k) = B(α)
for some integer k ≥ 0. This implies

B(α) =

k∑
i=0

(
n− α
i

)
C(α, i)(−1)i −

a−1−α∑
i=k+1

(
n− α
i

)
C ′(α, i)

k∑
j=0

(−1)j
(
i

j

)
+O(N−ε). (4.9)

We examine the term where i = k + 1 and we have

−
(
n− α
k + 1

)
C ′(α, k + 1)

k∑
j=0

(−1)j
(
k + 1

j

)
=

(
n− α
k + 1

)
(−1)k+1C ′(α, k + 1). (4.10)

This follows from the identity
∑k+1

j=0(−1)j
(
k+1
j

)
= 0, which is an easy consequence of the Binomial

Theorem. It follows from Property 4.3 and re-indexing the sum using the change of variables
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` = k + 1 + j that(
n− α
k + 1

)
(−1)k+1C ′(α, k + 1)

=

(
n− α
k + 1

)
(−1)k+1

C(α, η + 1)−
a−α−k∑
j=1

(
n− α− k − 1

j

)
C ′(α, k + 1 + j)

+O
(
N−ε

)
=

(
n− α
k + 1

)
(−1)k+1C(α, k + 1)−

a−α−k∑
j=1

(
n− α

k + 1 + j

)(
k + 1 + j

k + 1

)
(−1)k+1C ′(α, k + 1 + j) +O(N−ε)

=

(
n− α
k + 1

)
(−1)k+1C(α, k + 1)−

a−α−1∑
`=k+2

(
n− α
`

)(
`

k + 1

)
(−1)k+1C ′(α, `) +O(N−ε). (4.11)

Substituting the last equality into (4.9), we have B(α) = B′(α, k + 1) and this completes the
induction. �

The innermost sums of (4.5) can be rewritten as follows.

Lemma 4.5. Under RH for ζ(s), if supp(φ̂) ⊂
(
− 1
n−a ,

1
n−a

)
, then

∑
v1,...,vn−η

[
n−η∏
i=1

φ̂

(
log vi
logR

)(
χ0(vi)Λ(vi)√
vi logR

)]
Jk−1

(
4πm
√
cv1 · · · vn−η
b
√
N

)

=
b
√
N

2πm
√
c

a−η−1∑
γ=0

a−η−1∑
j=γ

(−1)j−γ
(
n− η
j

)(
j

γ

) ∞∑
v1,...,vγ=1

[
γ∏
i=1

φ̂

(
log vi
logR

)
χ0(vi)Λ(vi)

vi logR

]

×
∫ ∞
x=0

Jk−1(x)Φ̂n−η−γ

(
2 log(bx

√
N/(cv1 · · · vγ)/4πm)

logR

)
dx

logR
+ O

(
N1/2−ε

)
, (4.12)

where the implicit constant does not depend on N,m, c, b.

Proof. This is a generalization of [HM07, Lem. 4.9]. Open up the J-Bessel function on the left side
of (4.12) with the Mellin inversion formula (2.17):

1

2πi

∫
Re(s)=1

[ ∞∑
v=1

φ̂

(
log v

logR

)
χ0(v)Λ(v)

v(1+s)/2 logR

]n−η
Gk−1(s)

(
4πm
√
c

b
√
N

)−s
ds. (4.13)

Under RH, a simple contour-shifting argument (or see [HM07, eq. (4.34)]) gives
∞∑
v=1

φ̂

(
log v

logR

)
χ0(v)Λ(v)

v(1+s)/2 logR
= φ

(
1− s
4πi

logR

)
+ E(s), (4.14)

where

E(s) := − 1

2πi

∫
Re(z)=3/4

φ

(
(2z − 1− s) logR

4πi

)
L′

L
(z, χ0) dz. (4.15)

As a consequence, (4.13) becomes

1

2πi

∫
Re(s)=1

[
φ

(
1− s
4πi

logR

)
+ E(s)

]n−η
Gk−1(s)

(
4πm
√
c

b
√
N

)−s
ds

=

n−η∑
γ=0

(
n− η
γ

)
1

2πi

∫
Re(s)=1

φ

(
1− s
4πi

logR

)n−η−γ
E(s)γGk−1(s)

(
4πm
√
c

b
√
N

)−s
ds, (4.16)
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where the last line follows from the Binomial Theorem. Now, [HM07, eq. (4.43)] gives the bound

1

2πi

∫
Re(s)=1

φ

(
1− s
4πi

logR

)n−η−γ
E(s)γGk−1(s)

(
4πm
√
c

b
√
N

)−s
ds � N (n−η−γ)σ/2+ε, (4.17)

which is in turn O
(
N1/2−ε) when γ > a− η − 1 and σ < 1/(n− a). Hence, (4.13) is equal to

a−η−1∑
γ=0

(
n− η
γ

)∫
Re(s)=1

φ

(
1− s
4πi

logR

)n−η−γ
E(s)γGk−1(s)

(
4πm
√
c

b
√
N

)−s
ds

2πi
+ O

(
N1/2−ε

)
.

(4.18)

For integers γ, n with 0 ≤ γ < n, we define

T (γ, n) :=

∫
Re(s)=1

[ ∞∑
v=1

φ̂

(
log v

logR

)
χ0(v)Λ(v)

v(1+s)/2 logR

]γ
φ

(
1− s
4πi

logR

)n−γ
Gk−1(s)

(
4πm
√
c

b
√
N

)−s
ds

2πi
.

(4.19)
It follows that (4.13) is given by

a−η−1∑
γ=0

(
n− η
γ

) γ∑
j=0

(−1)j−γ
(
γ

j

)
T (j, n− η) + O

(
N1/2−ε

)

=

a−η−1∑
γ=0

a−η−1∑
j=γ

(−1)j−γ
(
n− η
j

)(
j

γ

)
T (γ, n− η) + O

(
N1/2−ε

)
(4.20)

using the formula for E(s) in (4.14).
In (4.19), applying the formula

∫∞
0 Jk−1(x)xs−1 dx = Gk−1(s) with the change of variable s =

1 + it, it follows that

T (γ, n) =
b
√
N

8π2m
√
c

∫ ∞
t=−∞

φ

(
−t logR

4π

)n−γ  ∞∑
v1,...,vγ=1

γ∏
i=1

φ̂

(
log vi
logR

)
χ0(vi)Λ(vi)

v
it/2+1
i logR


×
(

4πm
√
c

b
√
N

)−it ∫ ∞
0

Jk−1(x)xit dx dt. (4.21)

Upon rearranging and a change of variables u = −t logR/(4π), we have

T (γ, n) =
b
√
N

2πm
√
c

∞∑
v1,...,vγ=1

[
γ∏
i=1

φ̂

(
log vi
logR

)
χ0(vi)Λ(vi)

vi logR

]

×
∫ ∞
x=0

Jk−1(x)Φ̂n−γ

(
2 log(bx

√
N/cv1 · · · vγ/4πm)

logR

)
dx

logR
. (4.22)

Now, (4.22) and (4.20) lead to the desired claim. �

Next we apply Lemma 4.5 to C(α, β).

Property 4.6. We have(
n− α
β

)
C(α, β) =

a−α−β−1∑
γ=0

D(α, β, γ)

[
a−α−β−γ−1∑

i=0

(−1)i
(
n− α
γ + β

)(
n− α− β − γ

i

)(
γ + β

γ

)]
+O

(
N−ε

)
, (4.23)
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where D(α, β, γ) is defined by

b

2πm
√
c

∑
pα+1,...,pα+β+γ

∞∑
tα+1,...,tα+β=2

∞∑
tα+β+1,...,tα+β+γ=1

α+β+γ∏
j=α+β+1

φ̂

(
tj log pj
logR

)
χ0(pj) log pj

p
tj
j logR

(4.24)

×
∫ ∞
x=0

Jk−1(x) ̂Φn−α−β−γ

(
2 log(bx

√
N ′′/4πm)

logR

)
dx

logR
, (4.25)

and

N ′′ := N/(cp
tα+1

α+1 · · · p
tα+β+γ
α+β+γ). (4.26)

Proof. Applying Lemma 4.5 to (4.5), we have

C(α, β) =

a−α−β−1∑
γ=0

D(α, β, γ)

a−α−β−1∑
j=γ

(−1)j−γ
(
n− α− β

j

)(
j

γ

)+O
(
N−ε

)
. (4.27)

The property follows from the re-indexing i = j − γ and simplifying. �

Remark 4.7. The three multiple sums of (4.25) can be interpreted as follows: the first α primes
are those that divide b; the next two sums involving β powers of primes are those left over from
converting to sums over integers; and the last sums over γ integers are those leftover from applying
Lemma 4.5.

We apply Property 4.6 to the formula for B(α) described in Property 4.4.

Property 4.8.

B(α) =
a−α−1∑
δ=0

(
n− α
δ

) a−α−δ−1∑
i=0

(−1)i
(
n− α− δ

i

) δ∑
γ=0

(−1)δ−γ
(
δ

γ

)
D(α, δ − γ, γ) +O

(
N−ε

)
.

(4.28)

Proof. The property from applying Property 4.6 to (4.7) and collecting terms with δ = β + γ. �

We now eliminate the sums over prime powers in (4.25). Define

G(α, δ) :=
b

2πm
√
c

∑
p1,...,pδ

∫ ∞
x=0

Jk−1(x)Φ̂n−α−δ

(
2 log(bx

√
N/(cp1 · · · pδ)/4πm)

logR

)
dx

logR

×
α+δ∏
j=α+1

φ̂

(
log pj
logR

)
χ0(pj) log pj
pj logR

, (4.29)

which is obtained from (4.25) upon specializing all ti’s to be 1 and re-indexing. The expressions
D(α, β, γ) and G(α, δ) (with δ = β + γ as above) satisfy the following recursion:

Property 4.9. We have

G(α, δ) =

δ∑
γ=0

(−1)δ−γ
(
δ

γ

)
D(α, δ − γ, γ). (4.30)

This can be deduced from a more general result:

Lemma 4.10. Let f(t1, . . . , tn) be a symmetric function which takes as an input a finite sequence
t1, . . . , tn of arbitrary length and define the following transform T (i, j) on f :

T (i, j)(f) :=
∞∑

t1,...,ti=2

∞∑
s1,...,sj=1

f(t1, . . . , ti, s1, . . . , sj). (4.31)
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Then
n∑
i=0

(−1)i
(
n

i

)
T (i, n− i)(f) = f([1]n) (4.32)

where [1]n denotes the sequence of 1’s repeated n times.

Proof. We proceed by induction on n. The base case n = 1 holds immediately. Assume the result
holds up to n and define a new function g(t1, . . . , tn) = f(t1, . . . , tn, 1). Then

f([1]n+1) = g([1]n)

=

n∑
i=0

(−1)i
(
n

i

) ∞∑
t1,...,ti=2

∞∑
s1,...,sn−i=1

f(t1, . . . , ti, s1, . . . , sn−i, 1)

=
n∑
i=0

(
n

i

)[
(−1)iT (i, n+ 1− i)(f) + (−1)i+1T (i+ 1, n+ 1− (i+ 1))(f)

]
=

n+1∑
i=0

(−1)iT (i, n+ 1− i)(f)

(
n+ 1

i

)
. (4.33)

This completes the induction. �

Proof of Property 4.9. A special case of Lemma 4.10: take f([1]δ) = G(α, δ) and T (i, j) = D(α, i, j).
�

Applying Property 4.9 to (4.28) gives the following relation between B(α) and G(α, δ).

Property 4.11. We have

B(α) =

a−α−1∑
δ=0

(
n− α
δ

) a−α−δ−1∑
i=0

(−1)i
(
n− α− δ

i

)
G(α, δ). (4.34)

Proof of Proposition 4.1. Substitute (4.29) into (4.34), the result follows.
�

4.2. A convolution sum of Ramanujan sums: Proof of Proposition 4.2. This is a general-
ization of [ILS99, Sect. 7] and [HM07, Lem. 2.12]. We take this opportunity to correct typos and
include more details that were omitted in previous works.

We first claim that the left side of (4.3) is equal to

lim
ε→0

∑
(b,M)=1

R(1, b)R(m2, b)

ϕ(b)bε

∫ ∞
0

Jk−1(y)φ̂

(
2 log(by

√
Q/4πm)

logR

)
dy

logR
. (4.35)

Since φ̂ is compactly supported, the b-sum and the y-integral of (4.35) in total is bounded by
∞∑
b=1

m4

φ(b)

∫
y�mRO(1)

b
√
Q

dy

logR
� m5RO(1)

√
Q logR

∞∑
b=1

1

ϕ(b)b
, (4.36)

where the bounds |R(1, b)| = 1, |R(m2, b)| ≤ m4, Jk−1(x)� 1 (see (2.8) and Lemma 2.4) are used
above. The last b-sum converges because ϕ(b)� b/ log log b (see [Apo76, Thm. 13.14]). Our claim
now readily follows from the Dominated Convergence Theorem.

Apply the Mellin inversion formulae (2.2) and (2.18) to the integral of (4.35). We have∫ ∞
0

Jk−1(y)φ̂

(
2 log(by

√
Q/4πm)

logR

dy

logR

)
=

∫ ∞
−∞

φ(x logR)

(
2πm

b
√
Q

)4πix Γ
(
k
2 − 2πix

)
Γ
(
k
2 + 2πix

) dx.

(4.37)
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Substituting (4.37) into (4.35) and interchanging the sum and integral, we have

(4.35) = lim
ε→0

∫ ∞
−∞

φ(x logR)

(
2πm√
Q

)4πix Γ
(
k
2 − 2πix

)
Γ
(
k
2 + 2πix

) χM (ε+ 4πix;m) dx, (4.38)

where the Dirichlet series

χM (s;m) :=
∑

(b,M)=1

R(1, b)R(m2, b)

ϕ(b)bs
(4.39)

converges absolutely on the half-plane Re s > 0.
We evaluate the integral of (4.38) asymptotically by breaking it into two pieces: one for |x| ≤ X

and the other for |x| > X. The first piece can be handled by Laurent expansions while the second
piece contributes negligibly due to the rapid decay of φ. We must carefully keep track of the
dependence on m, M .

By (2.9), the Dirichlet series (4.39) can be expressed in terms of an Euler product

χM (s;m) =
∏

(p,M)=1

∞∑
t=0

R(1, pt)R(m2, pt)

ϕ(pt)pts
=

∏
(p,M)=1


(

1 + 1
(p−1)ps

)
, if (p,m) = 1,(

1− 1
ps

)
if (p,m) > 1

(4.40)

on Re s > 0, where the second equality follows from the facts that R(1, b) = µ(b), R(m2, 1) = 1,
R(m2, p) = −1 if (m, p) = 1, and R(m2, p) = ϕ(p) = p − 1 if (p,m) > 1. Moreover, (4.40) can be
written as

χM (s;m) =
∏
p

(
1 +

1

(p− 1)ps

)
·
∏
p|M

(
1 +

1

(p− 1)ps

)−1

·
∏

p| m
(m,M∞)

(
1− 1

ps

)(
1 +

1

(p− 1)ps

)−1

=: χ(1)(s) · χ(2)
M

(s) · χ(3)
M

(s;m). (4.41)

This corrects a mistake made in [ILS99, pp. 99] regarding the factorization of χM (s;m). For
this reason, the relevant Laurent expansions must be re-computed and the correct results can be
obtained as follows.

For Re s > 0, it is easy to verify that

χ(1)(s) =
ζ(1 + s)

ζ(2 + 2s)

∏
p

(
1 +

1

(p− 1)(p1+s + 1)

)
. (4.42)

For s = O(1), we have

χ(1)(s) =
(
s−1 +O(1)

)( 1

ζ(2)

∏
p

(
1 +

1

p2 − 1

)
+ O(|s|)

)
= s−1 + O(1). (4.43)

Define ζM (s) :=
∏
p|M

(1− p−s)−1. In particular, ζM (1) = M/ϕ(M). For any s = O(1/ log logM),

we have

ζM (1 + s) · ϕ(M)

M
=
∏
p|M

1− p−1

1− p−1 +O
(
|s| log p

p

) =
∏
p|M

(
1 + O

(
|s| log p

p

))−1

= 1 + O

|s|∑
p|M

log p

p

 = 1 + O(|s| log logM). (4.44)
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From this and (4.42), it follows that

χ(2)
M

(s) =
ϕ(M)

M
(1 + O(|s| log logM)) ·

ζM (2)
∏
p|M

(
1 +

1

p2 − 1

)−1

+ O(|s|)


=

ϕ(M)

M
(1 + O(|s| log logM)) . (4.45)

Suppose m/(m,M∞) > 1. For s = O(1/ logm), we have∏
p| m

(m,M∞)

(1− p−s) �
∏

p| m
(m,M∞)

|s| log p � |s|
∏

p| m
(m,M∞)

log p. (4.46)

Observe that

log
∏

p| m
(m,M∞)

log p �
∑

p=O(logm)

log log p � (logm) log log logm

log logm
, (4.47)

which implies ∏
p| m

(m,M∞)

(1− p−s) � |s|mε′ (4.48)

for any ε′ > 0. 2 When m/(m,M∞) = 1, we have
∏
p| m

(m,M∞)
(1− p−s) = 1. In other words,

χ(3)
M

(s;m) = δ

(
m

(m,M∞)
, 1

)
+ O(|s|mε′). (4.49)

Altogether, for |s| � X � 1/((logm) log logM), the following estimate holds:

χM (s;m) =
ϕ(M)

sM
δ

(
m

(m,M∞)
, 1

)
+ O

(
mε′
)
. (4.50)

From [GR65, eq. (8.322)] we have

Γ

(
k + s

2

)
= Γ

(
k − s

2

)(
k

2

)s [
1 +O

(
|s|
k

)]
. (4.51)

For s = ε+ 4πix with ε, x� X, we have

χM (s;m)
Γ(k2 − 2πix)

Γ(k2 + 2πix)
=

ϕ(M)

sM
δ

(
m

(m,M∞)
, 1

)(
k

2

)−4πix

+ O
(
mε′
)
. (4.52)

Make a change of variables x→ −x and use the evenness of φ, we have∫ X

−X
φ(x logR)

(
2πm√
Q

)4πix Γ
(
k
2 − 2πix

)
Γ
(
k
2 + 2πix

) χM (ε+ 4πix;m) dx

=
ϕ(M)

M
δ

(
m

(m,M∞)
, 1

)∫ X

−X
φ(x logR)

(
k
√
Q

4πm

)4πix
dx

ε− 4πix
+ O

(
mε′X

)
. (4.53)

We move on to bounding each of the three products over primes in (4.41) for s = ε+ 4πix with
|x| > X.

The last infinite product and ζ(2 + 2s)−1 in (4.42) are clearly O(1). Using the bound ζ(1 + s)�
log |x| for |x| ≥ 3 (see [Apo76, Thm. 13.4]) and ζ(1 + s) = O(|s|−1) as s→ 0, we have

|χ(1)(s)| � |ζ(1 + s)| � X−1 log (3 + |x|). (4.54)

2In this proof, we distinguish ε with ε′ for clarity.
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Next, observe the inequality

log
∏
p|M
p>2

∣∣∣∣1 +
1

(p− 1)ps

∣∣∣∣−1

≤ −
∑
p|M
p>2

log

(
1− 1

p− 1

)
=
∑
p|M

1

p− 1
+ O(1). (4.55)

From the identity ζM (1) = M/ϕ(M) and Taylor’s expansion, one easily obtains

log
M

ϕ(M)
=
∑
p|M

1

p− 1
+ O(1). (4.56)

As a result, we have

(4.55) ≤ log
M

ϕ(M)
+ O(1) ≤ log log logM + O(1) (4.57)

using the bound ϕ(M)�M/ log logM ([Apo76, Thm. 13.14]). We may deduce that

|χ(2)
M

(s)| � log logM, (4.58)

where the implicit constant is absolute. The estimate for χ(3)
M

(s;m) follows from a similar argument.
So, we have that

|χM (s;m)| � X−1mε′(log logM) log (3 + |x|) (4.59)

for any ε′ > 0.
Equation (4.59) and the decay of φ imply∣∣∣∣∣

∫ ∞
X

φ(x logR)χM (ε+ 4πix;m)

(
2πm√
Q

)4πix Γ(k2 − 2πix)

Γ(k2 + 2πix)
dx

∣∣∣∣∣
� X−1mε′(log logM)

∫ ∞
X

(x logR)−A log (3 + |x|) dx

� mε′(log logM)(X logR)−A, (4.60)

as well as∣∣∣∣∣
∫ ∞
X

φ(x logR)

(
k
√
Q

4πm

)4πix
dx

ε− 4πix

∣∣∣∣∣ �
∫ ∞
X

1

x
(x logR)−A dx � (X logR)−A (4.61)

for any A > 0.
Combining the estimates (4.60), (4.61) and (4.53), it follows that

(4.35) = δ

(
m

(m,M∞)
, 1

)
ϕ(M)

M
lim
ε↓0

∫ ∞
−∞

φ(x logR)

(
k
√
Q

4πm

)4πix
dx

ε− 4πix

+ O
(
mε′(log logM)(X logR)−A

)
+ O

(
mε′X

)
(4.62)

for any ε′ > 0, A > 0, and X � 1/((logm) log logM).

Taking A = 1 and X−1 := (logm)(log logM)(logR)1/2, and following the same argument of
[ILS99, pp. 100], we may now conclude

(4.35) = δ

(
m

(m,M∞)
, 1

)
ϕ(M)

M

(
−1

2

∫ ∞
−∞

φ(x) sin

(
2πx

log
(
k2Q/16π2m2

)
logR

)
dx

2πx
+

1

4
φ(0)

)

+ O

(
mε′ (log logM)2

(logR)1/2

)
. (4.63)

The proof of Proposition 4.2 is complete.
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4.3. Proof of Proposition 3.6. Suppose nj + mj > 2 for some 1 ≤ j ≤ ω in (3.20). Firstly,
applying Proposition 4.1 to (3.20) with c = p1 · · · pαqm1

1 · · · qmωω , we obtain

E(~n, ~m) =
∑

q1,...,qω

ω∏
j=1

φ̂

(
log qj
logR

)nj lognj qj

q
(nj+mj)/2
j lognj R

∑
p1,...,pα+δ

α+δ∏
i=1

φ̂

(
log pi
logR

)
log pj
pj logR

×
∑
m≤Nε

1

m2

∑
(b,Npα+1···pα+δqθ+1···qω)=1

p1,...,pα,q1,...,qθ|b

R(m2, b)R(p1 · · · pαqm1
1 · · · qmθθ , b)

ϕ(b)

×
∫ ∞

0
Jk−1(x)Φ̂n−α−δ

(
2 log(bx

√
N/(p1 · · · pα+δq

m1
1 · · · qmωω )/4πm)

logR

)
dx

logR

(4.64)

up to an error O (N−ε). The condition b < N2022 has been removed at a negligible cost.
Secondly, we convert the sums over qj and pi in (4.64) into sums over distinct primes, requiring

us to break up the sums depending on whether some of the primes in the sums are equal or not, as
well as the order of the primes factors of b. It follows that E(~n, ~m) is a sum of terms of the form

F (~a,~b,~c, ~d,~e) :=
∑

q1,...,q`
qj distinct

∏̀
j=1

φ̂

(
log qj
logR

)aj logaj qj

q
bj
j logaj R

∑
m≤Nε

1

m2

∑
(b′,Nq1...q`)=1

b=b′q
c1
1 ···q

cκ
κ

R(m2, b)R(qd11 · · · qdκκ , b)
ϕ(b)

×
∫ ∞
x=0

Jk−1(x)Φ̂n−ν

2 log(b′x
√
Nqe11 · · · q

e`
` /4πm)

logR

 dx

logR
(4.65)

up to an error term of size O (N−ε), where ai, bi, ci, and di are positive integers, and the ei’s are
integers. Additionally, we have that

∑
aj = ν and bi > 1 for some i (since nj + mj > 2 for some

j), as well as bj ≥ dj for all j (since nj ≥ mj in (4.64)).
As a result, the proof of Proposition 3.6 rests on the following lemma. In fact, this lemma will

also be useful in Section 4.4.

Lemma 4.12. Let F (~a,~b,~c, ~d,~e) be defined as in (4.65) with aj , bj , cj , dj’s being positive integers,

ej’s being integers, bj ≥ dj for all 1 ≤ j ≤ κ. If bi > 1 or di < ci for some i, then F (~a,~b,~c, ~d,~e)�
1/ logN .

Proof. Using the multiplicativity of the Ramanujan sums and the totient function ϕ, observe that

R(m2, b)R(qd11 · · · qdκκ , b)
ϕ(b)

=
R(qd11 · · · qdκκ , q

c1
1 · · · qcκκ )

ϕ(qc11 · · · q
cκ
κ )

· R(m2, b′)R(m2, qc11 · · · qcκκ )R(1, b′)

ϕ(b′)
, (4.66)

where b = b′qc11 · · · qcκκ and (b′, Nq1 · · · q`) = 1. Apply (4.66) to (4.65). This allows us to rewrite

F (~a,~b,~c, ~d,~e) (with Q = Nqe11 · · · q
e`
` ) as

∑
q1,...,q`

qj distinct

∏̀
j=1

φ̂

(
log qj
logR

)aj logaj qj

q
bj
j logaj R

∑
m≤Nε

R(qd11 · · · qdκκ , q
c1
1 · · · qcκκ )

ϕ(qc11 · · · q
cκ
κ )

R(m2, qc11 · · · qcκκ )

m2

×
∑

(b′,Nq1...q`)=1

R(m2, b′)R(1, b′)

ϕ(b′)

∫ ∞
x=0

Jk−1(x)Φ̂n−ν

(
2 log(b′x

√
Q/4πm)

logR

)
dx

logR
. (4.67)
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By Proposition 4.2, observes that the sum over b′ in (4.67) is � mε, and hence, (4.67) is

�
∑

q1,...,q`
qj distinct

∏̀
j=1

∣∣∣∣∣φ̂
(

log qj
logR

)aj logaj qj

q
bj
j logaj R

∣∣∣∣∣ ∑
m≤Nε

|R(qd11 · · · qdκκ , q
c1
1 · · · qcκκ )|

ϕ(qc11 · · · q
cκ
κ )

∣∣R(m2, qc11 · · · qcκκ )
∣∣

m2−ε .

(4.68)
The last m-sum is bounded by

 ∑
(m′,q1···pκ)=1

1

(m′)2−ε

 κ∏
i=1

∑
t≥0

|R(q2t
i , q

ci
i )||R(qdii , q

ci
i )|

q
(2−ε)t
i ϕ(qcii )

 � κ∏
i=1

∑
t≥0

|R(q2t
i , q

ci
i )||R(qdii , q

ci
i )|

q
(2−ε)t
i ϕ(qcii )

(4.69)
once again due to the multiplicativity of the Ramanujan sums.

We now analyze the sum over t, primarily relying on (2.8) to bound the Ramanujan sums. When
2t < ci − 1, then R(q2t

i , q
ci
i ) = 0. When 2t = ci − 1, then R(q2t

i , q
ci
i ) = q2t

i . When 2t ≥ ci, we have
that R(q2t

i , q
ci
i ) = ϕ(qcii ) ≤ qcii .

The sum over t is O(q
εbci/2c
i ) when di ≥ ci, and is O(q

−1+εbci/2c
i ) when di < ci, where the bounds

|R(qdii , q
ci
i )| ≤ ϕ(qcii ) and |R(qdii , q

ci
i )| ≤ qdii were applied respectively. Therefore,

F (~a,~b,~c, ~d,~e) �
∑

q1,...,q`
qj distinct

∏̀
j=1

∣∣∣∣φ̂( log qj
logR

)aj ∣∣∣∣ logaj qj

q
bj+ηj−εbcj/2c
j logaj R

�
∏̀
j=1

[∑
p

∣∣∣∣φ̂( log p

logR

)aj ∣∣∣∣ logaj p

pbj+ηj−εbcj/2c logaj R

]
, (4.70)

where ηj = 1dj<cj . Observe the following:

(1) Set xj := bj + ηj − εbcj/2c. The sum over p in (4.70) is O(1/ logaj R) when xj > 1, and is
O(1) when xj = 1.

(2) Suppose dj ≥ cj . By assumption, we have bj ≥ dj and so bj ≥ cj . If bj = 1, then xj = 1,
and if bj > 1, then xj > 1. Suppose dj < cj . Then xj > 1.

In particular, xj ≥ 1 always holds and each of the p-sums in (4.70) is O(1).
By our assumption, there exists i for which either di < ci or bj > 1 hold. In either case,

we have xi > 1 and the i-th factor in (4.70) is thus � 1/ logai R � 1/ logN (since ai > 0 by

assumption). Taking the product over all j’s, we may now conclude that F (~a,~b,~c, ~d,~e)� 1/ logN .
This completes the proof of the lemma. �

Proof of Proposition 3.6 . By Lemma 4.12 and the arguments preceding (4.65), E(~n, ~m) can be
written as the sum of finitely many terms of sizes O(1/ logN) whenever nj + mj > 2 for some j.
Note that the number of such terms is independent of N . This completes the proof. �

4.4. Analytic simplification of the main contribution. Recall the expression (3.20) for E(~n, ~m)
and the fact that the main contribution comes from terms with ω = 0 and nj = mj = 1 for all
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1 ≤ j ≤ n, i.e.,

A := −
a−1∑
α=0

(
n

α

)
2n+1π

∑
p1,...,pα

α∏
j=1

φ̂

(
log pj
logR

)
log pj√
pj logR

∑
m≤Nε

1

m

∑
(b,N)=1
b<N2022

p1,...,pα|b

1

bϕ(b)
R(m2, b)R(p1 · · · pα, b)

×N−1/2
∑

pα+1,...,pn

Jk−1

(
4πm
√
p1 · · · pn

b
√
N

) n∏
j=α+1

φ̂

(
log pj
logR

)
χ0(pj) log pj√

pj logR
+ O

(
N−ε

)
.

(4.71)

Remark 4.13.

(1) The coefficient
(
n
α

)
comes from the choices of indices for the prime factors of b.

(2) We have truncated the α-sum in (4.71) to 0 ≤ α ≤ a − 1 because the contribution from
α > a− 1 the term is O (N−ε), which follows from the bounds Jk−1(x)� x, R(m2, b) ≤ m4

and R(p1 · · · pα, b) ≤ ϕ(b).

Applying Proposition 4.1 to (4.71), we have, upon simplification,

A = −2n
a−1∑
α=0

(
n

α

) a−α−1∑
δ=0

(
n− α
δ

) a−α−δ−1∑
i=0

(−1)i
(
n− α− δ

i

)
H(α, δ) +O

(
N−ε

)
, (4.72)

where

H(α, δ) :=
∑

p1,...,pα+δ

α+δ∏
j=1

φ̂

(
log pj
logR

)
log pj
pj logR

∑
m≤Nε

1

m2

∑
(b,Npα+1···pα+δ)=1

p1,...,pα|b

R(m2, b)R(p1 · · · pα, b)
ϕ(b)

×
∫ ∞
x=0

Jk−1(x)Φ̂n−α−δ

(
2 log(bx

√
N/(4πm

√
p1 · · · pα+δ))

logR

)
dx

logR
. (4.73)

The rest of this subsection is dedicated to proving the following lemma.

Lemma 4.14. We have that

H(α, δ) = −2−1−α−δ(−1)α
∫ ∞
−∞
· · ·
∫ ∞
−∞

φ̂(x2) · · · φ̂(xα+δ+1)

×
[∫ ∞
−∞

φn−α−δ(x1)
sin (2πx1(1 + |x2|+ · · ·+ |xα+1| − |xα+2| − · · · − |xα+δ+1|))

2πx1
dx1

− 1

2
φn−α−δ(0)

]
dx2 · · · dxα+δ+1 +O

(
(log logN)2

(logN)1/2

)
. (4.74)

First, we transform the sum over the primes p1, . . . , pα+δ in H(α, δ) to a sum over distinct primes.

Property 4.15. A distinctness condition can be added to (4.73) at the cost of an error of size
O(1/ logN).

Proof. The distinctness condition can be imposed to the sums over primes of (4.73) by inclusion-
exclusion, depending on which primes are equal. If pi = pj for some 1 ≤ i ≤ α and α+1 ≤ j ≤ α+δ,
then the corresponding term of H(α, δ) is zero due to the condition on the b-sum.

Without loss of generality, we let p1 · · · pα = qu11 · · · q
uα′
α′ and pα+1 · · · pα+δ′ = q

uα′+1

α′+1 · · · q
uα′+δ′
α′+δ′ ,

where the primes qi are distinct and at least one ui > 1. To add in a distinctness condition to
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H(α, δ), our inclusion-exclusion introduced terms of the form

∑
q1,...,qα′+δ′
qi distinct

α′+δ′∏
j=1

φ̂

(
log qj
logR

)uj loguj qj

q
uj
j loguj R

∑
m≤Nε

1

m2

∑
(b,Nqα′+1···qα′+δ′ )=1

q
u1
1 ,...,q

uα′
α′ |b

R(m2, b)R(qu11 · · · q
uα′
α′ , b)

ϕ(b)

×
∫ ∞
x=0

Jk−1(x)Φ̂n−α−δ

2 log(bx
√
N/(4πm

√
qu11 · · · q

uα′+δ′
α′+δ′ ))

logR

 dx

logR
. (4.75)

After breaking up (4.75) based on the multiplicities of the prime factors of b, we appeal to
Lemma 4.12 and find (4.75) is O(1/ logN) since at least one ui > 1. This completes the proof. �

Upon inserting the distinctness condition to H(α, δ), we break up the terms based on the mul-
tiplicities of the prime factors of b. Consider the b-sum of (4.73) over b’s of the form b′pc11 · · · pcαα ,
where (b′, p1 · · · pα) = 1. Due to Lemma 4.12, if any of the ci’s is > 1, then the corresponding term
is O(1/ logN). Thus, it suffices to consider the case when each of the ci’s is 1, i.e.,

H(α, δ) =
∑

p1,...,pα+δ
pi distinct

α+δ∏
j=1

φ̂

(
log pj
logR

)
log pj
pj logR

∑
m≤Nε

1

m2

∑
b=b′p1···pα

(b′,Np1···pα+δ)=1

R(m2, b)R(p1 · · · pα, b)
ϕ(b)

×
∫ ∞
x=0

Jk−1(x)Φ̂n−α−δ

(
2 log(bx

√
N/(4πm

√
p1 · · · pα+δ))

logR

)
dx

logR
+ O(1/ logN).

(4.76)

The b-sum can be simplified with the multiplicativity of ϕ and the Ramanujan sums, R(q, q) =
ϕ(q), and the conditions b = b′p1 · · · pα with (b′, Np1 · · · pα+δ) = 1. In fact,

R(m2, b)R(p1 · · · pα, b)
ϕ(b)

=
R(m2, b′)R(m2, p1 · · · pα)R(1, b′)

ϕ(b′)
. (4.77)

Applying this to (4.76), we have

H(α, δ) =
∑

p1,...,pα+δ
pi distinct

α+δ∏
j=1

φ̂

(
log pj
logR

)
log pj
pj logR

∑
m≤Nε

1

m2
R(m2, p1 · · · pα)

×
∑

(b′,Np1···pα+δ)=1

R(m2, b′)R(1, b′)

ϕ(b′)

∫ ∞
x=0

Jk−1(x)Φ̂n−α−δ

(
2 log(b′x

√
Q/(4πm))

logR

)
dx

logR

+O(1/ logN), (4.78)

where Q = Np1 · · · pα/(pα+1 · · · pα+δ).
We are ready to apply Proposition 4.2 to the sum over b′ in (4.78). We first show that the con-

tribution of the error term of (4.3) to H(α, δ) is O
(

(log logN)2

(logN)1/2

)
. Indeed, using the multiplicativity

of the Ramanujan sums, the m-sum in this case is

�
∑
m≤Nε

R(m2, p1 · · · pα)

m2
·mε (log logN)2

(logN)1/2
� (log logN)2

(logN)1/2

∑
(m′, p1···pα)=1

1

(m′)2−ε

α∏
i=1

∑
t≥0

R(p2t
i , pi)

p
(2−ε)t
i


� (log logN)2

(logN)1/2

α∏
i=1

∑
t≥0

R(p2t
i , pi)

p
(2−ε)t
i

 . (4.79)
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When t = 0, R(p2t
i , pi) = R(1, pi) = 1. When t > 0, R(p2t

i , pi) = ϕ(pi) < pi. From this, it is clear

that the sum over t is O(1) (independent of pi) and the sum over m is O
(

(log logN)2

(logN)1/2

)
. Our claim

follows by also considering the sums over primes and thus,

H(α, δ) =
∑

p1,...,pα+δ
pi distinct

α+δ∏
j=1

φ̂

(
log pj
logR

)
log pj
pj logR

∑
m≤Nε

1

m2
R(m2, p1 · · · pα)δ

(
m

(m,M∞)
, 1

)
ϕ(M)

M

×
(
−1

2

∫ ∞
−∞

φ(x)n−α−δ sin

(
2πx

log(k2Q/16π2m2)

logR

)
dx

2πx
+

1

4
φ(0)n−α−δ

)
+O

(
(log logN)2

(logN)1/2

)
,

(4.80)

where M = Np1 · · · pα+δ.

The factor δ
(

m
(m,M∞) , 1

)
and the fact that N - m force m in (4.80) to take the shape pt11 · · · p

tα+δ
α+δ .

Additionally, the observations Q = Np1 · · · pα/(pα+1 · · · pα+δ) and

ϕ(M)

M
=

(
1− 1

N

) α+δ∏
j=1

(
1− 1

pj

)
permit us to simplify (4.80) as

H(α, δ) =
∑

p1,...,pα+δ
pi distinct

α+δ∏
j=1

φ̂

(
log pj
logR

)
log pj
pj logR

(
1− 1

pj

) ∑
0≤t1,...,tα+δ≤ε logN

R(p2t1
1 · · · p2tα

α , p1 · · · pα)

p2t1
1 · · · p

2tα+δ
α+δ

×
(
−1

2

∫ ∞
−∞

φ(x)n−α−δ sin

(
2πx

(
1 +

log p1

logR
+ · · ·+ log pα

logR
− log pα+1

logR
− · · · − log pα+δ

logR

))
dx

2πx

+
1

4
φ(0)n−α−δ

)
+O

(
(log logN)2

(logN)1/2

)
. (4.81)

Next, we show that the contribution over the complement of t1 = · · · = tα+δ = 0 in (4.81) is
negligibly small. Indeed, upon inserting an absolute value, the quantity of interest is bounded by

max
1≤i≤α+δ

∑
p1,...,pα+δ
pj<R

α+δ∏
j=1

log pj
pj logR

∑
0≤t1,...,tα+δ≤ε logN

ti 6=0

|R(p2t1
1 , p1)| · · · |R(p2tα

α , pα)|
p2t1

1 · · · p
2tα+δ
α+δ

, (4.82)

which is equal to

max
1≤i≤α+δ

α+δ∏
j=1

∑
pj<R

log pj
pj logR

∑
δ(i,j)≤tj≤ε logN

|R(p
2tj
j , p

sj
j )|

p
2tj
j

 , (4.83)

where sj = 1 for 1 ≤ j ≤ α and 0 for α+ 1 ≤ j ≤ α+ δ.
We have |R(1, psj )| = 1 when tj = 0, whereas the sum over tj ≥ 1 is O(1/pj). When j 6= i, the

sums over tj ’s and pj ’s are both O(1). When j = i, the sum over ti’s is O(1/pi) as the term with
ti = 0 is absent. As a result, we have∑

pi<R

log pi
pi logR

∑
1≤ti≤ε logN

|R(p2ti
i , psii )|
p2ti
i

�
∑
pi<R

log pi
p2
i logR

� 1/ logN. (4.84)

Upon taking the product over j, we deduce that (4.83) is O(1/ logN). Our claim follows.
It remains to consider the contribution when t1 = · · · = tα+δ = 0 (and so m = 1). In this case,

we approximate
∏
j (1− 1/pj) in (4.81) by 1 as the contribution from the rest of the terms in the
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expansion of such a product is negligibly small. More precisely, we have

H(α, δ) = (−1)α
∑

p1,...,pα+δ
pi distinct

α+δ∏
j=1

φ̂

(
log pj
logR

)
log pj
pj logR

×
(
−1

2

∫ ∞
−∞

φ(x)n−α−δ sin

(
2πx

(
1 +

log p1

logR
+ · · ·+ log pα

logR
− log pα+1

logR
− · · · − log pα+δ

logR

))
dx

2πx

+
1

4
φ(0)n−α−δ

)
+ O

(
(log logN)2

(logN)1/2

)
, (4.85)

where we use the identity R(1, p1 · · · pα) = µ(p1 · · · pα) = (−1)α.

Property 4.16. Equation (4.85) holds with the distinctness condition in the prime sum removed.

Proof. In the process of removing the distinctness condition, we apply inclusion-exclusion and we
are left to show that the terms with pi = pj for some i 6= j can be eliminated as they contribute
negligibly. Indeed, suppose the condition in the sum of (4.85) is replaced by p1 · · · pα+δ = qa11 · · · q

a`
` ,

where qi 6= qj when i 6= j and where aj > 1 for some j. Now, such a contribution is bounded by

∑
q1,...,q`
qi distinct
qi<R

∏̀
j=1

logaj qj

q
aj
j logaj R

�
∑

q1,...,q`
qi<R

∏̀
j=1

logaj qj

q
aj
j logaj R

�
∏̀
j=1

∑
qj<R

logaj qj

q
aj
j logaj R

 . (4.86)

The last sum is O(1) and O(1/ logaj R) when aj = 1 and aj > 1 respectively. Since aj > 1 for some

j, we find (4.86) is O(1/ log2R). This completes the proof. �

To complete the proof of Lemma 4.14, we apply the Prime Number Theorem with partial sum-
mation to each of the sums over primes in (4.85) without the distinctness condition. We find
that

H(α, δ) = −2−1−α−δ(−1)α
∫ ∞
−∞
· · ·
∫ ∞
−∞

φ̂(x2) · · · φ̂(xα+δ+1)

×
[∫ ∞
−∞

φn−α−δ(x1)
sin (2πx1(1 + |x2|+ · · ·+ |xα+1| − |xα+2| − · · · − |xα+δ+1|))

2πx1
dx1

− 1

2
φn−α−δ(0)

]
dx2 · · · dxα+δ+1 +O

(
(log logN)2

(logN)1/2

)
(4.87)

as desired. �

4.5. Proof of Proposition 3.7: Combinatorial simplification of the main contribution. In
this section we finish the proof of Proposition 3.7 by applying Lemma 4.14 to (4.72) and simplifying.
This step is mostly combinatorial, although we need the following lemma.

Lemma 4.17. We have∫ ∞
−∞

φ̂(y) (sin(z + 2πx|y|) + sin(z − 2πx|y|)) dy = 2 sin(z)φ(x). (4.88)

Proof. Using that sin(z + 2πx|y|) + sin(z − 2πx|y|) = 2 sin(z) cos(2πxy) we have that∫ ∞
−∞

φ̂(y) (sin(z + 2πx|y|) + sin(z − 2πx|y|)) dy = 2 sin(z)

∫ ∞
−∞

φ̂(y) cos(2πxy)dy

= 2 sin(z)

∫ ∞
−∞

φ̂(y)Re(exp(2πixy))dy

= 2 sin(z)φ(x) (4.89)
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as desired. �

Applying Lemma 4.14 to (4.72) gives

A =

a−1∑
α=0

a−α−1∑
δ=0

(
n

α+ δ

)(
α+ δ

α

) a−α−δ−1∑
i=0

(−1)i
(
n− α− δ

i

)
2n−1−α−δ(−1)α

×
∫ ∞
−∞
· · ·
∫ ∞
−∞

φ̂(x2) · · · φ̂(xα+δ+1)

×
[∫ ∞
−∞

φn−α−δ(x1)
sin (2πx1(1 + |x2|+ · · ·+ |xα+1| − |xα+2| − · · · − |xα+δ+1|))

2πx1
dx1

− 1

2
φn−α−δ(0)

]
dx2 · · · dxα+δ+1 +O

(
(log logN)2

(logN)1/2

)
. (4.90)

Our first step is to eliminate the integral over φn−α−δ(0) in (4.90) when α + δ > 0. We fix some
ν ≤ a and collect the terms of (4.90) for which α+ δ = ν:[

ν∑
α=0

(
ν

α

)
(−1)α

](
n

ν

) a−ν−1∑
i=0

(−1)i
(
n− ν
i

)
2n−1−ν

×
∫ ∞
−∞
· · ·
∫ ∞
−∞

φ̂(x2) · · · φ̂(xν+1)

[
−1

2
φn−ν(0)

]
dx2 · · · dxν+1. (4.91)

By the Binomial Theorem, we have
∑ν

α=0

(
ν
α

)
(−1)α = (1− 1)ν = 0 for ν > 0, so the sum over α in

(4.91) is 0 unless ν = 0. Thus, the terms where α+ δ = ν cancel when ν > 0. When ν = 0, we pull
out the −1

2φ
n(0) term and find that

A =

a−1∑
α=0

a−α−1∑
δ=0

(
n

α+ δ

)(
α+ δ

α

) a−α−δ−1∑
i=0

(−1)i
(
n− α− δ

i

)
2n−1−α−δ(−1)αI(α, δ)

− 2n−2φn(0)
a−1∑
i=0

(−1)i
(
n

i

)
+O

(
(log logN)2

(logN)1/2

)
(4.92)

where

I(α, δ) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

φ̂(x2) · · · φ̂(xα+δ+1)

∫ ∞
−∞

φn−α−δ(x1)

× sin (2πx1(1 + |x2|+ · · ·+ |xα+1| − |xα+2| − · · · − |xα+δ+1|))
2πx1

dx1 · · · dxα+δ+1. (4.93)

We simplify the first sum over α in (4.92), which we denote by A′. By Lemma 4.17 we have
I(α, δ) = 2I(α, δ − 1)− I(α+ 1, δ − 1). We express A′ in terms of I(α, 0) via the following result:

Lemma 4.18. Let I(α, δ) be defined as above. Then

I(α, δ) =
δ∑
j=0

2δ−j(−1)j
(
δ

j

)
I(α+ j, 0). (4.94)

Proof. We prove the following claim holds by induction, after which setting k = δ completes the
proof of the lemma:

I(α, δ) =
k∑
j=0

2k−j(−1)j
(
k

j

)
I(α+ j, δ − k). (4.95)
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The base case k = 0 holds immediately. Suppose the result holds up to k. Then using that
I(α, δ) = 2I(α, δ − 1)− I(α+ 1, δ − 1) we have that

I(α, δ) =
k∑
j=0

2k−j(−1)j
(
k

j

)
(2I(α+ j, δ − k − 1)− I(α+ j + 1, δ − k − 1))

=
k+1∑
j=0

2k+1−j(−1)j
[(
k + 1

j + 1

)
−
(
k

j

)]
I(α+ j, δ − k − 1)

=
k+1∑
j=0

2k+1−j(−1)j
(
k + 1

j

)
I(α+ j, δ − k − 1) (4.96)

completing the inductive hypothesis and the proof of the lemma. �

Proof of Proposition 3.7. Apply Lemma 4.18 to (4.92), we have

A′ =

a−1∑
α=0

a−α−1∑
δ=0

δ∑
j=0

(
n

α+ δ

)(
α+ δ

α

) a−α−δ−1∑
i=0

(−1)α+j+i

(
n− α− δ

i

)
2n−1−α−j

(
δ

j

)
I(α+ j, 0).

(4.97)

The terms are collected according to the values of ω := α+ j. Upon simplification, it follows that

A′ = 2n−1
a−1∑
ω=0

2−ω(−1)ωI(ω, 0)
ω∑
α=0

a−1−α∑
δ=ω−α

a−δ−α−1∑
i=0

(−1)i
(

n

δ + α

)(
δ + α

α

)(
n− δ − α

i

)(
δ

ω − α

)
.

(4.98)

We then make a change of variables δ = `+ ω − α and rewrite the sums above as

A′ = 2n−1
a−1∑
ω=0

2−ω(−1)ωI(ω, 0)

ω∑
α=0

a−1−ω∑
`=0

a−`−ω−1∑
i=0

(−1)i
(

n

`+ ω

)(
`+ ω

α

)(
n− `− ω

i

)(
`+ ω − α
ω − α

)

= 2n−1
a−1∑
ω=0

2−ω(−1)ωI(ω, 0)

ω∑
α=0

a−1−ω∑
`=0

a−`−ω−1∑
i=0

(−1)i
(

n

`+ ω + i

)(
`+ ω + i

`+ i

)(
ω

α

)(
`+ i

i

)
.

(4.99)

Grouping terms based on the values m = `+ i and rearranging, we have

A′ = 2n−1
a−1∑
ω=0

2−ω(−1)ωI(ω, 0)

ω∑
α=0

(
ω

α

) a−1−ω∑
m=0

(
n

m+ ω

)(
m+ ω

m

) m∑
i=0

(−1)i
(
m

i

)
. (4.100)

As a consequence of the Binomial Theorem, the sum over i is zero unless m = 0. Thus, summing
over α yields

(
n
ω

)
2ω and so,

A′ = 2n−1
a−1∑
ω=0

(
n

ω

)
(−1)ωI(ω, 0). (4.101)

Applying this to (4.92), we find that A = (−1)n+1R(n, a;φ) + O
(

(log logN)2

(logN)1/2

)
, where R(n, a;φ)

was defined in (1.14). This completes the proof of Proposition 3.7.
�
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5. Extending support for random matrix theory: Proof of Theorem 1.3

In this section, we prove Theorem 1.3. We focus on the case where n ≥ 3 as [HM07, Theorem
1.7] have proved the n = 2 case.

In Section 5.1, we use results from [HR03] and [HM07] to reduce the proof of Theorem 1.3 to
proving Proposition 5.2, which gives a closed form expression for the quantity Qn(φ) defined in
(5.4).

The rest of the section is dedicated to evaluating Qn(φ). In Section 5.2, we define the notion
of a system of parameters and of a t-class, and express Qn(φ) as a sum over these two objects
in Lemma 5.12. Lemma 5.12 splits Qn(φ) into a combinatorial piece and an integral piece. We
evaluate the combinatorial piece in Section 5.3. In particular, we calculate the contribution to
Qn(φ) from t-classes with t = 1 using Lemma 5.19, and show that the t-classes with t ≥ 2 do not
contribute in Lemma 5.20. Then, in Section 5.4, we evaluate the integral piece, completing the
proof of Proposition 5.2.

5.1. Proof of Theorem 1.3 assuming Proposition 5.2. We calculate the nth-centered mo-
ments of Z(U ;φ), denoted in Section 1.3 by Zn(M ;φ), using the method of cumulants. Weyl’s
explicit representation of Haar measure would allow us to compute the higher moments directly.
However, to facilitate the comparison with number theory, we use the cumulants as in [HR03] and
[HM07]. The cumulants C+

` (φ) and C−` (φ) are defined to satisfy the following equality of formal
power series:

∞∑
`=1

C+
` (φ)

λ`

`!
= lim

M even
M→∞

logESO(M)[exp(λZ(U ;φ))], (5.1)

∞∑
`=1

C−` (φ)
λ`

`!
= lim

M odd
M→∞

logESO(M)[exp(λZ(U ;φ))]. (5.2)

Given the first n cumulants, one can compute the first n moments. In particular, for n ≥ 2, we
have that

lim±
M→∞

Zn(M ;φ) =
∑

2k2+3k3+···+nkn=n
kj≥0

(
C±2 (φ)

2!

)k2
· · ·
(
C±n (φ)

n!

)kn n!

k2! · · · kn!
. (5.3)

Now, set S(x) := sin(πx)
πx and define

Qn(φ) := 2n−1
n∑

m=1

∑
λ1+···+λm=n

λj≥1

(−1)m+1

m

n!

λ1! · · ·λm!

∫ ∞
−∞
· · ·
∫ ∞
−∞

φ(x1)λ1 · · ·φ(xm)λm

× S(x1 − x2)S(x2 − x3) · · ·S(xm−1 − xm)S(xm + x1)dx1 · · · dxm. (5.4)

We have the following result due to [HR03].

Lemma 5.1 ([HR03], Section 2.1). Let φ ∈ Sec(R) with supp(φ̂) ⊆
[
− 2
n ,

2
n

]
. For n ≥ 3,

CSO(even)
n (φ) = Qn(φ)

CSO(odd)
n (φ) = −Qn(φ). (5.5)

Moreover, for n ≥ 4,

C
SO(even)
2 = C

SO(odd)
2 = 2

∫ ∞
−∞
|y|φ̂(y)2dy = σ2

φ (5.6)

where σ2
φ is defined as in (1.13).
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Thus, in order to prove Theorem 1.3, it suffices to calculate Qn(φ), which we do in the following
proposition.

Proposition 5.2. Let φ ∈ Sec(R) with supp(φ̂) ⊆
[
− 1
n−a ,

1
n−a

]
for some integer 1 ≤ a ≤ dn/2e.

Let R(n, a;φ) be as in (1.14). Then

Qn(φ) = R(n, a;φ). (5.7)

We complete the proof of Proposition 5.2 in Section 5.4. Assuming Proposition 5.2, we now
prove Theorem 1.3.

Proof of Theorem 1.3. By [HM07, Theorem 1.4], since supp(φ̂) ⊆
[
− 1
n−a ,

1
n−a

]
, then C±j (φ) = 0

for 3 ≤ j ≤ n − a, as in this case the cumulants are the same as those of the Gaussian. Hence,
restricting the sum in (5.3) to those terms with k3 = · · · = kn−a = 0 does not change its value.
Moreover, a ≤ dn/2e and

∑n
`=2 `k` = n imply that kn, kn−1, . . . , kn−a+1 ∈ {0, 1} and at most one

of kn, kn−1, . . . , kn−a+1 is equal to 1. Thus, we can rewrite (5.3) as

lim±
M→∞

Zn(M ;φ) = 1{n even}

(
C±2 (φ)

2

)n/2
n!

(n/2)!
+

∑
k2,`

2k2+(n−`)=n
0≤`≤a−1

(
C±2 (φ)

2!

)k2 (C±n−`(φ)

(n− `)!

)
n!

k2!
(5.8)

where the first term is from when k2 = n/2. Observing that 2k2 + (n − `) = n forces ` = 2k2, we
have

lim±
M→∞

Zn(M ;φ) = 1{n even}
(
C±2 (φ)

)n/2
(2n− 1)!! +

ba−1
2
c∑

k2=0

n!C±n−2k2
(φ)

k2!(n− 2k2)!

(
C±2 (φ)

2

)k2
. (5.9)

Now, applying Lemma 5.1 and Proposition 5.2 to the right hand side of (5.9) and simplifying
completes the proof of Theorem 1.3 after comparing with (1.15). �

5.2. Decomposition of Qn(φ). In this section, we work towards Proposition 5.2 by evaluating

Qn(φ), as defined in (5.4), when supp(φ̂) ⊆
[
− 1
n−a ,

1
n−a

]
and a ≤ dn/2e. The main result of this

subsection is Lemma 5.12, which splits Qn(φ) into a combinatorial term and an integral term which
we will then evaluate separately.

Equation (5.27) of [HM07] gives (independent of the choice of support) that

Qn(φ) = 2n−2

∫ ∞
0
· · ·
∫ ∞

0
φ̂(y1) · · · φ̂(yn)K(y1, . . . , yn)dy1 · · · dyn, (5.10)

where

K(y1, . . . , yn) :=

n∑
m=1

∑
λ1+...+λm=n

λj≥1

(−1)m+1

m

n!

λ1! · · ·λm!

∑
ε1,...,εn∈{±1}

m∏
`=1

χ{|∑n
j=1 η(`,j)εjyj|≤1} (5.11)

and

η(`, j) :=

{
+1 if j ≤

∑`
k=1 λk

−1 if j >
∑`

k=1 λk.
(5.12)
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5.2.1. Simplifying K(y1, . . . , yn). To evaluate Qn(φ), we first discuss how we will interpret the

expression K(y1, . . . , yn) for y1, . . . , yn ∈
[
0, 1

n−a

]
.

Definition 5.3. Throughout this section, if I ⊆ {1, . . . , n}, we write

χI = χ{y1+···+yn>1+2
∑
i∈I yi}. (5.13)

Definition 5.4. A system of parameters (or s.o.p.) is an ordered tuple (m,λ1, . . . , λm, ε1, . . . , εn)
with 1 ≤ m ≤ n, λ1 + · · ·+ λm = n, λi ≥ 1 for all 1 ≤ i ≤ m, and εj = ±1 for each 1 ≤ j ≤ n.

Given a system of parameters S, we may use ηS(`, j) to denote the function η(`, j) where the λk
are taken from S. When it is clear from context that the λk are taken from the s.o.p. S, we simply
denote this function η(`, j). Fix n ≥ 2a and a s.o.p. S = (m,λ1, . . . , λm, ε1, . . . , εn). Consider the
product

m∏
`=1

χ{|
∑n
j=1 η(`,j)εjyj |≤1} (5.14)

from (5.11). Fix 1 ≤ `0 ≤ m. In order to study (5.14), we study the complement of the indicator
functions in (5.14), given by

χ{|
∑n
j=1 η(`0,j)εjyj |>1}. (5.15)

For y1, . . . , yn ∈
[
0, 1

n−a

]
, if
∑n

j=1 η(`0, j)εjyj > 1 then we cannot find y′1, . . . , y
′
n ∈

[
0, 1

n−a

]
such

that
∑n

j=1 η(`0, j)εjyj < −1 because a ≤ dn/2e. Thus the indicator function (5.15) is identical to

(5.13) for a particular choice of I. Moreover, there exists yi ∈
[
0, 1

n−a

]
such that (5.15) is nonzero

if and only if one of the following (mutually exclusive) conditions holds:

(i) |{1 ≤ j ≤ n : η(`0, j)εj = +1}| ≤ a− 1, or
(ii) |{1 ≤ j ≤ n : η(`0, j)εj = −1}| ≤ a− 1 .

If case (i) holds, we define
J`0 := {1 ≤ j ≤ n : η(`0, j)εj = +1} (5.16)

and say that J`0 has sign ζ`0 = +1.
If case (ii) holds, we define

J`0 := {1 ≤ j ≤ n : η(`0, j)εj = −1} (5.17)

and say that J`0 has sign ζ`0 = −1.
If neither case holds, then J`0 is undefined.

Lemma 5.5. If S = (m,λ1, . . . , λm, ε1, . . . , εn) is a system of parameters and J ⊆ [1, n] is any
subset, then there is at most one `0 ∈ [1,m] and ζ ∈ {±1} such that η(`0, i)εi = ζ for i ∈ J and
η(`0, j)εj = −ζ for j /∈ J .

Proof. Suppose `1 > `0 and that both `0 and `1 have this property for some ζ0 and ζ1. Without
loss of generality, we assume that J = {i : η(`0, i)εi = −1}. It is clear that we cannot also have
I = {i : η(`1, i)εi = −1}, so we may assume that I = {i : η(`1, i)εi = +1}, but then we must have
η(`0, j) = −η(`1, j) for all j, and this is clearly impossible. �

In particular, if J`0 and J`1 are both defined, then J`0 6= J`1 .

Definition 5.6. For a s.o.p. S = (m,λ1, . . . , λm, ε1, . . . , εn), let {`1, . . . , `t} ⊆ {1, . . . ,m} be the
set of indices for which I`j is defined. Define

J(S) := {J`1 , . . . , J`t} . (5.18)

Define
I(S) := {I1, . . . , Ir} (5.19)
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to be the subset of elements of J(S) which are minimal with respect to inclusion. That is, I(S)
consists of those elements of J(S) which do not strictly contain any other elements of J(S). By
Lemma 5.5, for each i ∈ [1, r] there is a unique `i such that Ii = J`i. Finally, define the function

σS(y1, . . . , yn) :=
r∑
i=1

∑
1≤j1<···<ji≤r

(−1)i(χIj1 · · ·χIji )(y1, . . . , yn), (5.20)

and the quantity

A(S) :=
(−1)m+1

m

n!

λ1! · · ·λm!
. (5.21)

The next lemma for σS resembles the Möbius inversion formula from elementary number theory.

Lemma 5.7. For any s.o.p. S, we have

σS(y1, . . . , yn) =

{
−1 if χI(y1, . . . , yn) = 1 for some I ∈ I(S)

0 otherwise.
(5.22)

Proof. Fix (y1, . . . , yn). Suppose there are k elements in I(S) whose support contains (y1, . . . , yn).

If k = 0 the result is immediate. Now, for k ≥ 1 and 1 ≤ i ≤ k, there are
(
k
i

)
terms in the ith

summand of with coefficient (−1)i and all the other terms vanish. Thus we have

σS(y1, . . . , yn) =

k∑
i=1

(
k

i

)
(−1)i = (1− 1)k − 1 = −1. (5.23)

�

We now have the following reformulation of the quantity from 5.11 in terms of A(S), defined in
5.21.

Lemma 5.8. For (y1, . . . , yn) ∈
[
0, 1

n−a

]n
,

K(y1, . . . , yn) =

n∑
t=1

(−1)t
∑

(I1,...,It)
valid

(χI1 · · ·χIt)(y1, . . . , yn)
∑

s.o.p. S with
I1,...,It∈I(S)

A(S). (5.24)

Proof. The product (5.14) vanishes at (y1, . . . , yn) if and only if there is some J ∈ J(S) such that
χJ is supported at (y1, . . . , yn) if and only if there is some I ∈ I(S) such that χI is supported at
(y1, . . . , yn). So, by Lemma 5.7,

m∏
`=1

χ{|
∑n
j=1 η(`,j)εjyj |≤1}(y1, . . . , yn) = 1 + σS(y1, · · · , yn) . (5.25)

Substituting (5.25) into (5.11), we have that

K(y1, . . . , yn) =
n∑

m=1

∑
λ1+...+λm=n

λj≥1

(−1)m+1

m

n!

λ1! · · ·λm!
· 2n +

∑
s.o.p.’s S

A(S)σS(y1, . . . , yn). (5.26)

Now, we apply the following identity given by Soshnikov [Sos00]:

z = log(1 + (ez − 1)) =

∞∑
n=1

zn
n∑

m=1

∑
λ1+···+λm=n

λj≥1

(−1)m+1

m

1

λ1! · · ·λm!
(5.27)

which gives that the first sum in (5.26) is 0. Expanding the second sum using the definition of σS

from (5.20) and rearranging completes the proof. �
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5.2.2. Simplifying Qn(φ). In this section, we simplify Qn(φ) by applying Lemma 5.8 to the quantity
Qn(φ) as in (5.10). First, we define further notation which allows us to express Qn(φ) (through
Lemma 5.12) in terms of combinatorial quantities which we then compute in Section 5.3.1 and
5.3.2.

The symmetric group Sn acts naturally on sets of (unordered) t-tuples of subsets of [1, n] by
permuting the elements in each subset of each tuple. Take such a t-tuple (I1, . . . , It) and some
Ij = {i1, . . . , ik}. Given some permutation τ ∈ Sn, we have that τ(Ij) = {τ(i1), . . . , τ(ik)}. Let
χI1 · · ·χIt and χJ1 · · ·χJt be elements of Ω such that there exists a permutation τ ∈ Sn so that for
each 1 ≤ ` ≤ t, τ(I`) = J`. Then,∫ ∞

0
· · ·
∫ ∞

0
φ̂(y1) · · · φ̂(yn)(χI1 · · ·χIt − χJ1 · · ·χJt)(y1, . . . , yn)dy1 · · · dyn = 0. (5.28)

This motivates the following definition.

Definition 5.9. The symmetric group Sn acts naturally on sets of (unordered) t-tuples of subsets
of [1, n], as described above. An orbit of this action is called a t-class.

For a t-class C, we define∫
C dy :=

∫ ∞
0
· · ·
∫ ∞

0
φ̂(y1) · · · φ̂(yn)χ(y1, . . . , yn) dy1 · · · dyn, (5.29)

where χ := χI1 · · ·χIt with (I1, . . . , It) ∈ C. Equation (5.28) shows that the integral
∫
C dy is

well-defined.

Definition 5.10. We call an unordered tuple (I1, . . . , It) of subsets of {1, . . . , n} valid if I1, . . . , It ∈
I(S) for some s.o.p. S and χI1 · · ·χIt is supported at some point in

[
0, 1

n−a

]n
.

We can extend this definition to a t-class.

Definition 5.11. We call a t-class valid if it contains at least one valid tuple.

We are now ready to prove the main result of the section.

Lemma 5.12. For a s.o.p. S and a t-class C, set

T (S,C) := # {(I1, . . . , It) ∈ C : I1, . . . , It ∈ I(S)} . (5.30)

We have

Qn(φ) = 2n−2
n∑
t=1

(−1)t
∑

valid t-classes C

 ∑
s.o.p.’s S

T (S,C)A(S)

∫ Cdy. (5.31)

Proof. Given a valid t-class C, there is a valid tuple (I1, . . . , It) ∈ C for which χI1 · · ·χIt is supported

at some point (y1, . . . , yn) ∈
[
− 1
n−a ,

1
n−a

]n
. Therefore, if τ ∈ Sn, then χτ(I1) · · ·χτ(It) is supported

at (yτ(1), . . . , yτ(n)). Since Sn acts transitively on C, this means that every tuple in C is valid. Now,
applying Lemma 5.8 to (5.10) and grouping tuples into t-classes completes the proof. �

5.3. Computing the combinatorial piece. In this section, we calculate
∑
T (S,C)A(S) for

valid t-classes C, where T (S,C) and A(S) are defined as in (5.30) and (5.21), respectively. In
Section 5.3.1 we find a closed form for the case t = 1, and then in Section 5.3.2 we show that when
t ≥ 2 the quantity vanishes.
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5.3.1. Computing for valid 1-classes. In this section, we compute the terms in (5.31) for which
t = 1. We first classify the valid 1-tuples.

Lemma 5.13. If I and J are subsets of [1, n] such that |I ∪ J | ≥ a, then χI ·χJ is identically zero

on
[
0, 1

n−a

]n
.

Proof. Let I and J be as in the hypotheses, and assume for contradiction that both y1 + · · ·+yn >

1 + 2
∑

i∈I yi and y1 + · · · + yn > 1 + 2
∑

j∈J yj for some (y1, . . . , yn) ∈
[
0, 1

n−a

]n
. Since

yh ≤ 1
n−a for every h,

∑
h/∈I∪J yh ≤ 1, so we must have that

∑
i∈I yi <

∑
j∈J\I yj and similarly∑

j∈J yj <
∑

i∈I\J yi by our assumptions. Adding these inequalities gives∑
i∈I

yi +
∑
j∈J

yj <
∑
i∈I\J

yi +
∑
j∈J\I

yj , (5.32)

which is a contradiction, as all the yh’s are nonnegative and the terms on the right are a subset of
those on the left. �

Lemma 5.14. If I is a subset of [1, n], then the 1-tuple (I) is valid if and only if |I| ≤ a− 1.

Proof. If |I| > a− 1, then (I) is not valid by Lemma 5.13, taking both subsets to be I.
Now suppose |I| ≤ a−1. Let yj = 1/(n−a) for each j /∈ I and let yi = 0 for each i ∈ I. It is clear

that χI(y1, . . . , yn) = 1. Now consider the system of parameters S = (m,λ1, . . . , λm, ε1, . . . , εn),
where m = 1, λ1 = n, and εi = −1 if and only if i ∈ I. Clearly, I ∈ I(S). Therefore, (I) is
valid. �

It follows from Lemma 5.14 that the valid 1-classes are exactly the classes

Cf := {(I) : I ⊆ [1, n], |I| = f} (5.33)

with 0 ≤ f ≤ a− 1.

Lemma 5.15. Let 1 ≤ f ≤ a − 1. Let S = (m,λ1, . . . , λm, ε1, . . . , εn) be a system of parameters
with m ≥ 2 and suppose (I) ∈ Cf is such that, for some 1 ≤ ` ≤ m, we have I = J` ∈ J(S). Define
Λ` := λ1 + · · · + λ`. Then I ∈ I(S) if and only if [Λ`−1 + 1,Λ`] 6⊆ I and [Λ` + 1,Λ`+1] 6⊆ I. If
` = m, then we set [Λm + 1,Λm+1] to [1,Λ1] = [1, λ1].

Proof. Assume without loss of generality that J` has sign ζ` = −1, i.e. J` = {j : η(`, j)εj = −1}.
For any `′ < `, we have

η(`, j)εj =

{
−η(`′, j)εj if j ∈ [Λ`′ + 1,Λ`] ,

η(`′, j)εj if j /∈ [Λ`′ + 1,Λ`] .
(5.34)

If [Λ`−1 + 1,Λ`] ⊆ J`, then J`−1 = J` r [Λ`−1 + 1,Λ`] ( J`. In particular, J` is not minimal, so
J` /∈ I(S). Similarly, if [Λ` + 1,Λ`+1] ⊆ J` then J`+1 = J` r [Λ` + 1,Λ`+1] so J` is not minimal.

Now assume J` is not minimal, so there exists some J`′ ( J`.
First, suppose the sign of J`′ is ζ`′ = −1. Suppose that `′ < `. By (5.34), J`′ r [Λ`′ + 1,Λ`] =

J`r [Λ`′+1,Λ`], while J`′ ∩ [Λ`′+1,Λ`] and J`∩ [Λ`′+1,Λ`] are disjoint with union [Λ`′+1,Λ`]. So,
so J`′ ( J` implies [Λ`−1 +1,Λ`] ⊆ [Λ`′+1,Λ`] ⊂ J`. Similarly, if `′ > `, we have [Λ`+1,Λ`+1] ⊂ J` .

Next suppose that the sign ζ`′ = 1. Suppose that `′ < `. By (5.34), J`′ ∩ [Λ`′ + 1,Λ`] =
J`∩[Λ`′+1,Λ`], while J`′r[Λ`′+1,Λ`] and J`r[Λ`′+1,Λ`] are disjoint with union [1, n]r[Λ`′+1,Λ`].
Since J` is not minimal, we must have [Λ` + 1,Λ`+1] ⊂ [1, n]r [Λ`−1 + 1,Λ`] ⊂ J`. When `′ > `, by
the same reasoning we have that [Λ`−1 + 1,Λ`] ⊆ J`.

�
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Lemma 5.16. Fix 1 ≤ f ≤ a− 1. We have∑
s.o.p.’s S
with m≥2

T (S,Cf )A(S) = 2n!(−1)n
∑
c+d≤n
c,d≥0

(−1)c+d+1G(n, f, c, d)
1

(n− c− d)!c!d!
, (5.35)

where

G(n, f, c, d) :=

(
n

f

)
−
(
n− c
f − c

)
−
(
n− d
f − d

)
+

(
n− c− d
f − c− d

)
. (5.36)

Proof. Let S = (m,λ1, . . . , λm, ε1, . . . , εn) denote a variable system of parameters. By Lemma 5.5,
we can rewrite T (S,Cf ) as

T (S,Cf ) =
m∑
`=1

1{J`∈I(S) and #J`=f} . (5.37)

We sum over systems of parameters by first summing over all values of m, then summing over all
possible values of `, then summing over all possible values of c = λ` and d = λ`+1, then summing
over all possible values of λ1, . . . , λm and finally summing over all possible choices of ε1, . . . , εn. For
fixed m,λ1, . . . , λm, the ε1, . . . , εn and J`, ζ` uniquely determine each other, so we may rewrite the
innermost sum as∑

(εj)∈{±1}n
A(S)1{J`∈I(S) and J`:#J`=f} = A(S)

∑
ζ`∈{±1}

∑
#J`=f

1{J`∈I(S)} . (5.38)

By Lemma 5.15, the sum over J` is G(n, f, c, d), since we can choose a general f element subset in(
n
f

)
ways, and we need to subtract off when the c element subset [λ1+· · ·+λ`−1+1, λ1+· · ·+λ`] ⊆ I

or when the d element subset [λ1 + · · ·+λ` + 1, λ1 + · · ·+λ`+1] ⊆ I. Then, we add back in the case
when both subsets are contained in J` since we have double counted it. Finally, there are 2 choices
for ζ`. We have∑

s.o.p.’s S
with m≥2

T (S,Cf )A(S) =
n∑

m=2

m∑
`=1

∑
c,d≥1
c+d≤n

∑
λ1+···+λm=n

λi≥1,λ`=c,λ`+1=d

(−1)m+1

m

n!

λ1! · · ·λm!
2G(n, f, c, d).

(5.39)

Noting that for each value of ` the inner summand is the same, we can set ` = m− 1 and write∑
s.o.p.’s S
with m≥2

T (S,Cf )A(S) = 2n!
∑
c,d≥1
c+d≤n

G(n, f, c, d)

c!d!

n∑
m=2

m
∑

λ1+···+λm−2=n−c−d

(−1)m+1

m

1

λ1! · · ·λm−2!
.

(5.40)

The sum over m equals (−1)n+c+d+1/(n− c− d)!, which follows from evaluating the coefficient of
zn in

∞∑
n=0

(−1)n

n!
zn = e−z =

1

1 + (ez − 1)
=

∞∑
n=0

zn
n∑

m=1

∑
λ1+···+λm=n

λj≥1

(−1)m

λ1! · · ·λm!
.

(5.41)

Applying this to (5.40) gives∑
s.o.p.’s S
with m≥2

T (S,Cf )A(S) = 2n!(−1)n
∑
c+d≤n
c,d≥1

(−1)c+d+1G(n, f, c, d)
1

(n− c− d)!c!d!
.

(5.42)

Now, we can extend the sum to include when c = 0 or d = 0 to complete the proof as in this
case G(n, f, c, d) = 0. �
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We complete our evaluation of the case when m ≥ 2 with the following lemma, proven in
Appendix C.1.

Lemma 5.17. Fix 1 ≤ f ≤ a− 1. We have∑
s.o.p.’s S
with m≥2

T (S,Cf )A(S) = 2

(
n

f

)(
(−1)n+f+1 − 1

)
. (5.43)

Now we evaluate the case when m = 1.

Lemma 5.18. Fix 1 ≤ f ≤ a− 1. We have∑
s.o.p.’s S
with m=1

T (S,Cf )A(S) = 2

(
n

f

)
. (5.44)

Proof. We let S = (1, λ1, ε1, . . . , εn) denote a variable system of parameters. Since m = 1, we have

λ1 = n and A(S) = (−1)2

1
n!
n! = 1 for all S. Now, as in (5.38), we may rewrite the sum over ε1, . . . , εn

as a sum over J1, ζ1. Since m = 1, any f -element J1 ∈ J(S) will be minimal. So,∑
s.o.p.’s S
with m≥2

T (S,Cf )A(S) = A(S)
∑

ζ1∈{±1}

∑
#J1=f

1{J1∈I(S)} =
∑

ζ1∈{±1}

∑
#J1=f

1 = 2

(
n

f

)
. (5.45)

�

Adding equations (5.43) and (5.44) gives the main result of the section.

Lemma 5.19. Fix 1 ≤ f ≤ a− 1. Then∑
s.o.p.’s S

T (S,Cf )A(S) = 2(−1)n+f+1

(
n

f

)
. (5.46)

5.3.2. The vanishing of valid t-classes for t ≥ 2. In this section, we show that all terms with t ≥ 2
in (5.31) vanish. Our main result is the following.

Lemma 5.20. Let C be a valid t-class with t ≥ 2. Then∑
s.o.p.’s S

T (S,C)A(S) = 0. (5.47)

Throughout this section, let S = (m,λ1, . . . , λm, ε1, . . . , εn) be a system of parameters, C a valid
class, and (I1, . . . , It) ∈ C a tuple of subsets of [1, n] such that for each 1 ≤ i ≤ t, there is some
`i and ζ`i ∈ {±1} such that Ii = {j : η(`i, j)εj = ζ`i}. I.e., Ii = J`i with sign ζ`i . Reorder the Ii
so that `1 < `2 < · · · < `t and set I ′i := Ii −

⋂t
k=1 Ik and ji = Λ`i =

∑`i
k=1 λk. To begin, we prove

lemmas which characterize (I1, . . . , It).

Lemma 5.21. Set I1 = J`1 with sign ζ`1 and suppose there is some minimal T such that IT = J`T
with sign ζ`T = −ζ`1. Then, for all i ≥ T , we have Ii = ζ`i with sign ζ`i = −ζ`1.

Proof. Assume WLOG that ζ`1 = −1 so I1 = {j : η(`1, j)εj = −1} and let T be the smallest value
such that IT = {j : η(`T , j)εj = 1}. Suppose there exists some s > T such that Is = {j : η(`s, j)εj =
−1}. If j ≤ jT−1 or j > js, then η(`T , j) = η(`s, j), so j ∈ IT ∪ Is so [1, jT−1]∪ [js + 1, n] ⊆ IT ∪ Is.
Similarly, if j ∈ [jT−1+1, js], then η(`T−1, j) = −η(`s, j), so j ∈ IT−1∪Is so [jT−1+1, js] ⊆ IT−1∪Is.
Since [1, jT−1]∪ [js+1, n]∪ [jT−1 +1, js] = [1, n] and a ≤ n/2, we must have that either |IT ∪Is| ≥ a
or |IT−1 ∪ Is| ≥ a. Then, by Lemma 5.13, C is not valid, a contradiction. Thus such an s cannot
exist so Ii = {j : η(`i, j)εj = +1} for all i ≥ T . �
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The above lemma shows that the sign of (I1, I2, . . . , It) can switch at most once. This motivates
the following definition.

Definition 5.22. The transition point of (I1, . . . , It) is the smallest T such that ζ`T = −ζ`1. If
I1, I2, . . . , It all have the same sign (so that no such T exists), then we set T = 1.

Lemma 5.23. Let T be the transition point of (I1, . . . , It). Then

t⋃
i=1

I ′i = I ′T−1 ∪ I ′T = [1, n] r [jT−1 + 1, jT ] , (5.48)

I ′T−1 ∩ I ′T = ∅ , and (5.49)

t⋂
i=1

Ii = IT−1 ∩ IT ⊆ [jT−1 + 1, jT ] , (5.50)

taking indices cyclically in [1, t] and intervals cyclically in [1, n] so that I ′0 := I ′t and I0 := It and
[j0 + 1, j1] = [jt + 1, n] ∪ [1, j1]. Additionally, if 1 ≤ i ≤ t with i 6= T − 1, then

(Ii ∩ [ji + 1, ji+1]) ∪ (Ii+1 ∩ [ji + 1, ji+1]) = [ji + 1, ji+1] and (5.51)

(Ii ∩ [ji + 1, ji+1]) ∩ (Ii+1 ∩ [ji + 1, ji+1]) = ∅. (5.52)

In other words, the restriction of Ii and Ii+1 to the interval [ji + 1, ji+1] forms a partition of the
interval. If i = t and T 6= 1, again taking indices and intervals cyclically, we set It+1 = I1 and
[jt + 1, j1] = [jt + 1, n] ∪ [1, j1].

Proof. We consider indices and intervals cyclically in [1, t] and [1, n] respectively, as in Lemma 5.23.
For j ∈ [jT−1 +1, jT ], the value η(`i, j)εjζ`i is independent of i since for any i, i′ either ζ`i/ζ`i′ and

η(`i, j)/η(`i′ , j) are both 1 or both −1. So, for any j ∈ [jT−1 + 1, JT ] either j ∈ Ii for all i of j /∈ Ii
for all i. So,

⋃t
i=1 I

′
i ⊂ [1, n]r [jT−1 + 1, jT ] and

⋂t
i=1 Ii ∩ [jT−1 + 1, jT ] = IT−1 ∩ IT ∩ [jT−1 + 1, jT ].

For j /∈ [jT−1 + 1, jT ], we have η(`T−1, j) = η(`T , j) and so η(`T−1, j)εj , ζ`T−1
= −η(`T , j)εj , ζ`T .

So, every j /∈ [jT−1 + 1, jT ] belongs to exactly one of I ′T−1 and I ′T . We conclude that
⋃t
i=1 I

′
i =

I ′T−1 ∩ I ′T ⊂ [1, n] r [jT−1 + 1, jT ] and IT−1 ∩ IT ⊂ [jT−1 + 1, jT ]. So, IT−1 ∩ IT ∩ [jT−1 + 1, jT ] =

IT−1 ∩ IT =
⋂t
i=1 Ii.

For i 6= T − 1, we have η(`i, j) = −η(`i+1, j) if and only if j ∈ [ji + 1, ji+1] . Since ζ`i = ζ`i+1
, this

means η(`i, j)εjζ`i = −η(`i+1, j)εjζ`i+1
if and only if j ∈ [ji + 1, ji+1] . Hence, each j ∈ [ji + 1, ji+1]

is contained in exactly one of Ii and Ii+1, as desired. �

Definition 5.24. For each 1 ≤ i ≤ t, set

ri := |Ii ∩ [ji + 1, ji+1]| and (5.53)

si := |Ii+1 ∩ [ji + 1, ji+1]|. (5.54)

We call the ordered tuple (T, r1, s1, . . . , rt, st) the structure of (I1, . . . , It) in S where T is the
transition point of (I1, . . . , It). If (T, r1, s1, . . . , rt, st) is a structure for some (I1, . . . , It) ∈ C, we
call it a valid structure for C.

By Lemma 5.23, rT−1 = sT−1 =
∣∣⋂t

k=1 Ik
∣∣. Lemma 5.23 also shows that when i 6= T − 1,

ri + si = |[ji + 1, ji+1]| = ji+1 − ji = λ`i+1 + · · ·+ λ`i+1
. The following lemma shows that the two

tuples with the same structure are in the same t-class.

Lemma 5.25. Let C be a valid t-class and let (I1, . . . , It) ∈ C such that (I1, . . . , It) ∈ I(S) for some
s.o.p. S. Let (J1, . . . , Jt) be another tuple such that (J1, . . . , Jt) ∈ I(P ) for some s.o.p. P . If the
structure of (I1, . . . , It) in S is the same as the structure of (J1, . . . , Jt) in P , then (J1, . . . , Jt) ∈ C.
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Proof. We first set notation. Set S = (m,λ1, . . . , λm, ε1, . . . , εn) and P = (m,λ′1, . . . , λ
′
m, ε

′
1, . . . , ε

′
n).

Set `1 < · · · < `t and `′1 < · · · < `′t such that Ii = {j : ηS(`i, j) = ζ`i} and Ji = {j : ηP (`′i, j) = ζ`′i}.
Lastly, define ji =

∑`i
k=1 λk and j′i =

∑`′i
k=1 λ

′
k.

Without loss of generality, we may assume ζ`1 = ζ`′1 or else we may replace each εi with −εi.
Since (I1, . . . , It) and (J1, . . . , Jt) have the same structure, for each i, we have

|Ii ∩ [ji + 1, ji+1]| = |Ji ∩ [j′i + 1, j′i+1]| and (5.55)

|Ii+1 ∩ [ji + 1, ji+1]| = |Ji+1 ∩ [j′i + 1, j′i+1]|. (5.56)

Let τ ∈ Sn be the permutation which maps the kth smallest element of |Ii ∩ [ji + 1, ji+1]| to the
kth smallest element of |Ji ∩ [j′i + 1, j′i+1]| and the kth smallest element of |Ii+1 ∩ [ji + 1, ji+1]| to
the kth smallest element of |Ji+1 ∩ [j′i + 1, j′i+1]|.

Since τ([ji + 1, ji+1]) = [j′i + 1, ji+1], for all i ∈ [1, t] and j ∈ [1, n] we have η(`i, j) = η(`′i, τ(j)).
Since (I1, . . . , It) and (J1, . . . , Jt) have the same transition value T and we assumed ζ`1 = ζ`′1 , we

have ζ`i = ζ`′i for all i. Moreover, for j ∈ [ji + 1, ji+1] we have η(`i, j)εjζ`i = η(`′i, τ(j))ε′τ(j)ζ`′i so

that εj = ε′τ(j) . But this is true for all i, so in fact εj = ε′τ(j) for all j ∈ [1, n]. So, for all i ∈ [1, t]

and j ∈ [1, n] we have η(`i, j)εjζ`i = η(`′i, τ(j))ε′τ(j)ζ`′i . It follows that τ(I1, . . . , It) = (J1, . . . , Jt) so

(J1, . . . , Jt) ∈ C. �

Lemma 5.25 shows that if a structure is valid for C, then all tuples with that structure are
in C. Thus in order to calculate

∑
T (S,C)A(S), we can first sum over all valid structures for

C and then count tuples and s.o.p.s with that structure. All that remains is to determine when
(I1, . . . , It) ∈ I(S).

Lemma 5.26. Suppose I1, . . . , It ∈ J(S). Then, I1, . . . , It ∈ I(S) if and only if for each 1 ≤ i ≤ t,
[ji − λ`i + 1, ji] 6⊆ Ii and [ji + 1, ji + λ`i+1] 6⊆ Ii.

Proof. Note that Ii ∈ J(S) implies #Ii ≤ a− 1. So, this is an immediate corollary of Lemma 5.15
which says Ii ∈ I(S) if and only if [ji − λ`i + 1, ji] 6⊆ Ii and [ji + 1, ji + λ`i+1] 6⊆ Ii. �

Now we are ready to calculate
∑
T (S,C)A(S).

Lemma 5.27. Let C be a valid t-class with t ≥ 2. Then∑
s.o.p.’s S

T (S,C)A(S) (5.57)

is a sum of terms of the form

f∑
d=1

∑
µ1+···+µd=f

µi≥1

(−1)d

µ1! · · ·µd!
H(f, g, µ1, µd), (5.58)

for some f and g, where

H(f, g, µ1, µd) :=

(
f

g

)
−
(
f − µ1

g − µ1

)
−
(
f − µd
g

)
+

(
f − µ1 − µd
g − µ1

)
. (5.59)

Proof. Let C be a valid t-class. By Lemma 5.25, when summing over all s.o.p.s, we can first sum
over all valid structures, and then over all s.o.p.s and tuples with that structure. To do this, we
can sum over all m, then over all possible values of `1, . . . , `t, then over all λ1, . . . , λm such that
λ1 + · · ·+ λm = n and λ`i+1 + · · ·+ λ`i+1

= ri + si for each i 6= T − 1. Now we use Lemma 5.26 to

determine the summand. We can pick the elements of
⋂t
k=1 Ik, which by Lemma 5.23 is a subset of

[jT−1 +1, jT ], in G(jT − jT−1, rT , λ`T−1
, λ`T ) ways, where G is defined as in (5.36). Next, we choose

the ri elements of Ii contained in the interval [ji + 1, ji+1] in H(ri + si, ri, λ`i+1, λ`i+1
) ways. Then,

there are two possible choices for the sign ζ`1 of I1 and then the signs for the rest of the Ii’s follow
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because the point of transition T is fixed. The choice of ζ`1 and each ri-element set [ji+ 1, ji+1]∩ Ii
determines all εj , so they determine exactly the same data as the Ii.

Lastly, we multiply by A(S). We have that∑
s.o.p.’s S

T (S,C) ·A(S) =
∑

(T,r1,s1,...,rt,st)
a valid structure for C

n∑
m=1

∑
1≤`1<···<`t≤m

∑
λ1+···+λm=n

λ`i+1+···+λ`i+1
=ri+1+si+1 for each i 6= T

λi≥1

× 2G(u, v, λ`1 , λ`t+1)
∏

1≤i≤t
i 6=T−1

H(ri + si, ri, λ`i+1, λ`i+1
)
(−1)m+1

m

n!

λ1! · · ·λm!
.

(5.60)

For each structure, we can fix some i 6= T − 1, which exists since t ≥ 2, to see that this is a sum of
terms of the form

ri+si∑
d=1

∑
µ1+···+µd=ri+si

µi≥1

(−1)d

µ1! · · ·µd!
H(ri + si, ri, µ1, µd). (5.61)

�

We finish the calculation with the following combinatorial lemma, proven in Appendix C.2.

Lemma 5.28. Fix f, g and let H(f, g, µ1, µd) be as in (5.59). Then

f∑
d=1

∑
µ1+···+µd=f

µi≥1

(−1)d

µ1! · · ·µd!
H(f, g, µ1, µd) = 0. (5.62)

Combining Lemmas 5.27 and 5.28 completes the proof of Lemma 5.20. �

5.4. Computing the integral piece. In this section we complete the proof of Proposition 5.2 by
calculating the integral

∫
Cdy appearing in (5.31). Applying Lemmas 5.20 and 5.19 to (5.12) gives

Qn(φ) = 2n−1(−1)n
a−1∑
`=0

(−1)`
(
n

`

)∫ ∞
0
· · ·
∫ ∞

0
φ̂(y1) · · · φ̂(yn)χ{n−`+1,...,n}dy1 · · · dyn. (5.63)

Next we define

ξ`(φ) :=

∫ ∞
0
· · ·
∫ ∞

0
φ̂(y1) · · · φ̂(yn)χ{y1+···+yn−`−yn−`+1−···−yn>1}dy1 · · · dyn (5.64)

and

ξ`(φ) :=

∫ ∞
−∞
· · ·
∫ ∞
−∞

φ̂(y1) · · · φ̂(yn)χ{|y1+···+yn−`|−|yn−`+1|−···−|yn|>1}dy1 · · · dyn. (5.65)

We have that (5.63) equals

Qn(φ) = 2n−1(−1)n
a−1∑
`=0

(−1)`
(
n

`

)
ξ`(φ). (5.66)

We express Qn(φ) in terms of ξ`(φ) with the following lemma.

Lemma 5.29. Let φ ∈ Sec(R) with supp(φ̂) ⊆
[
− 1
n−a ,

1
n−a

]
. Then

Qn(φ) = 2n−2(−1)n
a−1∑
t=0

(−1)t
(
n

t

)
ξt(φ). (5.67)
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Proof. Given supp(φ̂) ⊆
[
− 1
n−a ,

1
n−a

]
and t ≤ a− 1, if |y1 + · · ·+ yn−t| − |yn−t+1| − · · · − |yn| > 1,

then either at most i ≤ a− 1 − t of the yj ’s in the first absolute value are nonnegative and the
rest are negative or at most i ≤ a− 1 − t of the yj ’s in the first absolute value are nonpositive or
zero and the rest are positive. Moreover, the sign of y1 + · · · yn−t matches the second group. There
are

(
n−t
i

)
ways to choose these indices and we introduce a factor of 2 from choosing the sign of

y1 + · · · + yn−t. Lastly, since φ̂ is even, we multiply by a factor of 2t to account for changing the
limits of integration over yn−t+1, . . . , yn. Thus we have

ξt(φ) = 2t+1

∫ ∞
0
· · ·
∫ ∞

0
φ̂(y1) · · · φ̂(yn)

[
a−1−t∑
i=0

(
n− t
i

)
χ{y1+···+yn−i−t−yn−i−t+1−···−yn>1}

]
dy1 · · · dyn

= 2t+1
a−1−t∑
i=0

(
n− t
i

)
ξi+t(φ). (5.68)

Applying the identity∑̀
t=0

(−2)t
(
n

t

)(
n− t
`− t

)
=

(
n

`

)∑̀
t=0

(−2)t
(
`

t

)
=

(
n

`

)
(1− 2)` =

(
n

`

)
(−1)` (5.69)

to (5.66) gives

Qn(φ) = 2n−1(−1)n
a−1∑
`=0

ξ`(φ)
∑̀
t=0

(−2)t
(
n

t

)(
n− t
`− t

)
. (5.70)

Switching the order of summation and setting i = `− t gives

Qn(φ) = 2n−2(−1)n
a−1∑
t=0

(−1)t
(
n

t

)[
2t+1

a−1−t∑
i=0

(
n− t
i

)
ξi+t(φ)

]
. (5.71)

Applying (5.68) gives the desired result. �

We complete the evaluation of Qn(φ) by computing ξt(φ).

Lemma 5.30. Let φ ∈ Sec(R) with supp(φ̂) ⊆
[
− 1
n−a ,

1
n−a

]
. Then we have

ξ`(φ) = φn(0)

− 2

∫ ∞
−∞
· · ·
∫ ∞
−∞

φ̂(x`+1) · · · φ̂(x2)

∫ ∞
−∞

φn−`(x1)
sin(2πx1(1 + |x2|+ · · ·+ |x`+1|))

2πx1
dx1 · · · dx`+1

(5.72)

for ` ≤ a− 1.

Proof. We apply a change of variables given by

x1 = y1 y1 = x1

x2 = y1 + y2 y2 = x2 − x1
...

...

xn−` =
∑n−`

j=1 yj yn−` = xn−` − xn−`−1

xn−`+1 = yn−`+1 yn−`+1 = xn−`+1
...

...
xn = yn yn = xn

(5.73)
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to (5.65), giving

ξ`(φ) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

φ̂(x1)φ̂(x2 − x1) · · · φ̂(xn−` − xn−`−1)

× φ̂(xn−`+1) · · · φ̂(xn)χ{|xn−`|−(|xn−`+1|+···+|xn|)>1}dx1 · · · dxn. (5.74)

Repeatedly applying the identity
∫∞
−∞ f̂(v)ĝ(u − v)dv = f̂g(u) (which arises from the convolution

theorem) to (5.74) gives

ξ`(φ) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

φ̂n−`(xn−`)φ̂(xn−`+1) · · · φ̂(xn)χ{|xn−`|−(|xn−`+1|+···+|xn|)>1}dxn−` · · · dxn.

(5.75)
We rename xn−` to x1, xn−`+1 to x2, and so on until xn to x`+1. This and the identity

χ{|x1|−(|x2|+···+|x`+1|)>1} = 1− χ{|x1|≤1+|x2|+···+|x`+1|} (5.76)

gives

ξ`(φ) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

φ̂n−`(x1)φ̂(x2) · · · φ̂(x`+1)(1− χ{|x1|≤1+|x2|+···+|x`+1|})dx1 · · · dx`+1. (5.77)

Distributing and using the identity φ(0) =
∫∞
−∞ φ̂(x)dx, we have that

ξ`(φ) = φn(0)−
∫ ∞
−∞
· · ·
∫ ∞
−∞

φ̂n−`(x1)φ̂(x2) · · · φ̂(x`+1)χ{|x1|≤1+|x2|+···+|x`+1|}dx1 · · · dx`+1. (5.78)

Fix x2, . . . , x`+1 and set S`(x1) = sin(2πx1(1 + |x2|+ · · ·+ |x`+1|))/(2πx1). We have the identity

χ{|x1|≤1+|x2|+···+|x`+1|}(x1) = 2Ŝ`(x1), (5.79)

which follows from the Fourier pair

sin(2πAx)

2πx
=

∫ ∞
−∞

1

2
χ{|u|≤A}e

2πixudu. (5.80)

Thus Plancherel’s theorem gives us that

ξ`(φ) = φn(0)

− 2

∫ ∞
−∞
· · ·
∫ ∞
−∞

φ̂(x`+1) · · · φ̂(x2)

∫ ∞
−∞

φn−`(x1)
sin (2πx1(1 + |x2|+ · · ·+ |x`+1|))

2πx1
dx1 · · · dx`+1

(5.81)

as desired. �

Applying Lemma 5.30 to (5.67) and comparing with (1.14) completes the proof of Proposition
5.2.

Appendix A. Proof of Lemma 3.1

Proof. We begin by imposing a distinctness condition on the sum over primes in (2.40). Fix a
partition ~n = (n1, . . . , n`) of n, where 1 ≤ n1 ≤ · · · ≤ n` and n1 + · · ·+ n` = n. We want to write
p1 · · · pn = qn1

1 · · · q
n`
` . If the parts of our partition are distinguishable, then by the multinomial

theorem there are (
n

n1, . . . , n`

)
=

n!

(n1!) · · · (n`!)
(A.1)
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ways to do this. Let rx(~n) denote the number of values of i for which ni = x in the partition ~n.
Because the parts of our partition which are the same size are indistinguishable, the number of
ways to write p1 · · · pn = qn1

1 · · · q
n`
` is

σ(~n) :=

(
n

n1, . . . , n`

) n∏
j=1

1

rj !
. (A.2)

Thus we have that

S
(n)
2 (N)

ik
√
N

=
∑

1≤`≤n

∑
~n:=(n1,...,n`)
1≤n1≤···≤n`
n1+···+n`=n

σ(~n)
∑

q1-N,...,q`-N
qj distinct

∏̀
j=1

(
φ̂

(
log qj
logR

)nj ( 2 log qj√
qj logR

)nj)

× 〈λf (N)λf (q1)n1 · · ·λf (q`)
n`〉∗ . (A.3)

Now that we have a distinct sum over primes, we want to apply the multiplicative properties of
Fourier coefficients given in Lemma 2.7. We do some careful bookkeeping in the process. We will
sum over tuples ~m = (m1, . . . ,m`) which are admissible to a given partition ~n. This means that
mi ≤ ni, ni ≡ mi (mod 2), and if ni = nj with i < j then mi ≤ mj . This last condition means
that we order the mis for each fixed value of ni.

For some fixed ~n, ~m with ~m admissible to ~n, let sx,y(~n, ~m) be the number of values of i for which
(ni,mi) = (x, y). For each value of x, the number of ways to order the indices i for which ni = x is

rx(~n)!∏x
j=1 sx,j(~n, ~m)!

. (A.4)

Define the auxiliary function

τ(~n, ~m) :=
n∏
i=1

ri(~n)!∏i
j=1 si,j(~n, ~m)!

(A.5)

and let tn,m be the coefficient of λf (pm) in the expansion of λf (p)n (see (2.29)), so that

λf (p)n =
n∑

m=0

tn,mλf (pm). (A.6)

Note that tn,n = 1 for all n. Expanding the Fourier coefficients with (2.29) and using (2.27), we
have that

S
(n)
2 (N)

ik
√
N

=
∑

1≤`≤n

∑
~n:=(n1,...,n`)
1≤n1≤···≤n`
n1+···+n`=n

∑
~m admissible to ~n

σ(~n)τ(~n, ~m)
∑

q1-N,...,q`-N
qj distinct

×
∏̀
j=1

(
tnj ,mj φ̂

(
log qj
logR

)nj ( 2 log qj√
qj logR

)nj)〈
λf (Nqm1

1 · · · qm`` )
〉
∗ (A.7)

We want to separate (~n, ~m) into a part with ni = mi and a part with ni < mi. Let ~n[ =

(n[1, n
[
2, . . . , n

[
ω) denote the sub partition of ~n with ni > mi, and ~n] = (n]1, n

]
2, . . . , n

]
`−ω) denote

the sub partition of ~n with ni = mi. The analogous notation holds for ~m. Set
∑
n[i = n′, so that
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n]i = n− n′. We have that

σ(~n)τ(~n, ~m) =
n!

n1! · · ·n`!

n∏
i=1

i∏
j=1

1

si,j(~n, ~m)!

=
n!

n′!(n− n′)!
×

 n′!

n[1! · · ·n[ω!

n∏
i=1

i−1∏
j=1

1

si,j(~n, ~m)!

× [ (n− n′)!
n]1! · · ·n]`−ω!

n∏
i=1

1

si,i(~n, ~m)!

]

=

(
n

n′

)
×

 n′!

n[1! · · ·n[ω!

n′∏
i=1

i∏
j=1

1

si,j(~n[, ~m[)!

× [ (n− n′)!
n]1! · · ·n]`−ω!

n−n′∏
i=1

1

ri(~n])!

]

=

(
n

n′

)
σ(~n[)τ(~n[, ~m[)σ(~n]). (A.8)

Applying this identity to (A.7) and using tn,n = 1 and n]i = m]
i gives

S
(n)
2 (N)

ik
√
N

=
∑

0≤ω≤n

∑
0≤n′≤n

(
n

n′

) ∑
~n[:=(n[1,...,n

[
ω)

1≤n[1≤...≤n[ω
n[1+···+n[ω=n′

∑
~m[ admissible to ~n[

n[j<m
[
j

σ(~n[)τ(~n[, ~m[)tn[1,m[1
· · · tn[ω ,m[ω

×
∑

q1-N,...,qω -N
qj distinct

ω∏
j=1

(
φ̂

(
log qj
logR

)n[j ( 2 log qj√
qj logR

)n[j)

×
∑
`

0≤`−ω≤n−n′

∑
~n]:=(n]1,...,n

]
`−ω)

1≤n]1≤...≤n
]
`−ω

n]1+···+n]`−ω=n−n′

σ(~n])
∑

p1-N,...,p`−ω -N
pi distinct
pi 6=qj

`−ω∏
i=1

(
φ̂

(
log pi
logR

)n]i ( 2 log pi√
pi logR

)n]i)

×
〈
λf (Nq

m[1
1 · · · qm[ωω p

n]1
1 · · · p

n]`−ω
`−ω )

〉
∗
. (A.9)

Arguing as in (A.3), we have that

∑
`

0≤`−ω≤n−n′

∑
~n]:=(n]1,...,n

]
`−ω)

1≤n]1≤...≤n
]
`−ω

n]1+···+n]`−ω=n−n′

σ(~n])
∑

p1-N,...,p`−ω -N
pi distinct
pi 6=qj

`−ω∏
i=1

(
φ̂

(
log pi
logR

)n]i ( 2 log pi√
pi logR

)n]i)

×
〈
λf (Nq

m[1
1 · · · qm[ωω p

n]1
1 · · · p

n]`−ω
`−ω )

〉
∗

=
∑

p1-N,...,pn−n′ -N
pi 6=qj

n−n′∏
i=1

(
φ̂

(
log pi
logR

)(
2 log pi√
pi logR

))〈
λf (Nq

m[1
1 · · · qm[ωω p1 · · · pn−n′)

〉
∗
. (A.10)

We apply (A.10) to (A.9). In doing so, we remove the condition that 1 ≤ n[1 · · · ≤ n[ω as we are

no longer concerned with the ordering of our partition. We also relax the condition that ~m[ is
admissible to ~n[. We also suppress the [ notation (as there are no more ]s). Lastly, the first line of
(A.9) is purely combinatorial, so we combine the combinatorial factors appearing in (A.9) into the
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coefficients C ′′~n,~m appearing below. Thus we have that

S
(n)
2 (N) =

∑
0≤ω≤n

∑
0≤n′≤n

∑
~n:=(n1,...,nω)

nj>1
n1+···+nω=n′

∑
~m:=(m1,...,mω)
mj≡nj (mod 2)

0≤mj<nj

C ′′~n,~mE
′′(~n, ~m) (A.11)

where each C ′′~n,~m is some explicit constant only dependent on ~n, ~m and

E′′(~n, ~m) :=
∑

q1-N,...,qω -N
qj distinct

ω∏
j=1

(
φ̂

(
log qj
logR

)nj ( 2 log qj√
qj logR

)nj)

×
∑

p1-N,...,pn−n′ -N
pi 6=qj

n−n′∏
i=1

(
φ̂

(
log pi
logR

)(
2 log pi√
pi logR

))
〈λf (Nqm1

1 · · · qmωω p1 · · · pn−n′)〉∗ .

(A.12)

We want to remove the condition pi 6= qj from the sum over p1, . . . , pn−n′ in (A.12). We apply an
inclusion-exclusion process, subtracting off the terms where some pi = qj . We have that

E′′(~n, ~m) = E′(~n, ~m)−
n−n′∑
a=1

∑
~a=(a1,...,aω)

aj≥0
a1+···+aω=a

C ′′~n,~m,~aE
′′(~n+ ~a, ~m+ ~a) (A.13)

where each C ′′~n,~m,~a is some explicit constant only dependent on ~n, ~m,~a and

E′(~n, ~m) :=
∑

q1-N,...,qω -N
qj distinct

ω∏
j=1

(
φ̂

(
log qj
logR

)nj ( 2 log qj√
qj logR

)nj)

×
∑

p1-N,...,pn−n′ -N

n−n′∏
i=1

(
φ̂

(
log pi
logR

)(
2 log pi√
pi logR

))
〈λf (Nqm1

1 · · · qmωω p1 · · · pn−n′)〉∗ .

(A.14)

The addition of vectors is taken component-wise, so that ~n+~a = (n1 + a1, . . . , nω + aω). We apply
the inclusion-exclusion identity (A.13) to each term E′′(~n+~a, ~m+~a) appearing on the right hand
side of (A.13). Repeating this process n− n′ times, we find that

E′′(~n, ~m) =
n−n′∑
a=0

∑
~a=(a1,...,aω)

aj≥0
a1+···+aω=a

C ′~n,~m,~aE
′(~n+ ~a, ~m+ ~a) (A.15)

where each C ′~n,~m,~a is some explicit constant only dependent on ~n, ~m,~a. In particular, we have that

C ′
~n,~m,~0

= 1. Applying (A.15) to (A.11) gives

S
(n)
2 (N) =

∑
0≤ω≤n

∑
0≤n′≤n

∑
~n:=(n1,...,nω)

nj>1
n1+···+nω=n′

∑
~m:=(m1,...,mω)
mj≡nj (mod 2)

0≤mj<nj

C ′~n,~mE
′(~n, ~m) (A.16)

where each C ′~n,~m is some explicit constant only dependent on ~n, ~m.

We want to remove the distinctness condition from the sum over q1, . . . , qω in (A.14). We again
apply inclusion-exclusion, subtracting off terms where some of the qj ’s are equal. First, we define
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a partition of a set S to be a set ~π = {π1, . . . , πα} where each πi ⊂ S is a nonempty subset of S,
πi ∩ πj = ∅ for every i 6= j, and

⋂
1≤i≤α πi = S. We have that

E′(~n, ~m) = E(~n, ~m)−
∑

1≤α≤ω−1

∑
~π partitions {1,...,ω}

~π={π1,...,πα}

E′(~x, ~y) (A.17)

where E(~n, ~m) is as in (3.2) and for each ~π we have

~x = (x1, . . . , xα), xi =
∑
j∈πi

nj (A.18)

and

~y = (y1, . . . , yα), yi =
∑
j∈πi

mj . (A.19)

We apply the inclusion-exclusion identity (A.17) to each term E′(~x, ~y) appearing on the right hand
side of (A.17). Repeating this process ω times, we have that

E′(~n, ~m) =
∑

1≤α≤ω

∑
~π partitions {1,...,ω}

~π=(π1,...,πα)

C~πE(~x, ~y) (A.20)

where each C~π is some explicit constant only depending on ~π. Applying (A.20) to (A.16) gives the
desired result. �

Appendix B. Increasing support for the non-split family

In this section, we prove Theorem 1.4. Arguing as in Appendix E of [HM07], we need to bound
terms of the form

E(~n, ~m) := 2πik
∑

q1,...,q`
qj distinct

∏̀
j=1

(
φ̂

(
log qj
logR

)nj ( 2 log qj√
qj logR

)nj) ∑
m≤Nε

1

m

×
∞∑
b=1

S(m2, Q;Nb)

Nb
Jk−1

(
4πm
√
Q

Nb

)
(B.1)

where Q = qm1
1 · · · qm`` and nj ≡ mj (mod 2) for all j. Showing that these terms vanish as N →∞

for φ with supp φ̂ ⊂
(
− 2
n ,

2
n

)
completes the proof of Theorem 1.4. These terms are very similar

to the E(~n, ~m) terms introduced in Section 3 (see (3.4), for example), and we are able to evaluate
them in a similar fashion. We omit proofs as they are analogous to the proofs of the corresponding
lemmas in Section 3, which we refer to. We will eventually prove the following lemma.

Lemma B.1. Let E(~n, ~m) be defined as in (B.1). Under GRH for Dirichlet L-functions, if

supp(φ̂) ⊂
(
− 2
n ,

2
n

)
, then E(~n, ~m)� N−ε and thus does not contribute in the limit.

First we restrict the sum over b as in Lemmas 3.3 and 3.4.

Lemma B.2. Suppose supp(φ̂) ⊆
(
− 7

2n ,
7

2n

)
. Then the subterms of E(~n, ~m) in (B.1) for which

(b,N) > 1 are O (N−ε).

Lemma B.3. Suppose supp(φ̂) ⊂
(
−1000

n , 1000
n

)
. Then the subterms of E(~n, ~m) in (B.1) for which

b ≥ N2022 are O(N−12).
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Applying Lemmas B.2 and B.3 to (B.1) gives

E(~n, ~m) = 2πik
∑

q1,...,q`
qj distinct

∏̀
j=1

(
φ̂

(
log qj
logR

)nj ( 2 log qj√
qj logR

)nj) ∑
m≤Nε

1

m

×
∑

(b,N)=1
b<N2022

S(m2, Q;Nb)

Nb
Jk−1

(
4πm
√
Q

Nb

)
+O

(
N−ε

)
. (B.2)

We convert the Kloosterman sums to sums over Gauss sums as in Lemma 2.2.

Lemma B.4. Let N be a prime not dividing b,Q,m. Then

S(m2, NQ;Nb) = − 1

ϕ(Nb)

∑
χ(Nb)

Gχ(m2)Gχ((Q, b∞))χ

(
Q

(Q, b∞)

)
. (B.3)

Applying Lemma B.4 to (B.2) gives

E(~n, ~m) = −2πik
∑

q1,...,q`
qj distinct

∏̀
j=1

(
φ̂

(
log qj
logR

)nj ( 2 log qj√
qj logR

)nj) ∑
m≤Nε

1

m

×
∑

(b,N)=1
b<N2022

1

Nbϕ(Nb)

∑
χ(Nb)

Gχ(m2)Gχ((Q, b∞))χ

(
Q

(Q, b∞)

)
Jk−1

(
4πm
√
Q

Nb

)
+O

(
N−ε

)
.

(B.4)

Next, it holds that subterms involving non-principal characters in (B.4) are negligible in the limit.
This leaves only subterms involving χ0 = χ0 (mod Nb) for each b. It holds that Gχ0(x) = R(x,Nb),
a Ramanujan sum.

Lemma B.5. Assume GRH for Dirichlet L-functions and suppose that supp(φ̂) ⊂
(
− 2
n ,

2
n

)
. Then

the sum over all non-principal characters in (B.4) is O (N−ε).

This lemma corresponds to Lemma 3.5. Applying Lemma B.5 to (B.4) gives

E(~n, ~m) = −2πik
∑

q1,...,q`
qj distinct

∏̀
j=1

(
φ̂

(
log qj
logR

)nj ( 2 log qj√
qj logR

)nj) ∑
m≤Nε

1

m

×
∑

(b,N)=1
b<N2022

R(m2, Nb)R((Q, b∞), Nb)

Nbϕ(Nb)
χ0

(
Q

(Q, b∞)

)
Jk−1

(
4πm
√
Q

Nb

)
+O

(
N−ε

)
.

(B.5)

Now, applying the bounds R(m2, Nb) ≤ m4, R(x,Nb) ≤ ϕ(Nb), and Jk−1(x) � x to (B.5) and

using the fact that supp φ̂ ⊂
(
− 2
n ,

2
n

)
, we find that the main term is absorbed by the error term,

completing the proof of Lemma B.1.

Appendix C. Proofs of Lemmas in Section 5

C.1. Proof of Lemma 5.17.
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Proof. We will consider each term appearing in (5.36) separately. First, define

g1(n, f, c, d) :=

(
n

f

)
, g2(n, f, c, d) :=

(
n− c
f − c

)
g3(n, f, c, d) :=

(
n− d
f − d

)
, g4(n, f, c, d) :=

(
n− c− d
f − c− d

)
(C.1)

and

Gi(n, f) := 2(−1)nn!
∑
c+d≤n
c,d≥0

(−1)c+d+1 gi(n, f, c, d)

(n− c− d)!c!d!
. (C.2)

We want to evaluate G1(n, f)−G2(n, f)−G3(n, f) +G4(n, f). We set ` = c+d to rewrite (C.2) as

Gi(n, f) = 2(−1)n+1n!
n∑
`=0

(−1)`
∑̀
c=0

gi(n, f, c, `− c)
(n− `)!(`− c)!c!

. (C.3)

To evaluate G1(n, f), we group the binomial coefficients to find that

G1(n, f) = 2(−1)n+1

(
n

f

) n∑
`=0

(−1)`
(
n

`

)∑̀
c=0

(
`

c

)

= 2(−1)n+1

(
n

f

) n∑
`=0

(−2)`
(
n

`

)
= −2

(
n

f

)
. (C.4)

Next, we note that G2(n, f) = G3(n, f). We have that

G2(n, f) = 2(−1)n+1

(
n

f

) n∑
`=0

(−1)`
∑̀
c=0

(
f

c

)(
n− c
n− `

)

= 2(−1)n+1

(
n

f

) n∑
c=0

(
f

c

) n∑
`=c

(−1)`
(
n− c
n− `

)
. (C.5)

We reindex the sum by setting `′ = `− c. Doing so, we see that sum over `′ is zero unless n− c = 0.
However, in this case we have that

(
f
c

)
= 0 since f ≤ n/2 < n. Thus each term vanishes and

G2(n, f) = G3(n, f) = 0. (C.6)

Lastly, again grouping terms into binomial coefficients gives

G4(n, f) = 2(−1)n+1

(
n

f

) n∑
`=0

(−1)`
(
f

`

)∑̀
c=0

(
`

c

)

= 2(−1)n+1

(
n

f

) n∑
`=0

(−2)`
(
f

`

)
. (C.7)

We may restrict the sum in the last line to 0 ≤ ` ≤ f since f ≤ n and
(
f
`

)
= 0 when ` > f . Doing

so, we find the sum over ` is (−1)f so

G4(n, f) = 2(−1)n+f+1

(
n

f

)
. (C.8)

Combining (C.4), (C.6) and (C.8) completes the proof of the lemma. �
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C.2. Proof of Lemma 5.28.

Proof. We consider each term appearing in (5.59) separately. First, define

h1(f, g, µ1, µd) :=

(
f

g

)
, h2(f, g, µ1, µd) :=

(
f − µ1

g − µ1

)
h3(f, g, µ1, µd) :=

(
f − µd
g

)
, h2(f, g, µ1, µd) :=

(
f − µ1 − µd
g − µ1

)
(C.9)

and

Hi(f, g) :=

f∑
d=1

∑
µ1+···+µd=f

µi≥1

(−1)d

µ1! · · ·µd!
hi(f, g, µ1, µd) (C.10)

for i ∈ {1, 2, 3, 4}. We will show that Hi(f, g) = (−1)f/g!(f − g)! independent of i, so that
H1 − H2 − H3 + H4 = 0 as desired. For H1 the result follows immediately from comparing
coefficients of zf in the identity (5.41). For H2, we pull out the µ1 term to get

H2(f, g) = −
f∑

µ1=1

1

µ1!

(
f − µ1

g − µ1

) f−µ1∑
d=1

∑
µ2+···+µd=f−µ1

µi≥1

(−1)d−1

µ2! · · ·µd!
. (C.11)

Applying (5.41) and simplifying gives

H2(f, g) = −
f∑

µ1=1

1

µ1!

(
f − µ1

g − µ1

)
(−1)f−µ1

(f − µ1)!

= − (−1)f

(f − g)!

f∑
µ1=1

(−1)µ1

µ1!(g − µ1)!
=

(−1)f

g!(f − g)!
, (C.12)

where the last step comes from restricting the summation to 1 ≤ µ1 ≤ g and using the binomial
expansion of (1− 1)g. We can show the result for H3 similarly. For H4, we pull out the µ1 and µd
terms to get

H4(f, g) =

f∑
µd=1

f−µd∑
µ1=1

1

µ1!µd!

(
f − µ1 − µd
g − µ1

) f−µ1−µd∑
d=1

∑
µ2+···+µd−1=f−µ1−µd

µi≥1

(−1)d−2

µ2! · · ·µd−1!
. (C.13)

Applying (5.41) and simplifying gives

H4(f, g) =

f∑
µ1=1

f−µ1∑
µd=1

1

µ1!µd!

(
f − µ1 − µd
g − µ1

)
(−1)f−µ1−µd

(f − µ1 − µd)!

= (−1)f
f∑

µd=1

(−1)µd

(f − g − µd)!µd!

f−µd∑
µ1=1

(−1)µ1

µ1!(g − µ1)!

=
(−1)f+1

g!

f∑
µd=1

(−1)µd

(f − g − µd)!µd!
=

(−1)f

g!(f − g)!
(C.14)

where the last two steps come from restricting the summation to 1 ≤ µ1 ≤ g and 1 ≤ µd ≤ f − g
and using the binomial expansion of (1− 1)g and (1− 1)f−g. �
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Appendix D. Bounding the order of vanishing at the central point

In this section, we follow the arguments of Section 6 of [HM07] in order to bound the proportion
of newforms with negative sign whose order of vanishing exceeds a certain threshold r. While they
are conditional on GRH, our results surpass the best known conditional and unconditional bounds
established in [ILS99], [HM07], and [BCD+20] when r ≥ 5. We focus on the case r = 5, however
our results may be easily generalized the case when r > 5. Additionally, we study the 4th-centered
moment as it provides the best bounds for the case r = 5, but utilizing higher moments provides
better bounds as r increases. Lastly, similar results may be obtained for the positive sign family.
See [DM22] for a more in-depth analysis, where the results of this paper are used to find excellent
bounds for vanishing to order r or more; specifically, for a fixed test function Dutta and Miller
determine what level density gives the best bound.

We utilize Theorem 1.2 with n = 4 and

φ(x) =

(
sinπσx

πσx

)2

, φ̂(y) =

{
1
σ −

|y|
σ2 |y| < σ

0 |y| ≥ σ.
(D.1)

This test function is likely not optimal in general for minimizing the nth-centered moment, and
optimal test functions for the case n = 1 and n = 2 are found in [ILS99] and [BCD+20]. However,
they are sufficient to surpass the bounds established in those papers. While Theorem 1.2 requires
σ < 0.5 when n = 4, we may utilize the bounds given by σ = 0.5 by setting σ = 0.5− ε and letting
ε→ 0. Now, Theorem 1.2 gives

lim
N→∞
Nprime

〈(D(f ;φ)− 〈D(f ;φ)〉−)4〉− = 3(σ2
φ)2 −R(4, 2;φ) =

31

105
. (D.2)

Now, if a newform f with negative sign has order of vanishing r ≥ 5 at the central point, then by
Theorem 1.4,

D(f ;φ)− 〈D(f ;φ)〉− ≥ rφ(0)−
(
φ̂(0) +

1

2
φ(0)

)
= r − 5

2
≥ 5

2
. (D.3)

Let Pr(r ≥ 5) be the proportion of newforms with negative sign whose order of vanishing at the
central point is at least 5. Then (D.2) and (D.3) give

Pr(r ≥ 5)

(
5

2

)4

≤ 31

105
(D.4)

so Pr(r ≥ 5) ≤
(

2
5

)4 31
105 = 496

65625 ≈ 0.00756. [ILS99] and [HM07] obtain upper bounds of 1
32 =

0.03125 and 1
49 ≈ 0.02040, respectively, our results surpass both of these. As the order of vanishing

increases, our results are even better. For instance, taking r = 19 and n = 20, we find the proportion
of newforms with negative sign whose order of vanishing exceeds 19 is at most 2.86·10−15, improving
the upper bound 5.77 ·10−6 given in [BCD+20] and the upper bound 3.29 ·10−3 implicit in [ILS99].
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