Local Fields Notes

October 13, 2025

These notes are based on a course of the same title given by Professor Rong Zhou at Cambridge
during Michaelmas Term 2024. They have been written up by Alexander Shashkov. There are
likely plenty of errors, which are my own.
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Part I
Basic Theory

Let f(z1,...,2,) € Z[z1,...,2,]. We want to understand for which points (ai,...,a,) € Z" we
have that f(ai,...,a,) = 0. This is a very hard question. But instead, we might ask the simpler
question for solutions to

flzy,...,2,) =0 modp
f(z1,...,2,) =0 mod p?
f(z1,...,z,) =0 mod p" (0.1)

Local fields package all the mod p™ information together.

1 Absolute values
Definition 1.1. Let K be a field. An absolute value on K is a function
[-]: K —Rxo (1.1)
such that
(i) |z| =0 if and only if 2 = 0.
(i) |z||ly| = |zy| for all z,y € K.
(iil) |z +y| < |x| + |y| for all z,y € K.
We say that (K, |- |) is a value field.
Example 1.2. 1. |a+bi] = va? +b% in K = Q,R,C. This is the ||, the valuation at infinity.
2. The trivial absolute value for any field K is
|z| = {? i ;8 (1.2)
We will mostly ignore the trivial absolute value in this course.

3. Let K = Q, then the p-adic absolute value is

p_vp(x) x 7é 0
|lzlp = _
0 z=0

where x = p”P(z)% with p 1t ab.

Lemma 1.3. ||, is an absolute value.



Proof. We go through the 3 conditions in Definition They are all easy. O

An absolute value on K induces a metric d(z,y) = |« — y|, which in turn induces a topology on
K.

Definition 1.4. Let |- |,|-|" be two absolute values on K. We say that they are equivalent if they
induce the same topology.
Definition 1.5. An equivalence class of absolute values is called a place.

Proposition 1.6. Let |-|,|-|" be two absolute values on K. The following are equivalent:

(i) |-| and || are equivalent.
(i) |z| <1 if and only if |x|" <1 (unit balls are the same).
(iti) There exists ¢ € Rsq such that |x|¢ = |z|’.

Proof. (i) = (ii): We have that |z| < 1 if and only if 2™ — 0 with respect to | - | if and only if
™ — 0 with respect to | - | (by (i)) if and only if |2/| < 1.

(i) = (iii): We have that |z|¢ = |z|" if and only if clog |z| = log|z|’. Let a € K* such that
|a| > 1, which exists because | - | is nontrivial. We need that for all z € K that

logr] _ log ]’ "
logla| — loglal” '
Assume that
logla| = logal”’ '
Choose m,n € Z,n > 0 such that
log|z| ~m _log|z| (1.6)
logla| ~ n = loglal” '
Then nlog |z| < mlogla| and nlog|xz| > mloglal’, so
" n |/
Tl |2 >, 1.7
=< | 1)
which is a contradiction by (ii).
(iii) = (i): This is clear because the open balls are the same. O

Remark 1.7. |-|% on C is not an absolute value by our definition because the triangle inequality
does not hold. Some authors replace the triangle inequality by

&+ y|” < |27 + |y|? (1.8)
for some 8 € R+g.
Definition 1.8. An absolute value on K is non-archimedean if it satisfies the ultrametric inequality:
|z + y| < max(|z], [y[) (1.9)

If | - | is not non-archimedean, we say that it is archimedean.



Example 1.9. | | is archimedean, | - |, is non-archimedean.
Lemma 1.10. Let (K, |-|) be non-archimedean and x,y € K. If |x| < |y|, then |z —y| = |y.

Proof. We have that |z — y| < max(|z|, |y|]) = |y| and |y| < max(|z —y|, |z|) = |z —y| so |z —y| =
lyl- O

Proposition 1.11. Let (K, |-|) be non-archimedean and (x,) a sequence. If |x, —xn 1| — 0, then
the sequence is Cauchy. So if K is complete, then x,, — x.

Proof. We have that
|Zm — 2| < max(|Xm — Tim—1|, -, [Tng1 — xn]) <€ (1.10)
if |SC¢+1 — ZZ?l| < €. O

Example 1.12. Let p = 5, and construct a sequence (z,,)°%; in Z such that 22 +1 =0 mod 5"
and x,, = x,+1 mod 5". Then |z, — Zn4+1]5 < 5" so the sequence is Cauchy.
Take z1 = 2, and let x% + 1 =ab™ and set 41 = x, + b5". Then

22,1 +1=1+22 +5"(2bz, + b*5")

= a5" 4 5"(2bx,, + b*5" (1.11)
So we can choose b so that a + 2bx,, = 0 mod 5. The sequence goes 2,7,32,.... Suppose that
x, — ¢ € Q. Then 22 — (2. But we have that 22 — —1, so £2 = —1. So (Q, | - |5) is not complete.

Definition 1.13. The field of p-adic numbers Q,, is the completion of Q with respect to | - |,.

Let (K,|-|) be a non-archimedean field, and for z € K and r € Ry define

Bla,r) = {y € K | |o —y| <7}
Ble.r)=f{y e K | e —y| <1} (112)

the open and closed balls around z of radius r.

Lemma 1.14. Let z € B(z,r). Then

Proof. (i) Let y € B(x,r). Then |z —y| < r, so
2=yl =1z —2) + (z — y)| < max(|z — z[, |z —y|) < (1.13)

Thus B(z,r) = B(z,r) by symmetry.
(ii) The same argument as above holds.



(iii) Let y ¢ B(x,r). If z € B(xz,r) N B(y,r), then B(z,r) = B(z,r) = B(y,r). Soy € B(z,r),
which is a contradiction. Thus B(z,7) N B(y,r) = (). So there exists an open neighborhood around
y not containing B(z, ), so B(xz,r) is closed.

(iv) If = € B(z,r), then B(z,r) C B(z,7) = B(z,7) so B(z,r) is an open neighborhood in
B(z,r), and

B(x,r)= |J Blzn) (1.14)

2€B(z,r)
O
2 Valuation rings
Definition 2.1. Let K be a field. A valuation on K is a group map v : K* — R such that
(i) v(zy) = v(z) + v(y).
(i) v(z +y) = min(v(z),v(y)).
Fix 0 < a < 1. If v is a valuation on K, then define
v(x) £0
e x
=] = ~ (2.1)
0 z=0
which determines a non-archimedean absolute value. Conversely, given an absolute value | - |, we
can define a valuation
v(x) = log,, |z|. (2.2)

Remark 2.2. We ignore the trivial valuation v(x) = 0 for all z, which induces the trivial absolute
value.

We say that two valuations vy, ve are equivalent if there exists ¢ € R such that vy () = cva(2)
for all x € K*.

Example 2.3. 1. Let K = Q, and v,(x) = log,, x|, = n, where x = p" - £ with p { rs.
2. Let k be a field, and K = k(t) = Frac(k[t]) the function field of k. Then we can define a

valuation
v (t"i;((;)) =n (2.3)

where f(0),g(0) # 0. This is the t-adic evaluation.

3. Let K = k((t)) = Frac(k[[t]]) the ring of formal Laurent series, and let v(P(t)) be the smallest
nonzero index. We have that k((¢)) is the t-adic completion of k(t), and
Qp = Z((1)/(t = p) (2.4)
Definition 2.4. Let (K, |- |) be a non-archimedean field. The valuation ring is defined to be

Ok ={z e K[|z| <1} = B(0,1)
={z e K~ |v(z)>0}uU{0} (2.5)



Proposition 2.5. (i) Ok is an open subring of K.

(ii) The subsets {x € K | |z| <r} = B(0,7) and {x € K | |z| < r} = B(0,r) for r <1 are open
ideal in O .
(iti) The units of the valuation ring are
O ={zeK||z|=1} ={z € K | v(z) =0} (2.6)

Proof. (i) We have that [0] =0, and |1| =1,500,1 € Ok. If x € Oy, then | —z| = |z|, so —x € Ok.
If 2,y € Ok, then |z +y| <max|z|, |y <1,soz+y € O— K. Also |zy| = |z||ly| <1, so zy € Ok.
Thus Ok is a ring.

(ii) Same as (i).

(iii) We have that |z||z7!| =1, so z, 27! € O if and only if |z| = 1. O

By the above, we have that
m:={z €Ok | |z|] <1} (2.7)

is the unique maximal ideal of Ok. It is unique because if ¢ m, then z € O}. We have that
k= 0Og/m (2.8)

is the residue field of K.

Corollary 2.6. Ok is a local ring.

Example 2.7. Let K = Q with absolute value |- |,. Then

a
OKZ%)Z{;EQIPM} (2.9)
and m = pZ,), and k = F,,.

Definition 2.8. Let v : K* — R be a valuation. If v(K*) = Z, so that v(K*) is a discrete
subgroup, we say that |- | is a discrete valuation on K.
An element 7 € Ok is a uniformizer if v(m) > 0 and v(7) generates v(K ™).

Example 2.9. 1. K = Q with v, is a discrete valuation.
2. K = k(t) with the t-adic valuation is a discrete.

3. k(t,t'/2 /4, .. .) with the t-adic valuation is not a discrete valuation as the t-adic valuation
has image Z[1/2], which is not discrete.

Remark 2.10. If v is a discrete valuation, we can rescale so that v(K*) = Z (the normalized
valuation) Then the uniformizer has v(w) = 1.

Lemma 2.11. Let v be a valuation on K. The following are equivalent:
(i) v is discrete.
(ii) Ok is a PID.

(i1i) Ok 1is Noetherian.



(iv) m is principal.

Proof. (i) = (ii): Ok is an integral domain because O C K. Let I C Ok be a nonzero ideal.
Let « € I be such that v(z) is minimal. Such an z exists because v is discrete. We want to show
that

20 ={a € Ok |v(a) >v(z)} =1 (2.10)

We have that 2O C I trivially. Let y € I. Then v(z~'y) >0, so y = z(z~'y) € 20k.
(ii) = (iii): immediate.
(i) = (iv): Write m = 210k + -+ - + 2,0x. WLOG we have that

v(zy) <wv(zg) < - <v(xy,) (2.11)

S0 Xg,...,xy € 110k, som = x10k.
(iv) = (i): Let m = 7Ok for m € Ok, and let ¢ = v(m). If v(z) > 0, then z € m, so v(x) > ¢,

so v(K*)N(0,c) =0, so v is discrete.
O

Let v be a discrete valuation on K, and let 7 € Ok be a uniformizer so that v(w) = 1. Then
for any z € K*, let n € Z be such that v(z) = nv(r) =n. Then if u = 77"z € OF, then x = un".
Thus

K = Frac(Ok) = Og[n ] (2.12)

Definition 2.12. A ring R is a discrete valuation ring (DVR) is it is a PID with exactly one
nonzero prime ideal (which is therefore maximal).

A priori we don’t know that discrete valuation rings and discrete valuations are connected. The
next lemma shows that they are.

Lemma 2.13. (i) Let v be a discrete valuation on a field K. Then Ok is a discrete valuation
7ing.

(ii) Let R be a discrete valuation ring. Then there exists a valuation v on K = Frac(R) such that

R=0k.

Proof. (i) Ok is a PID by Lemma so any nonzero prime ideal is maximal. So Ok is a DVR
because it is local.

(ii) Let R be a DVR with maximal ideal m = () for some m € R. Since every PID is a UFD,
we can write any z € R\ {0} uniquely as 7™u, u € R*. So any y € K> can be written as 7™u
with m € Z. So define v(7™u) = m. Then O = R. O

It’s now clear that many of the examples above are discrete valuation rings.

3 p-adic numbers

Recall that Q) is the completion of Q with respect to the p-adic valuation v,. Q, is a field, and
| - |, extends to a discrete valuation on Q.



Definition 3.1. The ring of p-adic integers Z,, is the valuation ring of ., so that
Zp={x €Qp|lz[p, <1, vp(x) >0} (3.1)

By Lemma Z,, is a discrete valuation ring with maximal ideal pZ,, and all the ideals are
of the form p"Z,.

Proposition 3.2. Z, is the closure of Z inside Qp. In particular, Z, is the completion of Z iwth
respect to | - |p.

Proof. We need to show that Z is dense in Z, since Z, is closed. By definition Q is dense in Q,.
Since Z, C Q, is open, Z, N Q is dense in Z,. But

Z,NQ={z € Q|lal, <1} = Z(. (3.2)

So we want to show that Z is dense in Z ).
Let a/b € Zy), such that a,b € Z with p { b. For n € N, choose y,, € Z such that by, = a
mod p". Then y, — a/b as n — oo. In particular, Z, is complete and Z C Z,, is dense. O

3.1 Inverse limits

Let (A,)32; be a sequence of objects (e.g rings) in a category with maps ¢, : Any1 — A, So we
have

Pn Pn—1 P1
e Ap Ay A1 e Ay Ay

The inverse limit of (4,)22,, if it exists, is an object

@An ={(an)nz; € HAn | enlant1) = an Vn} (3.3)

equipped with projection maps 6,, : @An — A, which commute with the ¢,s. The inverse limit
satisfies the following universal property.

Proposition 3.3. For any object B with maps ¢, : B — A, such that the commutative diagram
below commutes, there exists a unique ¢ : B — yLnAn such that v, factors thorugh 0, by v so that
0 0 = y,. In diagram form we have

B ma,

l PN Jen

®n
Appy ———— A,

Proof. Define ¢ : B — [[ An by ¥(b) = [[¥n(b). The commutativity of the diagram gives 1 (b) €
@ A,,, and the map is unique because it is determined by ,, = 8,, 0%, and it is a map because ¥,
is. U

Definition 3.4. Let I C R be an ideal. Then the I-adic completion of R is defined to be
R=1lmR/I", (3.4)

where R/I"t! — R/I™ is given by the obvious z + I" ™! — z + I" for any = € R.



There exists a natural map ¢ : R — R by x — [« + I"™. We say that R is I-adically complete
if 7 is an isomorphism.

Remark 3.5. The kernel of the map i: R — Ris () I™, which we typically want to be 0 so that i
is injective.

Now let (K, |-|) be a non-archimdedean valued field and 7 € Ok with |7| < 1, so that v(7) > 0.
Proposition 3.6. Assume that K is complete with respect to | -|. Then
(i) O = @OK/W"(’);W so Ok 1s w-adically complete.

(ii) Every x € Ok can be written uniquely as

where a; € A, A C Ok are coset representatives for Ok [mOk.

Proof. (i): Since K is complete and Ok is closed, Ok is complete. We have that keri = (71" Ok,
so x € keri if and only if v(x) > nv(w) for all n, so if and only if x = 0. So ¢ is injective.

Let (2,)22, € @OK/ﬂ'”(’)K and for each n, let y, € Ok be any lifting of =, € Ok /7"Ok.
Then y, — Yynt1 € 7Ok so that v(yn — Ynt1) = nv(mw) = co. Thus (y,) is Cauchy and in Ok so
it converges to some y € Ok. Then z,, — y also because y — x, € Ok /7" Ok, so the map i is
surjective as well.

(ii): Example Sheet.

Corollary 3.7. (i) Z, = @Z/p”Z.

(i) Every element of x € Q, can be written uniquely as
x = Z a;p’ (3.6)
where n € Z, and a; € {0,1,...,p — 1} and a,, # 0 (unless x =0). If n > 0, then x € Z,.
Proof. (i): By Proposition we have that

Zp = mZ,/p"7, (3.7)

so we just need to show that Z,/p"Z, = Z/p"Z. Let f, : Z — Z,/p"Z, be the natural map sending
x — x + p"Zy,. We have that

ker f, ={z € Z | vy(z) > n} =p"Z (3.8)

so we can lift to an injection Z/p"Z — Z,, — p"Zy,. Let z € Z,/p"Z, and ¢ € Z, be a lift. Since Z
is dense in Z,, there exists « € Z such that = € ¢ + p"Z, because p"Z, is open. Then f,(z) = 7.
(ii) Follows from Proposition (ii). O

10



Example 3.8. We have that
1

Part II
Complete Valued Fields

4 Hensel’s Lemma

Theorem 4.1 (Hensel’s Lemma, Version 1). Let (K,|-|) be a complete discretely valued field.
Let f(z) € Ok|r] and assume that there exists a € Ok such that |f(a)| < |f'(a)|?, where f'(a)
is the formal derivative of f(a). Then there exists a unique x € Ok such that f(z) = 0 and

|z —a| <[f'(a)]-

Proof. Let m € Ok be a uniformizer and let » = v(f’(a)). We inductively construct a sequence
(25,)224 in Ok such that

(i) f(xn) =0 mod 72" so v(f(xy)) > n+2r.
(i) Tp41 =2, mod 7"+,

Take 21 = a, and then v(f(z1)) > 2v(f’'(a)) +1 = 2r + 1 so our base case is done. Now suppose
the conditions hold up to z,, and set

f(zn) (4.1)

Tt = T )
n

Since x, = x1 mod 7", we have that v(f'(x,,)) = v(f'(x1)) = r (as f'(z,) = f'(x1 + 7" Lc)), so

v ( J{féﬁ) >ntr. (4.2)

It follows that x,,1 =z, mod pi"*", so (ii) holds.
To show property (i), note that for X,Y indeterminates, we have that

FXHY) = fo(X)+ Y fi(X)+ Y2 fo(X) + - (4.3)
where fo(z) = f(z) and fi(z) = f'(z). Thus taking X =z, and Y = f(z,)/f'(x,), we have that
f(@ni1) = f(@n) + [ (@a)e+ () (4.4)

where ¢ = — f(x,,)/f' (). Since v(c) > n + 7, we have that

V(f(@nt1)) 2 0(f(@n) + [ (@n)e +c?)
> 2n + 2r
>n+142r (4.5)

11



Property (ii) implies that (z,) is Cauchy, and hence convergent. So let © = limz,. Then
f(z) =lim f(z,) = 0. By (ii), a = x; satisfies |a — 2| < |f'(a)| so = satisfies the condition of the
theorem.

For uniqueness, suppose that x’ also satisfies the conditions and set § = x — 2’ # 0. Then
|#" —a] < |f'(a)| and |z — a] < |f'(a)| so the ultrametric inequality implies that

6] = (z —a) = (=" = a)| < [f'(a)| = (). (4.6)

But 0 = f(2/) = f(z +6) = f(x) + f'(@)d + 6*(--+) = f'(x)d + 62(--+). Thus |f/(z)d] < [6?%], so
|f/(z)| < 6, which contradicts (4.6)). O

Essentially what we are doing above is Newton’s method. We have a point a where the slope
f'(a) is “large” relative to f(a). Then applying Newton’s method, the size of the slope stays large,
so we are guaranteed to descend to a solution.

We obtain the following corollary in the case where v(f’(a)) = 0.

Corollary 4.2. Let (K,|-|) be a complete disceretely valued field. Let f(x) € Oklx] and T € k =
Ok /m be a simple oot of
F(z) = f(z) mod m € k[z]. (4.7

Then there exists a unique x € Ok such that f(x) =0 and x =7 mod m.

Proof. Apply Theorem to a lift ¢ € O of 7. Then |f(c)| < 1 = |f'(c)|? because c is a simple
root, so we can applyg the theorem. O

Example 4.3. f(x) = 22 — 2 has a simple root mod 7. Thus there exists a solution in Z7, so we
have that “v/2 € Z;”.

Hensel’s lemma gives us an explicit way to study solutions to polynomials in Q, using polyno-
mials in F,,, as we promised at the very start of the course. Here is one nice application.

Corollary 4.4. We have that

(Z)22)> p>2

(2)27)3 p=2 (48)

Q;/(QE)Q%{

Proof. Let p > 2, and let b € Z). Applying Corollary to f(x) = 2® — b, we find that b € (Z))?
if and only if b € (F)*)*. Thus

7)) (ZX)? = F)[(F))? = Z/2. (4.9)

We have an isomorphism Z, x Z = Q, given by (u,n) — up”™ which gives the deisred result when
p> 2.

If p =2, then let b € Z5, and consider f(z) = 2% —b. Then f'(z) =2x =0 mod 2. Let b =1
mod 8. Then |f(1)| =273 < 272 = |f/(1)|? so we can apply Hensel’s Lemma. Thus we have that
be (Z5)*ifand only if b =1 mod 8, asif b # 1 mod 8, then 2 — b has no solutions in Z/8Z, and
hence none in Z,. Thus we have that

Q;/(Q3)* = (2/22)°. (4.10)
0

12



We can prove another version of Hensel’s lemma “for polynomials”.

Theorem 4.5 (Hensel’s Lemma, Version 2). Let (K,|-|) be a complete discrete valued field and
f(z) € Ok[z]. Suppose that _
f(z) = f(z) mod m € K|x] (4.11)

factors as f(x) = g(z)h(x) with g(z), h(z) coprime. Then there is a factorisation f(x) = g(x)h(z)
in Oklx] with g(z) = g(z) mod m, h(x) = h(z) mod m, and degg = degg.

Proof. Example Sheet 1. Cauchy sequence of polynomials. O

Corollary 4.6. Let (K, |-|) be a complete discretely valued field. Let f(x) = apa™+---+ag € K[z]
with an,ag # 0. If f(x) is irreducible, then |a;| < max(|ag), |an|) for all .

Proof. After scaling we may assume that f(z) € Og|z] with max(|a;|) = 1. Thus we need to show
that max |ag|, |an| = 1. If not, let r be the minimal value such that |a,| =1, 0 < r < n. Thus we
have that

flz)=2"(ar+ - -+ apz™™") mod m. (4.12)

This is a factorisation of f(z). Then Theorem [4.5/implies that the factorisation lifts to a factorisation
f(z) = g(x)h(x) with 0 < degg < m, which is a contradiction as we have assumed that f is
irreducible. O

5 Teichmiller Lifts

Definition 5.1. A ring R of prime characeristic p > 0 is a perfect ring if the Frobenius map
xr — xP. is a bijection.

A field of characteristic p > 0 is perfect if it is perfect as a ring.

By convention, a field of characteristic 0 is always perfect.

Remark 5.2. Since char R =p > 0, (z + y)? = 2P + yP so the Frobenius map is a ring homomor-
phism.

Example 5.3. (i) F,» and F,» are perfect fields.
(ii) Fp[t] is not perfect because t ¢ im(Frob,).

(iii) F,(t1/P7) = F,(t,t1/P, (/e .) is perfect (we add in all pth roots). This is the “perfection”
of F,(t), and gives rise to Scholze’s thoery of perfectoid spaces.

Remark 5.4. A field of charp > 0 is perfect if and only if any finite extension of K is separable,
so that any irreducible polynomial in K has simple roots.

Theorem 5.5. Let (K,|-|) be a complete discrete value field such that k = Ok /m is perfect of
characteristic chark = p > 0. Then there exists a unique map, the Teichmiiller map

[] k— OK (51)
such that

(i) a = [a] mod m for all a € k.

13



(i1) [ab] = [a][b] for all a,b € k.
Moreover, if char O = p, then [a+b] = [a] + [b], so [}] is a ring homomorphism.
We do a little work before we prove the theorem.
Definition 5.6. The element [a] € Ok constructed above is the Teichriuller lift of a.

Lemma 5.7. Let (K,|-|) be as in Theorem and fix o uniformizer m € Og. Let x,y € Ok
such that * =y mod 7. Then zP = y? mod 7",

Proof. Let x = y 4+ un™ for some u € Og. Then

P
P =yP + Z <p> yP~ (ur™)' = P + pyP " H(ur™) mod 7" (5.2)
)
i=1
Since O /TOf has characteristic p, we have that p € 1Ok, so py?~!(ur™) € 7" 1 O0k. O

Proof of Theorem[5.3. Let a € k. For each i > 0, we choose a lift y; € Ok of al/P" which exists
because k is perfect. Define z; = yf

Claim: (z;) is Cauchy, and the limit is independent of the choice of y;.
n n+1
By construction, y; = yf_H mod 7. By Lemma and induction on n, we have that y? = ny

mod 7”1 and hence z; = x;,1 mod 7!, So (x;) is Cauchy, so z; — = € Of.

Suppose () is another sequence arising from some sequence (y;) of liftings of ai/ P' Then (x})
is Cauchy and converges to some z’. Let

T; 1 even
7= {a:’- i odd (5:3)
Then z arises from the liftings
Yi 1 even
gl = {y{ i odd (5.4)

Then 2z — z”, and we obviously have that 2’/ = z = z’. So we can define [a] = x, and the previous
argument shows that this is well defined. We want to show that [a] = z is a valid Teichmiiller lift.
We have that . o
i =y" = (@/?) =a modn (5.5)

soxz =a mod m. Let b € k, so that [b] = z with z = lim z;, where z; = uf and u; = b1/P" mod m.
Then u;y; is a lift of (ab)'/?", so [ab] = lim z;x; = zx = [a][b]. If char Ok = p, then y; + u; is a lift
of al/?" + b1/ = (a +b)Y/?', so [a + b = lim(y; + u;)?" = limy? +u? = [a] + [b].

It’s also easy to check that [0] = 0 and [1] =1 as we can set x; = 0 or a; = 1, respectively.

For the uniqueness of the Teichmiiller map, let ¢ : K = Ok be another such map. Then for all

a €k, p(a*/?") is a lift of a'/P" and we can define another Teichmiiller lift under this condition as
before. Then ¢(a) = [a], because

[a] = lim ¢(a'/P" )" = lim ¢(a) = ¢(a). (5.6)
O
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The key idea is that the Teichmiiller map is a lifting of a € k which gets rid of all the “pth power
imperfection”. We take a lift of a'/?", and then we take the p’th power. Taking p‘th powers gets
rid of all the pth root of unity stuff. The proof shows that no matter what lift we take we get the
same result.

Example 5.8. If K = Q,, then [-] : F, = Z,,. If a € F¥, then [a]?~! = [a?"!] = [1] =1, s0 [a] is a
(p — 1)th root of unity. So Q, contains all (p — 1)th roots unity since the Teichmiiller lifts are all
different as [a] = a mod m.

Lemma 5.9. Let (K,|-|) be a complete discretely valued field. If k = Ox/m C F, and a € k*,
then [a] is a root of unity.

Proof. If a € k, then a € F)}. for some n. Then [a]P"~! = [a?"~!] = [1] = 1. O

Theorem 5.10. Let (K,|-|) be a complete discretely valued field with char(K) = p > 0 such that
k is perfect. Then K = k((t)).

Proof. Since K = Frac(Ok), it suffices to show that Ox = k[[t]]. Fix 7 € Ok a uniformizer, let
[[]: K — Ok be the Teichmiiller lift, and define

¢ kllt]] = Ok
® (Z aiti> = Z[ai]ﬂ'i. (5.7)
i=0 =0

Then ¢ is a ring homomorphism since char(K) = chark = p, and it is a bijection by Proposition

[3-6] (ii). O

6 Extensions of Complete Value Fields

Let L/K be a finite extension of fields. Then we can think of L as a finite dimensional K vector
space. Recall the field norm Ny k : L — K defined by

Npyx(y) = det e (mult(y)), (6.1)

where det is the determinant and mult(y) is the K-linear map given by x — zy. We have that
Ni/k(zy) = Nojx(®)Npj(y). If 2" + ap_12"" ' + -+ + ap € K[z] is the minimal polynomial of
y € L, then Ny, /i (y) = Fag' for some ai’. So N,k (y) = 0 if and only if y = 0.

The following theorem which allows us to extend discrete valuations on K to those on L.

Theorem 6.1. Let (K,|-|) be a complete discretely valued field and let L/K be a finite extension
of degree n. Then

(i) || extends uniquely to an absolute value | - |, on L defined by

lylL = |NL/K(y)|1/" (6.2)
for ally € L.

(i) L is complete with respect to |- |r,.
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We build up some machinery before we prove this theorem.

Definition 6.2. Let (K, |- |) be a nonarchimedean valued field and V' a vector space over K. A
norm on V' is a function || - || : V' — Rx¢ such that

(i) |lz|| = 0 if and only if z = 0.
(ii) [|[Az] = |A||jz| forall A € K,z € V.
(iii) ||z 4+ y|| < max(||z|, |ly]]) for all z,y € V' (ultrametric).

Example 6.3. If V is a finite dimensional over K and ey,...,e, is a basis, then the supremum
(sup) norm || - ||sup on V is defined
Hx”sup = m?x ‘xl (63)

where z = ) x;e;. It is an easy exercise to show that || - ||sup is a norm.

Definition 6.4. Two norms || - |1, || - ||]2 on V are equivalent if there exists C, D € R such that
Cllzfx < flzlls < D[y (6.4)
forallz e V.

Its easy to see that a norm defines a topology on V' by the induced metric d(z,y) = ||z — y||,
and it follows that equivalent norms induce the same topology.

Proposition 6.5. Let (K,|-|) be a complete, non-archimedean field, and V a finite dimensional
vector space over K. Then V is complete with respect to || - ||sup-

Proof. Let (v;) be a Cauchy sequence in V and ey, ..., e, a basis for V. Write v; = Zj xj»ej. Then

(z%)32, is Cauchy in K, so (z%) — x; € K. So then v = Y_ z;e; is the limit of v;. O

Theorem 6.6. Let (K,|-|) be a non-archimedean field, and let V' be a finite dimensional vector
space over K. Then any two norms on V are equivalent. In particular, they are equivalent to the
sup norm, and hence V' is complete with respect to any norm.

Proof. Equivalence of norms defines an equivalence relation on the set of norms, so it suffices to
show that any norm equivalent to the sup norm. Let eq,...,e, be a basis for V, and || - || a norm
on V. Set D = max; ||e;|| > 0. Then for x = > z;e;, we have that

[ < max [lzse;]| = max [zi|[|e;]| < max|;[D = Dljz|sup- (6.5)

We need to find C such that C||z||sup < ||z|| for all z € K. We proceed by induction on dim V. For

n =1, we have that ||z|| = |z1]||e1]] = ||le1]|||z]/sup S0 We may take C = ||eq]|.

For n > 1, assume the claim holds up to n — 1, and set V; = Span{ey,...,é;,...,e,}. This is
an (n — 1)-dimensional subspace, and || - ||sup and || - || restrict to each V; and are equivalent and
complete by the inductive hypothesis. Since V; is complete with respect to || - ||, it is closed. Then

the translation e; + V; is closed for all 4, and hence

n

S=Jle: + W) (6.6)

i=1
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is a closed subset not containing 0. So there exists an open ball around 0 of radius C' not containing
S.

Let x = ) x;e; and let j be an index where |z;| = max; |z;|. Then ||z|sup = |z;| and %x €
e; +V; C S. Thus Hé:c” > C, so

[z]| > Clz;| = Cllzlsup (6.7)
as desired. O

We recall some facts about integral elements of rings.

Definition 6.7. Let R C S be rings. We say that s € S is integral over R if there exists a monic
polynomial f(x) € R[z] such that f(s) = 0.

The integral closure R™(5) of R inside S is the set of all elements of S which are integral over
R.

The ring R is integrally closed in S if R™(S) = R,

We will sometimes say that R is integrally closed if it is integrally closed in Frac(R).

Proposition 6.8. R™(5) s q subring of S. Moreover, R™(S) is integrally closed in S.
Proof. Example Sheet 2. O
Lemma 6.9. Let (K,|-|) be a non-archimedean valued field. Then Ok is integrally closed in K.

Proof. Let € K be integral, and assume that 2 # 0. Let 2™ + a,,_12" "' + ---ag = 0 for some
a; € Ok. Then

1

z=—ap_12° —aposx t — - —qox "L (6.8)

If |x| > 1, we have that the RHS has absolute valued less than 1, which is a contradiction. Thus
|z] <1, s0 x € Ok. O

Set
Or={yell|lylL<1} (6.9)

where | - |1, is the map defined in (6.2)) (which we do not yet know is an absolute value).
Lemma 6.10. Oy, is the integral closure of Ok inside L.

Proof. Let y € L* and f(z) = 2% 4+ ag_129"' + -+ + ap € K[z] be the minimal polynomial of y
over K.

Claim: y is integral over Ok if and only if f(x) € Ok|x].

If f(z) € O[], then y is integral over Ok by definition.

So let y be integral over O, so there exists a monic polynomial g(z) € Ok [z] such that g(y) = 0.
Then f | g in KJz] as f is the minimal polynomial of y, so every root of f is a root of g. But then
every root of f in K is integral over Ox But then each a; is integral over O because each a; is a
sum of products of roots (Vieta’s formula). But then a; € Ok because Ok is integrally closed over
K by Lemma [6.9] which proves the claim.
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Now, by Corollary we have that |a;| < max(|agl,1), and by the properties of the norm,
Np/k(y) = ag" for some m > 1. Then

< |ap| <1

= |a;| < 1Vi

> a; € OgVi

— f(x) € Oklz]

<= y is integral over Og (6.10)
which shows that Op, is the integral closure of Ok in L. O

It is now fairly easy to prove our big theorem.

Proof of Theorem[6.1, (i) We need to show that | - |, = [Ny, x(-)|'/™ satisfies the absolute value
axioms.

First we have that |y = 0 if and only if [N,k (y)| = 0 if and only if N,k (y) = 0 if and only
ify=0.

Next we have that [y192| = |Np/rc(y192)|"/™ = |y1||y2|1 because Ny, x is a norm, and hence
multiplicative.

Finally, we need to show that ultrametric inequality holds. Let x,y € L and WLOG assume
that |z|r < |y|r. Then |z/y|r <1, s0 z/y € O. Since 1 € O, and Oy, is a ring by Lemma [6.10]
we have that 1+ 2/y € O, and hence |1 +z/y|r < 1. Then |z + y|r < |y|r = max|z|L, |y|r which
is the ultrametric inequality so | - |1, is an absolute value.

We have that Ny i (x) = o™ for all 2 € K, so |- | restricts to |- | on K. IF |-} is another
absolute value on L extending | - |, then | -|z,]|- |} are norms on L considered as a K-vector space.
By Theorem (6.6 | - |1 and |- |} are equivalent norms, so they induce same topology. Thus by
Proposition we have that |- |7 =|-|§ for some c. Since both norms extend | - |, we have that
c=Lso|-|. =1l

(ii) This also follows from Theorem O

Corollary 6.11. Let L/K be a finite field extension and let (K, |-|) be a complete discretely valued
field. Then

(i) L is discretely valued with respect to | - L.
(i) Oy is the integral closure of Ok in L.

Proof. (i): Set [L : K] =n. Let v be the valuation on K, and vy, the valuation on L which extends
v. Then for all y € L™, |y|, = |[Np, r(y)|"/™, so vr(y) = L(Np,x(y)), so imvg(L*) C LZ.
(ii): This is Lemma O

We can extend our results to the algebraic closure of K, which is the profinite limit of all the
finite extensions of K, and hence behaves like a finite extension in many ways.

Corollary 6.12. Let K/K be an algebraic closure of K. Then |- | extends uniquely to |- |z on K.
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Proof. Let x € K. Then x € L for some finite extension L/K, and we can set |z|7 = |z|r. This is
well-defined (independent of the choice of L) by the uniqueness part of Theorem In particular,
if x € L', then x € LL', and |z|, = |z|r = |z|LL -

We can check the other axioms similarly using compositums. O

Remark 6.13. 1. |-|zon K extending |-| on K is never discrete. If || = 1, then |z|*/" = 1/n,
and |x|1/"2 = 1/n2, and so on.

2. Q, is not complete with respect to |- |@ If C, is the completion of Q, with respect to |- |@,
then C, is algebraically closed, which ends our tower of alternating completions and algebraic
closures:

QcQ,cQ,cC, (6.11)
Proposition 6.14. Let L/K be a finite extension of complete DV fields. Assume that:
(i) Ok is compact.
(ii) The extension of residue fields kr /k is finite and separable (in fact this follows from (i)).
Then there exists a € Or, such that O, = Okla].

Proof. We'll choose o € O, such that there exists § € Ok[a] which is a uniformizer for O and
Okla] — kr, is surjective.

Since kr/k is separable, there exists @ € kj such that k; = k(@). Let g(x) € k[z] be the
minimal polynomial for @. Let oo € Of be a lift of @, and let g(z) € Ok [z] be a monic lift of g(x).
Fix a uniformizer 7, € Op. Then g(z) € K|[z] is irreducible and separable, so g(a) = 0 mod 7,
and ¢'(a) #0 mod 7. If g(a) # 0 mod 7%, then we can take 3 = g(«a), because v (g(a)) = 1. If
g(a) =0 mod 7%, then

gla+71) =g(a)+7rg'(a) mod 2. (6.12)
Thus
vr(g(a+ 7)) = vi(rrg' (@) = 1. (6.13)

a4y, is also a lift of @, so we may replace o by a+p,, and thus we may assume that vy (g(a)) = 1,
so that 8 = g(«) is a uniformizer for O, in Okla]. Then Ok[a] C L is the image of a continuous
map
O — L
(Toy.oyTp_1) — inof (6.14)

where n = [K(a) : K]. Since O is compact, we have that Ok [a] C L is compact and hence closed.
Since ki, = k(a), Ok |a] contains a set of coset representatives for k;, = Or/B0OL. Let y € Or. By
Proposition (ii), y = > \ifB? for some \; € Oklal. But ym, = > i \i8* € Okla] for each m,
so y € Ok[a] because Ok o] is closed. O
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Part III
Local Fields

7 Basic Properties of Local Fields

A topological space X is said to be locally compact if for all z € X, there exists an open set U and
a compact set C such that zr € U C C.

Definition 7.1. Let (K,|-|) be a valued field. K is a local field if it is complete and locally
compact.

For example, R and C are local fields under the usual Euclidean absolute value.

Proposition 7.2. Let (K,|-|) be a non-archimedean complete valued field. The following are
equivalent:

(i) K is locally compact.
(i) Ok is compact.
(iti) v is discrete and k = Ok /m is finite.

Proof. (i) = (ii): Let U be a compact neighborhood of 0, so that U is open and there is a compact
Z such that 0 € U C Z. Then there exists x € Ok such that O C U. Since xOk is closed, we
have that zOg is compact, so Ok is compact.

(ii) = (i): Ok is compact, so a + Ok is compact, so K is locally compact.

(ii) = (iii): Let x € m, and A, C Ok be a set of coset representatives for Ok /xOk. Then

Ok = |_| y+17(91< (7'1)
YyEA,

is a disjoint open cover. But since Oy is compact, A, is finite, so Ok /xOk is finite, so k is finite.

Suppose v is not discrete and let x1,xo, ... be a sequence such that v(zy) > v(xg) > -+ > 0.
Then 2:0x C 220k C -+ € Ok, but the union of x;Ox covers O, which is a contradiction as
Ok is compact and there is no finite subcover.

(iii) = (ii): Since Ok is a metric space, it suffices to show that Ok is sequentially compact,
so that every sequence has a convergent subsequence. Let (z,) be a sequence in Ok and 7 a
uniformizer. Since O /7t Ok = k, we have that O /7'Of is finite for all i. Since O /7O
is finite, there exists an infinite subsequence such that x;, = a; mod 7 for all n for some a;.
Continuing, we get subsequences z; , = a; mod 7% such that a; = a;+1 mod 7. Setting y; = i,
we have that y;, = a; = a;41 = y;+1 mod 7, so y; is Cauchy, and hence convergent. O

The above proposition tells us that a complete DV field with finite residue field is a local field.
As a consequence, Q, and F,((¢)) are local fields.

20



7.1 More on inverse limits

Let (A,) be a sequence of sets/groups/rings and ¢, : A,+1 — A, a homomorphism between these
objects. Assume that each A, is finite.

Definition 7.3. The profinite topology on A = lim A,, is the weakest topology on A such that
0, : A — A, is continuous for all n, where A,, has the discrete topology.

When equipped with the profinite topology, A = @An is compact, totally disconnected, and
Hausdorff.

Proposition 7.4. Let K be a non-archimedean local field. Under the isomorphism
OKgl.&HOK/TFnOK, (7.2)
the topology on Ok is the same as the profinite topology.

Proof. We can check that the sets
BZ{G+7T"OK|HEN21,G€OK} (73)

are a basis of open sets for both topologies. For |- | this is clear because the open/closed balls are
closed /open. For the profinite topology, O — O /7" O is continuous if and only if a + 7" Ok is
open for all a € Ok. O

7.2 Classification of Local Fields

It turns out that the property of being a local field is quite restrictive, and in fact we can classify
all of them as being one of three simple types in Corollary [7.13]

Lemma 7.5. Let K be a non-archimedean local field and L/K a finite extension. Then L is also
a local field.

Proof. Theorem [6.1] implies that L is complete and discretely valued. So it suffices to show that
kr, = Op/my is finite and then apply Proposition Let aq,...,a, be a basis for L as a K-
vector space. As the sup norm is equivalent to | - |, we have that there exists an r > 0 such that
O C{z € L|||z|lsup <r}. Take some a € K such that |a| > r. Then

0L C PaciOk C L (7.4)

i=1

which implies that Op is finitely generated as a module over Ok, so kj, is finitely generated as a
module over k, so ky, is finite because k is. O

Definition 7.6. A non-archimedean valued field (K, |-|) with residue field k has equal characteristic
if char(K') = char(k). Otherwise it has mized characteristic.

Example 7.7. Q, has mixed characteristic because char(Q,) = 0 but char(Z,/pZ,) = p.

Remark 7.8. If K is a local field, we always have char(k) > 0 by Proposition so K has equal
characteristic if and only if char(K) > 0 as well.
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Theorem 7.9. Let K be a non-archimedean local field of equal characteristic p > 0. Then K =
Fyn((t)) for some p and some n > 1.

Proof. K is complete, discretely valued, and char X' > 0. Moreover k = )~ is finite, and hence

perfect. Then by Theorem we have that K = Fpn ((1)). O
Lemma 7.10. An absolute value |- | on a field K is non-archimedean if and only if |n| is bounded
for alln € Z.

Proof. Assume that | - | is non-archimedean. Since | — 1| = |1| = 1, we have that | — n| = |n|, so it

suffices to show that result for Z>;. We have that |n| < max |n—1|,1, so by induction |n| < |1] = 1.
Now suppose |n| < B for all n € Z for some B € R-q. Let z,y € K and WLOG assume that
|z| < |y|. Then we have that

m “ m i, Mm—1
oalm =3 ()
i=0
m m ‘ .
< 1, M—1
5(7)
< B(m+1)|y|™. (7.5)
Taking mth roots gives |z + y| < (B(m + 1))"/™|y|. As m — oo we have that (B(m + 1))/™ — 1,
so |z +y| < [yl O
Theorem 7.11 (Ostrowski). Any non-trivial absolute value on Q is |- |o or |- |, for some prime
.
Proof. We divide into the case where | - | is and is not archimedean.

Case 1: |- | is archimedean. By Lemma | - | is unbounded on Z. We fix b > 1 an integer
such that |b| > 1. Let a > 1 be an integer and write ™ in base a:

b = eppa™ + cp_1a™ o+ ¢ (7.6)
for 0 < ¢; < a, ¢ # 0, where m <log, b” = nlog, b. Let B = maxo<c<q—1 |c|. Then we have that
[b"| < (m + 1)Bmax(|a|™, 1) (7.7
S0
b < [n(log, b+ 1)B]"" max(|a|'*8®, 1) (7.8)
Taking n — oo, we have that |[b| < max(|a|'°8«?,1). Since |b| > 1, we have that |a| > 1, so
|b| < |a|'o8a®. (7.9)
Since |a| > 1, we can swap a and b and write
la] < [pffoss @ (7.10)
Then and give
1?§g|z| - 1loogg|2 =2 (7.11)

for some A\ € R-q. Then |a| = @ for all a € Z~;. Then by Q = Z~'Z, we have that |z| = 2 for
alzeQ,s0 || =]"|oo-
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Case 2: |- | is non-archimedean. As in Lemma [7.10} we have that |n| < 1 for all n € Z. But
since | - | is nontrivial, there exists n € Z~; such that |n| < 1. Write n = p{* --- pé~. Then |p| < 1
for some p = p;. Suppose |g| < 1 for some ¢ # p. Then by Bezout’s we have that rp + sqg = 1, so
|1] < max(rp,sq) < 1, which is a contradiction. So |sq| = 1, so |¢q] = 1. So p is the unique prime
with [p| <1,s0 | | =]"|p. O

Theorem 7.12. Let (K,|-|) be a non-archimedean local field of mized characteristic. Then K is
a finite extension of Qp.

Proof. As K has mixed characteristic, char K = 0. Thus Q C K, and since |- | is non-archimedean,
| - | restricted to Q is | - |, for some p. But K is complete, so Q, C K.

Thus it suffices to show that K is a finite dimensional Q, vector space, so it suffices to show
that Ok is a finitely generated Z,-module. Let m € Ok be a uniformizer, and set v(p) = e. Then
Ok /pOk = O /7¢O if finite. WE have that

so Ok /pOk is a finite dimensional F,-vector space. Let z1,...,2, € Ok be coset representatives

of {e1,...,en}, where {e1,...,e,} is a basis for O /pOg over F,. Then
Zajx”aie{o,...,p—l} (7.13)
j=1

is a set of coset representatives for Ok /pOf. Let y € Ok. By Proposition [3.6] (ii), for any y € O,
we have that

o0 n n o0

y= Z Zaijl'j p = Z (Z aijpi> xj € T1 Ly + T2l + - - + x5 Ly (7.14)
i=0 \j=1 j=1 \i=0

so O is a finitely generated Z,-module with generators (z1,...,zy). O

On Example Sheet 2, we show that if K is complete and archimedean, then either K = R or
K =2 C. This completes the classification, which we summarize below.

Corollary 7.13. If K is a local field, then either
(i) K =R or K 2 C (archimedean case).
(1) K =2 TFpn((t)) (non-archimedean, equal characteristic case).

(i1t) K/Qyp is a finite extension of Q, (non-archimedean, mized characteristic case).

8 Global Fields

Although the term “global field” sounds like the opposite of “local field”, the two are closely con-
nected. In fact, a local field is just the completion of a global field under some absolute value
(Theorem , so we can think of global fields as “incomplete” local fields.

23



Definition 8.1. A global field is a field which is either
(i) An algebraic number field (a finite extension of Q).
(ii) A global function field (a finite extension of F(t)).

Lemma 8.2. Let (K,|-|k) be a complete, discretely valued field. Let L/K be a finite Galois
extension with absolute value |- |1 extending |-|x. Then for x € L and o € Gal(L/K) we have that
lo(@)|L = |]L.

Proof. Since x — |o(x)|r is another absolute value on L extending | - |k, this follows from the
uniqueness of | - |r. O

The next lemma is very useful.

Lemma 8.3 (Krasner). Let (K,|-|) be a complete discretely valued field and f(x) € K[z] a separable

and irreducible polynomial with roots aq,...,a, € K°P the separable closure of K. Suppose we
have f € K5 with |5 — 1| < | — a4] fori=2,...,n. Then oy € K(B).

Proof. Let L = K(B8), L' = L(a1,...,a,). Then L'/L is a Galois extension. Let o € Gal(L'/L).
We have that |3 — o(a1)| = |o(8 — 1) = |3 — 1| by Lemma[8.2] But o(a1) = o for some i, and
|8 — ;| # |8 — 1| unless i = 1, so o(a1) = ay, so a3 € L = K(p). O

The next proposition is very important. It tells us, roughly, that “nearby polynomials define the
same extension”.

Proposition 8.4. Let (K, |-|) be a complete DV field and let f(z) = > a;z* € Ok|x] be separable,
irreducible, and monic. Let o € K3 be a root of f. Then there exists € > 0 such that for any
g(x) = bzt € Ok|x] monic with |a; — b;| < €, g(z) has a root B such that K(a) = K(B).

Proof. Let aq,...,a, € K*P be the roots of f. These are distinct because f is separable, so
f'(a1) # 0. We choose € small enough so that |g(a1)| < |f/(a1)|? and |f'(c1) — ¢'(c1)| < |f' (1),
and hence |f'(a1)| = |¢’(a1)| by the reverse ultrametric inequality Lemma We can choose €
small enough because g is a continuous function in its coefficients and |f(aq)| = 0.

Then we have that |g(a1)| < |f'(c1)|*> = |¢'(c1)|?, so we can apply Hensel’s lemma. Applying
Hensel’s lemma to K (aq), we have that there exists 8 € K(«a1) such that g(8) =0 and |5 — a1| <
|¢'(a1)]. Then

lg'(1)] = [f"(an)]

n
= [Tlen — il
=2

§ |C¥1 — (81)
because |a; — ;| < 1 because the «; are integral. Since |8 — aq| < |ag — ay] = |8 — «y|, we can
apply Krasner’s Lemmawhich gives that ay € K(f), so K(8) = K(ay). O

Theorem 8.5. Let (K,|-|) be a local field. Then K is the completion of a global field.

Proof. We divide into three cases as in the classification of local fields.
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Case 1: || is archimedean. We have that K 2R or K= C,s0 K =Q or K = @(\z)

Case 2: |- | is non-archimedean, equal characteristic. We have that K = F,((t)) is the
completion of F,(t) with respect to the t-adic absolute value.

Case 3: |-| is non-archimedean, mixed characteristic. We have that K = Q,(«), where
« is the root of a monic, irreducible polynomial f(z) € Z,[z]. Since Z is dense in Z,, then we
can approximate f(z) be g(z) € Z[z] by Proposition Then K = Q,(8), where 3 is a root of
g(x). Since Q(p) is dense in Q,(8), K is the completion of Q(5) with respect to v, by the unique
extension of v, to Q(3). O

Part IV
Dedekind Domains

9 Basic Theory

Definition 9.1. A Dedekind domain is a ring R satisfying
(i) R is a Noetherian integral domain.
(ii) R is integrally closed in Frac(R) (R is integrally closed).
(iii) Every nonzero prime ideal is maximal.
Example 9.2. Here are a couple examples of Dedekind domains.
1. Ok, where K is a number field.
2. Any PID (and hence any DVR).
We have the following important theorem connected DVRs and Dedekind domains.

Theorem 9.3. A ring R is a DVR if and only if R is a Dedekind domain with exactly one nonzero
prime ideal.

We need to develop some theory from commutative algebra before we prove this.

Lemma 9.4. Let R be a Noetherian ring and I C R a nonzero ideal. Then there exists nonzero
prime ideal p1,...,p, such that py...p, C I.

Proof. Suppose not. Then since R is Noetherian, there exists a maximal ideal I satisfying this
property. Then I is not prime, so there exists z,y € R\ I such that xy € I. But then Iy = I + ()
and Iy = I + (y) are ideals which properly contain I. Then by the maximality of I, there exists
P1,-- s Pry g1, .-+, s such that py---p, CI; and g1 - qs C Io, so

pl"'prql"'qu11[2CIy (91)

which is a contradiction. O
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Lemma 9.5. Let R be an integral domain which is integrally closed. Let 0 # I C R be a finitely
generated ideal and let + € K = R™'R. Then if xI C I, then x € R.

Proof. Let I = (cy,...,c,) and suppose I C I. We write xz¢; = Zj aijcj for some a;; € R. Let A
be the matrix A = (a;;) and set B = xid,, —A C Mat,,«,(K). Then B -¢; =0 in K". Let Adj(B)
be the adjugate matrix for B, so that Adj(B)- B -¢; = det Bid,, ¢; = 0, so det B = 0. But Det B is
a monic polynomial in x with coefficients in R. So z € R because R is integrally closed. O

We are now ready to prove our big theorem.

Proof of Theorem[9.3 First R be a Dedekind with exactly one prime. We just need to show that
R is a PID. Let m be the unique maximal ideal of R.

Claim 1: m is principal. Let 0 # x € m. By Lemma () D m™ for some n > 1. Let n be
the minimal value such that this is true. Then we can choose y € m"~! such that y ¢ (z). Set
7m=x/y € K. Then we have that ym C m™ C (z), so 7~'m C R. Thus 7~ 'm is an ideal of R. If
77lm C m, then 7~! € R by Lemma so y € (x), which is a contradiction. Thus 7—'m = R
since m is the unique maximal ideal, so m = 7R is principal.

Claim 2: R is a PID. Let I C R be any nonzero ideal. Consider the sequence of fractional
ideals
Icrn'icr?IcC--- (9.2)

in K. These are all finitely generated as Ox-modules. Then since 77! ¢ R, we have that 7 %I #
7~ (D] by Lemma Therefore, since R is Noetherian, we may choose a maximal n such that
7~ "I C R (since R is Noetherian and we have an infinite chain of fractional ideals, eventually this
chase must exit R). If 7~"I C m = (n), then 7~ ("*Y) C R. So we must have that 77" = R
because m is maximal, so then I = (7™). O

The Localization of a Dedekind domain is a DVR.

This fact is very nice, and helps one understand Dedekind domains (or DVRs).

We recall some facts about localizations. Let R be an integral domain and S a multiplicatively
closed set. Recall the localization S™!'R, and if S = R\ p for p a prime ideal, then we write
S_lR - Rp.

Example 9.6. If R = Z, then
a
Z(p) :{glan,(b,p)zl} (9.3)

If R is Noetherian, then S~!R is Noetherian. The prime ideals in S~'R are in bijection with
the prime ideals of R such that SNp = 0.

Corollary 9.7. Let R be a Dedekind domain and p C R a nonzero prime ideal. Then R, is a
DVR.

Proof. By the properties of localization, R, is a Noetherian integral domain and has a unique
nonzero prime ideal. It suffices to show that R, is integrally closed in Frac(R,) = Frac(R) and then
apply Theorem Let z € Frac(R) be integral over Ry,. Then 2" +a,_12" "'+ -+ag = 0 for some
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a; =b;/s; € Ry. Then multiplying by s = s1 --- 5,1, we have that sz™ + Cno1Z" V44 =0
for some ¢; € R. Multiplying by s"~!, we have that xs is integral over R, so s € R, so x € R,
since s € R\ p. O

Definition 9.8. If R is a Dedekind domain and p C R is a nonzero prime ideal, we write v,
for the normalized valuation on Frac(R) = Frac(R,) corresponding to the DVR R,, given by

v(z/y) =v(z) —v(y) for z,y € Ry.
Example 9.9. If R = Z, then v, = v, is the p-adic valuation.

Theorem 9.10. Let R be a Dedekind domain. Then every nonzero ideal I C R can be written
uniquely as a product of prime ideals

I=pi-prr (9.4)
where e; > 1 and the p; are distinct.

This theorem is immediate if R is a PID, as any PID is a UFD. We also need the following
results on localizations.

Lemma 9.11. Let I, J be ideals in a commutative ring R. Then I = J if and only if IRy, = JRn
for all mazimal ideals m C R.

Lemma 9.12. If R is a Dedekind domain, and p1,p2 are two nonzero prime ideals, then

R =
lepz_{pz b P12 (9.5)

Ry, otherwise.

Proof of Theorem[9.10. Let I C R be a nonzero ideal. By Lemma [9.4] there are distinct prime
ideal py,...,p, such that p;*---p2 C I, where B; > 0. Let p # 0 be such that p # p; for all .
Then by Lemma [9.12 we have that p;R, = Ry, so IR, = R,. Since Ry, is a DVR by Corollary
we have that IR,, = (p;Ry,)" = p;" Ry, for some 0 < a; < f;. Thus I = p* ---p& because
IR, = (p{™* ---p®" )R, for all p € Spec R. If I = p{* ---pJ~, then pf" Ry, = p," Ry, so oy = ; by the
unique factorization property of DVRs. O

10 Dedekind domains and extensions

Let L/K be a finite extension. For x € L, we write Try /i (z) € K to be the trace of the K-linear

map L — L given by x +— xy. If L/K is a separable extension of degree n and o1,...,0, : L - K
are the set of embeddings of L into an algebraic closure of K, then

Trpk(x) =Y o). (10.1)
i=1

This is invariant under any K-automorphism of K (any element of Gal(K/K), so Tryx(z) € K.

Lemma 10.1. Let L/K be a finite separable extension of fields of degree n. Then the symmetric
bilinear form

(,):LxL—K
(@,y) = Trr k(zy) (10.2)

is called the trace form, and is nondegenerate.
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Proof. L/K is separable, so L = K(«) for some € L. Then consider the matrix for (-,-) in the
K-basis for L given by {1,«,...,a""1}. Then

Aij = TTL/K(Cki+j)

n
=>_oile)™
=1

_ (57, 103)
where
1 1 1
s | @@ oa(@) - ou(a) (10.4)
o1(a)"! oa(a)" ! on(a) !

This is a Vandermonde matrix, so its determinant is

Det B = H (i(a) —0;(a)). (10.5)

1<i<j<n
Thus
Det A= (Det B)> =[] (oi(e)—0j(a))* #0 (10.6)
1<i<j<n
because the extension is separable. Thus (-,-) is nondegenerate. O

On Example Sheet 3 we will prove the converse, so that L/K is separable if and only if the trace
form is nondegenerate.

Theorem 10.2. Let Ok be a Dedekind domain and L a finite separable extension of K = Frac(Ok).
Then Op, the integral closure of Ok in L, is a Dedekind domain.

Proof. Op, is a subring of L so Oy, is an integral domain. We need to show that
(i) Oy is Noetherian.
(ii) Oy is integrally closed in L.
(iii) Every nonzero prime ideal p in Oy, is maximal.

(i): We want to construct a finitely generated Og-submodule of L containing Op, and then
since O is Noetherian we are done. Let eq,...,e, € L be a K-basis for L. Upon rescaling by K,
we may assume that e; € Op. This is because e; € L, so it satisfies a polynomial in K, which after
rescaling can be monic with coefficients in Ok, so that e; € Op, since Oy, is the integral closure of
Ok in L. Let f; € L be the dual basis with respect to the trace form (-,-). Let 2 € Or, and write
r =3 Aifi with \; € K. Then \; = Try /g (2e;). If z € Op, then Try/k(2) is a sum of elements
in K which are integral over O, and Tr/k(2) € K, so Trp/g(2) € Ok, so \; € Og. Then
O, COkfi+--+ Ok fn C L. Since Ok is Noetherian, Oy, is finitely generated as a Ox-module,
so O, is Noetherian.

(ii): Example sheet 2.
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(iii): Let B be a nonzero prime ideal of Or, and let p := P N O be a prime ideal in Ok. Let
0 # x € B. Then z satisfies an equation 2" + a,_12" ' + -+ +ap = 0 with ag # 0, a; € Ok.
Then ag € B, so ag € p, so p # 0, so p is maximal because O is Dedekind. We have an injection
Ok /p — OL/P, so O /P is a finite dimensional Ok /p vector space. Since O /P is an integral
domain, it is a field. This is because if z € (O /B)*, then y — xy is an injection, so it is a
bijection, so there exists y such that xy = 1 by rank-nullity. O

Remark 10.3. Theorem holds without the assumption that L/K is a separable extension.
Corollary 10.4. The ring of integers of a number field is a Dedekind domain.
Proof. If K/Q is a number field, then Of is the integral closure of Z = Og in K. O

If Ok is the ring of integers of a number field and p C Ok is a nonzero prime, we normalize
|- |p by
2]y = (Np)*» (10.7)
where N'p = #O0k /p.
Let Ok be a Dedekind domain and K = Frac(O). Let L/K be a finite, separable extension,
and Oy, the integral closure of Ok in L. Then Oy, is a Dedekind domain by Theorem [10.2

Lemma 10.5. Let 0 # x € Og. Then
(@) =[]»>™ (10.8)

p#£0

Proof. Consider z(Ok)p = (p(Ok)p)"® by the definition of v,(z). The lemma then follows from
Lemma O

Let B C Op, p C Ok be nonzero prime ideal. We write B | p if pOp = P7* - - P&~ and P =P,
for some 1.

Theorem 10.6. Let Ok,Op, K, L be as above. For p a nonzero prime ideal of Ok, we write
pOr =Pi' - P& . Then the absolute values on L extending |- |, (up to equivalence) are precisely

[l [ I,

Proof. First, for any 0 # = € Ok and any i, we have that vy, (z) = e;vp(z). Hence, up to
equivalence, |- |, extends |- |,. Now, suppose |- | is an absolute value on L extending |- |,. Then
| - | is bounded on Ok and hence on Z, so it is non-archimedean. Let

R={zeL||z| <1} (10.9)
be the valuation ring for L with respect to | - |. Then Ok C R because | - | extends | - |,, and since
R is integrally closed in L by Lemma [6.9] we have that O, C R. Set

P={xecO||z| <1} =mrnO (10.10)

where mp is the maximal ideal of R. Then ‘B is a prime ideal in Of, and it is nonzero since p C *B.
Then (Or)p C R since if s € Op \ P then |s| = 1. But (Or)yp is a DVR, and hence a maximal
subring of L, so (Or)yp = R.

Hence | - | is equivalent to | - [y because the closed unit balls are the same (Proposition [L.6)).
Since | - | extends | - |p, we have that Ox NP = p. But then P7* - - P& C P, so P =P, for some
i. 0
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Remark 10.7. Let K be a number field. If o : K — R, C is an embedding, then  — |z|, = |0(2)|00
defines an absolute value on K.

Corollary 10.8. Let K be a number field with ring of integers Ok . Then any absolute value on
K is equivalent to either

(1) |- |p for some nonzero prime ideal p of Ok .
(i) |- |o for some embedding o : K — R, C.

Proof. We divide into archimedean and non-archimedean cases.

Case 1: |- | is non-archimedean. We have that | - | restricted to Q is equivalent to | - |, for
some p € Q by Ostrowski’s Theorem Theorem then implies that |- | is equivalent to |- |,
for some prime ideal p such that p | p.

Case 2: |- | is archimedean. Example Sheet. O

10.1 Completions

Let Ok be a Dedekind domain and L/K a finite separable extension. Let p C Ok, B C Of, be
nonzero prime ideals such that 9B | p. We write K, and Ly for the completions of K and L with
respect to | - |, and | - g, respectively.

Lemma 10.9. (i) The natural map 7y : L ® x Ky — Ly given by £ @ x — Lz is surjective.
(i) [Lyp : Kp] < [L: K].

Proof. Let M = LK, = Im(mgp) C Lg be the subfield generated by LK,, and write L = K(a).
Then M = K,(a), so M is a finite extension of K, and [M : K,] < [L : K] because the minimal
polynomial has smaller degree. Moreover, M is complete by Theorem @ and since L C M C L,
we have that M = L. O

Lemma 10.10 (Chinese Remainder Theorem). Let R be a ring and Ir,. .., 1. be ideals such that
Ii +1; = R for all i # j. Then

G) NL=]]L=1.
(ii) RIIT=EPR/I;
Proof. Example sheet. O

Theorem 10.11. The natural map

Lok Ky, — [ Ly (10.11)
Blp

is an isomorphism.
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Proof. Write L = K(a) and let f(z) € K[z] be the minimal polynomial of @. Then we have that
f(x) = fi(z)--- fr(x) in Ky[z], where f;(z) € Kyplx] are distinct because of separability. Since
L = K[x]/(f(x)), we have that

Lok Ky = Ky(z)/(f(x))
=~ [1 K@)/ filx)
=y (10.12)

Now, L; contains both K, and L, since K[z|/f(x) — Ky[z]/fi(x) is injective. Moreover, L is
dense inside L;, as we can approximate the coefficients of some f(z) € K,[z]/fi(x) with some
g € K[z]/f(x). The theorem follows from the following three claims:

(1) L; = Ly for some prime P of O, dividing p.
(ii) Each 3 appears at most once.
(iii) Each P appears at least once.

(i): Since [L; : Ky] < oo, there exists a unique valuation on L; extending | - |,. Theorem [10.6]
implies that | - | restricted to L is | - [ for some B | p. Since L is dense in L; and L; is complete,
we have that L; = L.

(ll)lf Lz = Lgp = Lj, then fi = fj7

Suppose ¢ : Ly — L; is an isomorphism preserving L and K. Then

¢ Kplal/ fi(x) = Kplal/ fi(x) (10.13)

takes x to x, so f; = fj.

(iii) By Lemma Ty L ®K Ky — Ly is surjective, and since Ly is a field, mgp must factor
through L; for some 7. But then v injective because it is a field map, so L; = Lg. Furthermore 7o
sends L — L and K, — K, so ¢ is also an L-algebra and K-algebra homomorphism. O

Example 10.12. Let K = Q, L = Q(i), and f(x) = 22 + 1. Then
Q(i) ® Qs = [ [ Qli)y (10.14)
Bl5
Hensel’s lemma shows that f(z) has a root in Qs, so that (5) splits in Q(z).
Corollary 10.13. Let 0 # p C Ok be a prime ideal. If x € L, then
Npjx(@) =] Ney/x, (@) (10.15)
Blp

Proof. Let pOr, =PB5* --- P~ and By, ..., B, be bases for Ly, , ..., Ly, as K, vector spaces. Then
B =JB, is a basis for L ® K, = [[ Ly, over K,. Let [mult(z)]g be the matrix for the map

mult(z) : L ®x K, - L® K,
LRk —z({Rk) (10.16)
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with respect to the basis B and let [mult(z)] g, be the matrix for the analogous map Ly, — Lqs, with
respect to the basis B;. Because of the decomposition L ® K, = [] Lsy,, we have that [mult(z)]s
is the block diagonal matrix of [mult(z)]p,s. We then have that

Np/k(r) = Det[mult(z)]p = HDet[mult(x)]Bi = HNqui/Kp (10.17)
O

11 Decomposition groups

If we want to study the Galois group of a global field, part of it looks like the Galois group of a
local field.

Let 0 # p be a prime in Ok and let pOy, = PT* - - - P&~ where the P, are distinct primes in Of,
and e; > 0.

Definition 11.1. (i) e; is the ramification index of ; over p.
(ii) We say that p ramifies in L if some e; > 1.

Example 11.2. Let Og = CJ[t], and O = C[T], and let Ox — O be the map sending ¢t — T™.
Then () is a prime in Ok, and tOr, = (T™) = (T)". The ramification of (T") over (¢) is n.

This corresponds geometrically to a degree n covering of Riemann surfaces C — C sending
x+—z".

Definition 11.3. f; = [O1/B; : Ok /p] is the residue class degree of ; over p.
Theorem 11.4. We have that

> eifi=[L: K] (11.1)
i=1

Proof. Let S = Ok \ p. The following three basic facts about localization are an exercise:
(i) S7'Oy is the integral closure of S~!O in L.
(i) (S7'p)S™'OL = STHPY -+ Prr).
(iii) S7tOL/S™HB; = Or/P; and S0k /S™1p = Ok /p.

In particular (ii) and (iii) imply that e; and f; don’t change when we replace Ok and Op, by
S710k and S~'Op. Thus we may assume that Ok is a DVR and hence a PID. By the Chinese
remainder theorem, we have that

OL/pOL =[] OL/%Bs. (11.2)

We count the dimensions of both sides as k = O /p vector spaces.

RHS: For each i, there exists a decreasing sequence of k-subspaces
0 C P /P CPET/PE o CP/FY C OL/F (11.3)

We have that dimy, Op /B¢ = S dimy (7 /P ™). Note that 7 /P is an Oy /P;-module
and x € ‘Bz \&]35 s a generator, which we can prove by localizing at 3;. So the quotients are
1-dimensional over Of,/%;, so they are f;-dimensional over k. Then dimy Op/PB;* = e;f; so the
RHS has dimension Y e; f;.
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LHS: The structure theorem for finitely generated modules (Op, is a finitely generated module over
Ok) and the fact that Oy, is torsion free implies that Oy, is a free Ox-module of rank n = [L : K].
Thus O /pOr = (Ok /p)™ as k-vector spaces, so the LHS has dimension n. O

Remark 11.5. The previous theorem has a geometric analogue: let f : X — Y be a degree n
cover of Riemann surfaces. For y € Y, we have that

n = Z €. (11.4)

zef~1(y)

Now assume that the L/K is Galois. The Galois group preserves integral elements, so it acts
on Op. Then for any ¢ € Gal(L/K), 0(B;) N Ox = p and hence o(P;) = PB; for some j.

Proposition 11.6. The action of Gal(L/K) on {P1,...,B,} is transitive.

Proof. Suppose not, so that there exists ¢ # j such that o(;) # B, for all ¢ € Gal(L/K).
By the CRT, we may choose z € Op, such that x = 0 mod ; and z = 1 mod o(B,) for all
o € Gal(L/K). Then Ny k(x) = [l ecar/rx)o(®) € Ox NPi = p C PB;. But P, is prime, so
there exists 7 € Gal(L/K) such that 7(z) € B;, so x € 771 (), so =0 mod 71 (), which is

a contradiction as =1 mod 77!(3;) by assumption. O
Corollary 11.7. Suppose L/K is Galois. Theney =---=e. =e and fy =--- = f. = f, and then
n=efr.

Proof. For any o € Gal(L/K), we have that pOr = o(p)Or = o(P1)°* - - o(P,)°", and by the
unique factorization we have that e; =--- =e, = e.
We have that O /B; = Or/o(P;) viax — o(z),s0 fr == fr = f. O

In the case where L/K is a extension of DV fields, we have the following.

Corollary 11.8. Let L/K be an extension of complete DV fields with valuations vy, v, uniformiz-
ers m, Tr. Then there are unique prime ideals in both, so we can define e = er ) x = v (TK) since
g = g for some e. The residue degree is f = fr/x = [kr : k]. Then if L/K is finite, separable,
then [L: K] = ef.

Definition 11.9. Let Ok be a Dedekind domain, L/K finite, Galois. The decomposition group at
a prime P of Of is the subgroup of Gal(L/K) given by

Gy ={o € Gal(L/K) | o(B) = B}. (11.5)
It has size ef, which makes sense if you write down p = (B1 - - - B,.)©
Proposition 11.10. Suppose that P | p C Ok. Then
(i) Ly /K, is Galois.

(i) There is a natural map
res : Gal(Ly/K,) = Gal(L/K) (11.6)

which s injective and has image Gp.
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Proof. (i): If L/K is Galois, then L is the splitting field of a separable polynomial f(z) € K][x].
Then L is the splitting field of f(z) € Kp[z], so Ly /K, is Galois.

(ii): Let 0 € Gal(Ly/K,). Then o(L) = L since L is L/K is normal (and o is an embedding of
L in K). Thus we have a map

res : Gal(Ly/K,) = Gal(L/K)
o~ o|L (11.7)
Since L is dense in Lqg, res is injective (as is res(o) = idy, then o is constant on a dense subset of
L, and hence constant). By Lemma we have that |o(z)|p = |z|p for all 0 € Gal(Ly/K,) and

all © € Ly. But then o() =P for all 0 € Gal(Ly/K}), so res(o) € Gy for all o € Gal(Ly/K,).
To show surjectivity onto Gz, we compare cardinalities. So that

Gyl = | Gal(Lop/Kp)| = ef = [Ls : K. (118)

Write pOr = (P PB,)% and f = [OL/B; : Ok/p]. Then |Gy| = ef. For [Ly : Kp], apply
Corollary [11.8] and note that e and f don’t change when we take completions (see the proof of
Theorem [11.6}). O

Thus a piece of the Galois group of a number field extension L/K corresponds to an extension
of local fields Loy /K,.

Part V
Ramification Theory

Ramification theory studies how prime ideals split in extensions. For example, if p € Z is prime,
then p = p1ps € Zli] splits if and only if p = 22 + y2, if and only if p=1 mod 4.
Let L/K be an extension of algebraic number fields of degree [L : K] = n.

12 Different and discriminant

Let z1,...,z, € L. Then the discriminant of these elements is
A(xy, ..., 2n) :det(TrL/K(xixj)) € K. (12.1)
If z1,...,x, form a basis, this is the determinant of the trace form. Now, let o, : L — K for

¢ =1,...,n be the n embeddings of L into K. Then
Az, ..., x,) = det <Z az(xi)ag(xj)> = det(BBT) (12.2)
(=1

where B = (az(x]))”
Remark 12.1. (i) If y; = > a;jz; for a;j, then
Ayt .. yn) = det(A)>A(zy, ..., 2,) (12.3)

where A = (a;5).
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(ii) If 21,...,2, € O, A(xy,...,2,) € Ok because it is a product and sum of elements of O
(recall the trace of an element of Oy, is in Ok).

Lemma 12.2. Let k be a perfect field and let R be a k-algebra which is a finite-dimensional as a
k-vector space. The trace form

(w):RxR—k
(z,y) = Trg/p(ry) = Trp(mult(zy)) (12.4)
is nondegenerate if and only if R = ki X -+ X k., where k;/k is a finite separable extension of k.
Proof. Example Sheet? U
Theorem 12.3. Let 0 # p C Ok be a prime.
(i) If p ramifies in L, then for every x1,...,x, € O, we have that A(z1,...,2,) =0 mod p.
(i) If p is unramified in L, then there exists x1,...,x, € O, such that p{ A(z1,...,Tn).

Proof. (i) Let pOp =P -+ - P and assume that p ramifies so that e; > 1 for some i. Set

R=0L/p0, =[] OL/F;". (12.5)

i=1

If p ramifies, then Or, /pOp, has nilpotents, so Or /B is not a finite separable extension of O /pOf.
If 71,...7, forms a basis for Op/pOy, then by Lemma we have that A(zq,...,T,) = 0. If
Z1,...T, does not form a basis, then A(Zy,...7,) = (det A)?A(yy,...,7,) = 0 where 7y, ...,7, is
a basis and T; = ) a;;7;. Now, we have a commutative diagram

OL _— OL/‘BOL =R

JTTL/K J’I‘I'R/k

OK _ OK/pOK

Thus if we lift any Z1,...,ZT, € Or/pOr to any 1, ..., x, € O, we find that A(zy,...,2,) =0
mod p.

(ii): If p is unramified, then O /pOr will be a product of finite extensions of k = Ok /pOx.
Then the trace form will be nondegenerate by Lemma [12.2] so we can find a basis Z1,...,T, for
Or/pOy, such that A(Zy,...,T,) # 0. Then lifting gives A(z1,...,2,) Z0 mod p. O

The discriminant is an ideal which captures all the As, and hence all the ramification.

Definition 12.4. The discriminant ideal dy i C Ok is the ideal generated by A(xy,...,x,) for
all choice of z1,...,x, € Of.

Corollary 12.5. p ramifies in L if and only if p | dp . In particular, only finitely many primes
ramify in L.

Proof. This follows immediately from Theorem and the unique factorization of ideals in Ok.
O
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Next we will define the different. It is the inverse of an inverse.

Definition 12.6. The inverse different is

Dy ={y € L|Try k(ry) € OxVe € Or}. (12.6)

It is the dual lattice of O, with respect to the trace form.

Lemma 12.7. DZ}K s a fractional ideal in L.
Proof. Let x1,...,x, € Of be a K-basis for L/K and set
d= A(z1,...,2,) = det(Trp g (2i25)) # 0 (12.7)

as the the trace form is nondegenerate because the extension is separable (Lemma .

For # € Dy, we can write = Y A\jz; with A; € K. We want to show that \; € d~'Ok.
We have that Trp g (z2;) = YA Trp g (zi75) € O Set Aij = Trp g (z425). Multiplying by the
adjugate matrix Adj(A), we get the determinant, so

)\1 )\1 )\1 TI‘L/K(I'Z'l)
AGA)A | - | =det(a) |- | =d | --- ] = Adj(a) (12.8)

Am Am Am TrL/K(an)
Adj(A) and Trp g (zx;) are in Ok, so A; € é(’)K, sox € éOL. Thus DZ}K C é(’)b SO DZ}K is a
fractional ideal. O

Definition 12.8. The different ideal Dy, is the inverse of DZ}K.

We have that Dy, x C O because Or, C DE}K and DZ}K is a fractional ideal.

Let Iy, Ik be the group of fractional ideals of L, K. By Proposition [9.10] we have that
L= P z k= H =z (12.9)
0£PeSpec O, 0#peSpec Ok

Define Ny g : I1, — I induced by B — pf where p = PNOgk and f = f(B/p). Then the following
diagram commutes:

L —— Iy,
JNL/K JNL/K
KX —— Iy

In other words, we have that Ny, /x((x)) = (N k(x)). This follows from Corollary [10.13[and the
fact that

Vp(Nig/k, () = fop/pvp(2) (12.10)

for x € L%. In particular, we have that

vp(Ni/k((7))) = Zf(‘ﬁ/p)vm(w) (12.11)
Blp
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by definition, and

vp (N (7)) = vy H(NLXB/K‘, (z))
Blp

= 0p(Npy/x, ()

PBlp

= Fypvp() (12.12)
Blp

as desired.
Theorem 12.9. NL/K(DL/K) = dL/K

Proof. First, assume that Ok and Oj, are PIDs. Let z1,...,z, be an Og-basis for Op. Then
dr/k = (A(wy1,...,7,)) because any change of basis matrix is a unit in Og. Let y1,...,y, be the
dual basis with respect to the trace form. Then yi,...,y, is an Ok-basis for DZ/IK (essentially by

the definition of DZ/lK). Let 01,...,0, : L = K be the distinct embeddings of L into K. Then

ZUi(%‘)Ui(yk) = Tr(zjyk) = djk- (12.13)

But A(x1,...,2,) = det(oi(x;))% Thus A(z1,...,2,)AY1,...,y) = 1. Write DZ}K = B0y, for
some B € Or. Then

dz/lK = (A(zq,... ,xn)_l)

= (Ay1,---,yn))- (12.14)

Now, since change of basis matrices are invertible in O, we have that
(A, -+ yn)) = (AP, .. ., Bizn)) (12.15)
since fz1,..., 8z, is a basis for O, = DZ/IK. Now, the change of basis matrix from z; — Bz; is

multiplication by 3, which has determinant N /(). By (12.3) we then have that

(A(Bzy,...,Brn)) = Npyk (B A1, ... 2n). (12.16)

Putting it all together gives
dy i = Niy(Dp i) dryi (12.17)

SO NL/K(DL/K) = dL/K-
To prove the general case, localize at S = O \ p and use that S’lDL/K = Dg-10,/5-10, and

S_ldL/K == ds—loL/S—loK.

Theorem 12.10. If O = Okla] and « has monic minimal polynomial g(x) € Oklzx], then
Dp/k = (9'()).
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Proof. Let a = aq, s, ..., q, be roots of g. Write g(2)/(z —a) = Bp_12" L+ -+ Br2+ By, where
B; € Or, and B,—1 = 1. We claim that

—~ glz) af ,
- - 12.18
; r— ai ' ’ ( )

g’ ()

for 0 < r < n — 1. Indeed, the difference is a polynomial of degree less than n which vanishes
at ai,...,ay, so the difference is zero. Comparing coefficients on both sides gives that the x*

coefficient is 3
@
Tr —2 ) =6,s 12.19
e (55 (219
by (10.1). So 1,c,...,a" ! is a basis for O, and we have explicitly constructed the dual basis

under the trace form, which will be a basis for D;}K:

Bo B Bn-1 1

, - 12.20
7@ 7@ @ 7@ (1220
Since 3; € Oy, DZ}K is generated as an Oz-module by 1/¢'(c), so Dy, is generated by ¢'(a) as
an Op-ideal. O

Now, let I be a prime ideal of Or, and p = Ok N*P. Then we can define Dy, /i, analogously
to D/ using Ok, , Oy Dry /K, is an ideal of the DVR Op,,, so it is a power of ‘B. We identify
Dr.,/k, with a power of B in O.

Theorem 12.11. We have that
Dr/kx = H Dry/xk,- (12.21)
0#£4PeSpec O,
In particular, the right hand side is finite.
Proof. Let z € L and p C Ok. Then similarly to Corollary [I0.13] we have that

Trojr(@) =Y Trr,x,(@). (12.22)
Blp
Let () = vp(Dr k), and s(P) = vp(Dry K, ) Fix some z € L with vp(z) > —s(*B) for all P.
Then Trr,, /K, (ry) € Ok, for all y € Op and all primes B. So Try /k(zy) € Ok, for all y € O
and all p by (12.22)). Thus Trz x(2y) € Ok for all y € Or. So x € DZ}K, so r(PB) > s(P) and
Drjk C 1l Dry/k,- FixPandlet z € PrN\PTFFL Then vy (z) = —r(P), and vy (z) > 0
for all P’ £ . By (12.22)), we have that

Trpy/x, (y) = Trp/k(vy) — Z Trr,, /x, (zy) (12.23)
PAP |p
for all y € Or. All the terms on the RHS are in Ok, , so we have that Trz,, /x, (zy) € Ok, for all
y € Ory,. Thus x € DZ;/va so —vgp(x) = r(P) < s(P). This gives the desired result. O
Corollary 12.12.
dpi =[] dryx,- (12.24)
Blp
Proof. Take the norm of both sides of (12.21)) and use Corollary [10.13 O
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13 Unramified and totally ramified extensions of local fields

Let L/K be a finite separable extension of non-archimedean local fields. By Corollary we have
that [L : K] = eL/KfL/K'

Lemma 13.1. Let M/L/K be finite separable extensions of non-archimedean local fields. Then
(i) oy = faynfo i

(it) enr/x = em/rer/K-

P?‘OOf. (1) We have that fM/K = [kM : k] = [k}M : kLHkL : k] = fM/LfL/K~
(ii): This follows from (i) and the fact that [L: K| =er/k fr/k- O

Definition 13.2. The extension L/K is unramified if e,k = 1, or equivalently fr,x = [L : K].
Otherwise it is ramified, so ef,;x > 1, or fr, g < [L: K]. If ey = [L : K], so that f,x =1, the
extension is totally ramified.

Theorem 13.3. Let L/K be a finite separable extension of local fields. There exists a field Ko such
that L/Ko/K is a sub extension and

(i) Ko/K is unramified.
(i) L/Ky is totally ramified.
Moreover, [L : Ko = e /g and [Ko : K] = fr/x and Ko/K is Galois.

Proof. Let k = Ok /m = Fg, so that kr, = F; with f = fr,x. Set m = g/ —1 = |k}, and let
[]: Fys — L be the Teichmiiller map for L. Let (,, = [a] be the Teichmiiller lift for o, where « is
a generator for IFqu. Then (,, is a primitive mth root of unity as [a|™ = [@™] = 1 and [a!] # 1 for
1 < m as « generates IF‘qu. Set Ko = K((n) C L. Then Ky/K is Galois and K{ has residue field
ko = Fy(a) = kr. Thus fr/k, = 1 so L/Kj is totally ramified. Let res : Gal(Ko/K) — Gal(ko/k)
be the restriction map. For o € Gal(Ky/K), we have that o is trivial if and only if o((rn) = Gn
if and only if 0((n) = (n mod mg since iy, (Ko) = pm (ko) by Hensel’s lemma applied to ™ — 1.
Hence res is injective. Thus | Gal(Ko/K)| < |Gal(ko/k)| = fr,/Kk» s0 [Ko : K] = fr,/k because
Tro/x <|Gal(Ko/K)| always. Thus ek, /x =1, so Ko/K is unramified. O

Recall that the Tecihmuiiller lift is an element of Ok without “pth power imperfection”. Thus
Ky/K is an extension without pth power imperfection, and all the pth power stuff goes into the
totally ramified extension L/Kj. We will make this precise later.

Theorem 13.4. Let K be a local field, and set k = F,. For eachn > 1, there is a unique unramified
extension L/K of degree n. Moreover, L/K is Galois and the natural map res : Gal(L/K) —
Gal(kr /k) is an isomorphism. In particular, Gal(L/K) = (Froby, /) is cyclic, where Frobyp /i (x) =
z¢ mod my, for all x € Oy,

Proof. For n > 1, take L = K((,,) where m = ¢"™ — 1. As in Theorem we have that
Gal(L/K) = Gal(kr/k) = Gal(F4n/F,). Thus Gal(L/K) is cyclic and generated by a lift of
Frob, : x — x9, which is a generator for Gal(Fy» /F,).

To show uniqueness, let L/K be a degree n unramified extension. By the Teichmiiller lifting,

Cm € L, so L = K((,,) by degree properties. O
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Corollary 13.5. Let L/K be a finite Galois extension of local fields. Then res : Gal(L/K) —
Gal(kr/k) is surjective.

Proof. res factors as Gal(L/K) — Gal(Ky/K) = Gal(ko/k) = Gal(kr/k) because ki, = ko. O
Definition 13.6. The inertia subgroup is defined to be
Ik = ker(res : Gal(L/K) — Gal(kp/k)). (13.1)

L/K breaks up into unramified and totally ramified parts, the inertia subgroup captures the
ramified part (Gal(ky/k) = Gal(K(/K) captures the unramified part).

Remark 13.7.
1. Since er/k fr/x = [L: K] and fr,x = | Gal(kr/k)|, we have that |I; x| = e/ k-
2. We have that I1,,x = Gal(L/Kjp) as in Theoremm

Definition 13.8. Let f(z) = 2" + ap—12" ' + -+ + a9 € Oklx]. Then f(z) is Fisenstein if
vi(a;) > 1 for all ¢, and vk (ag) = 1.

It is a fact that if f(z) is Eisenstein, then it is irreducible.

Theorem 13.9.

(i) Let L/K be finite and totally ramified, and let 7y, € O, be a uniformizer. Then the minimal
polynomial of 7y, is Eisenstein and Op = O] as an Ok-algebra, so L = K[ry)].

(i) Any root o of an Eisenstein f(x) € Ok|[z] generates a totally ramified extension L = K (o) /K,
and « is a uniformizer of L.

Proof. (i): Suppose L/K is totally ramified, so that [L : K] = ey /x = e. Let 7 be a uniformizer,
and let f(z) = 2™ + ay_12™ 1 + -+ + a9 € Og[z] be the minimal polynomial for 7;. Then
m < e. Since vp(K*) = eZ and a; € K, we have that vz (a;7') = i mod e for i < m. Since
i < m < e, the valuations v (a;7%) are all distinct. As 77" = — Y a;n%, we have that m =
v (7™) = minwvg (a;7%) = min(i + evi(a;)). Since i < m, we need vk (a;) > 1 for all i. Also, we
need min(i + evi (a;)) = m < e, and this can only happen if m = e and v (ag) = 1. Thus f(x) is
Eisenstein of degree e, so L = K(7y,).

If y € L, we can write y = > wtb; with b; € K. We have that y € Oy, if and only v, (y) > 0,
and vy, (y) = min(vg (7% b;)) = min(i + evg (b;)). So we need b; € Ok, so y € O|[ry].

(i) Let f(z) = 2" +a,_12" 1 +---+ag be Eisenstein. Then vy (a;) = evi(a;) > e and vy, (ag) =
e. Let a be aroot of f and set L = K(«). If vy, (a) < 0, then we would have vy, (a") < vp(— > a;at),
which is a contradiction. Thus vy, (a) > 0. For i > 0, we have that vy (a;a’) > e = v (ag). Therefore
v (@) = vp (=Y a;at) = vr(ag) = e. Thus nvg(a) =e. But e | n, son = e and vy (a) = 1. O

13.1 Structure of units

Let [K : Qp] < 0o be a finite extension of Q, and set e := ek /g, and let 7 be a uniformizer of K.

Proposition 13.10. If r > -5 then exp(z) =Y % converges on " Ok and induces an isomor-
phism of groups
("0, +) =2 (1 4+ 7" 0k, X). (13.2)
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Proof. To show convergence, we have that

vi (nl) = evy(n!)

_n—sp(n)
= -
n—1
. 13.3
<el— (13.3)
where s,(n) is the base p digit sum of n. For € 7"Of and n > 1, we have that
" -1
UK(Z!)zme.Z_lr+(n1)(rpf1). (13.4)

This is greater than 0 if r > <7, and in this case UK(% — 0 so exp(x) converges.
Since v (x™/n!) > r for all n > 1, we have that exp(x) € 1 + 7"Ok. Consider the log map

log(1+):14+7"0Og = 7" Ok

T i #x" (13.5)
n=1

This converges as before as v (n) < vk (n!). In Q[X, Y], we have the identities
(i) exp(X +Y) = exp(X) exp(Y).
(ii) exp(log(l+x)) =1+=.

(iii) log(exp(x)) = x.

Thus log is the inverse of exp, so exp is an isomorphism. O
Now let K be any local field with uniformizer w, and set Ui = Ok.
Definition 13.11. For any s € Zx>, the sth unit group Ul(f) is determined by
UL = (1+7°0k, x). (13.6)
By convention, set U 1(? ) =U k. Then we have a filtration
U =U9>0¥ > ... (13.7)
Proposition 13.12.
(i) U JU 2 (1%, ).
(ii) U Ut = (&, +).

Proof. (i): The reduction mod 7 map Oy — k* is surjective and has kernel 1 + 7O = Uf((l).
(ii): We have a map f : UI((S) — k given by 1 + 7m°z — & mod 7. As
1+ 7m°z)(1+7°y) =14+ 7°(x +y + 7°xy) (13.8)
we have that f is a group homomorphism. f is clearly surjective with kernel 1 + 75+t Qp = UI((S +1)

so we are done. O
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Remark 13.13. Let [K : Q,] < co. By Proposition and [13.10, we can find some finite index
subgroup of Oy isomorphic to (O, +) by taking U [((T ) with r sufficiently large as in Proposition
159

Example 13.14. Let O = Z, for p > 2. Then e = 1, so we can take 7 = 1. Then
7 = (Z/pZ)* x (14 pZp)* 2 Z/(p— 1)Z x Ly (13.9)
where the first map is given by
z+— (x mod p,z/[x mod p) (13.10)

where [z mod p] is the Teichmiiller lift.
If p = 2, then e = 1, but we need to take r = 2. Then

ZEF =2 (Z)AZ)* x (1 +4Zy) = Z)2Z X Ty (13.11)

where the first isomorphism is given by

x+— (x mod4,z-e(x) (13.12)
where
@={1 125 s 1
From this it is apparent that
23 )(ZX)? = {(22//2222)2 Z:; (13.14)

14 Higher ramification groups

The higher ramification groups are analogous to higher unit groups. Let L/K be a finite Galois
extension of local fields and 7, € Of, a unit.

Definition 14.1. Let vy be the normalized valuation on Oy,. For s € R>_1, the sth ramification
group is
Gs(L/K)={0oe€ Gal(L/K) |vp(c(z) —x) > s+ 1Vx € Op}. (14.1)

It is the elements of Gal(L/K) which “reduce to the identity mod 7*”.

Remark 14.2. G5 only changes at integers. But we define G, for any R>_; so that we can later
define the “upper numbering” (see the end of these notes).

Example 14.3.
1. G_; = Gal(L/K).
2.

Go(L/K)={c € Gal(L/K) | o(z) =z mod 7y, Yz € O}
= ker(res : Gal(L/K) — Gal(kr/k))
— Ik (14.2)
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For s € Z>(, we have that
Gs(L/K) = ker(Gal(L/K) — Aut(Or /75T OL)). (14.3)

Thus G4(L/K) is normal in G, and we have a filtration

Gal(L/K)=G_1 DGy DG D--- (14.4)
Theorem 14.4.
(i) For s >1,
Gs={o€Goy|vr(o(mr)—7L) > s+ 1}. (14.5)
(ii)
ﬁ G, ={1}. (14.6)
n=0
(i1i) There is an injective group homomorphism for s € Zsq
Gy/Gayr — U Uty (14.7)
induced by o — %LL) This map is independent of the choice of 7.

Proof. Let K C Ky C L be the maximal unramified subextension of L/K, upon replacing K by
K, we may assume that L/K is totally ramified, which we can do because it does not change the
inertia group. By Theorem Or = Oklryr).

(i): Suppose that vg(o(mp)—7L) > s+1. Let € Op, so then « = f(my) for some f(z) € Ok|[z].
Then

o(x) -z =o(f(rL)) — fmL)
= flo(m)) — f(mL)
= (o(mL) —7r)g(mL) (14.8)

for some g(z) € O[] as o(z)™ — 2™ = (o(z) — z)(o(x)™ T + ... 2™T1). Thus

vr(o(z) —x) =vp(o(mr) —mr) +vr(g(mr))
> 1. (14.9)

(ii): Suppose ¢ € Gal(L/K) with ¢ # 1. Then o(ry) — 7 # 0, because L = K(71), so
vr(o(mp) — ) < co. Thus o ¢ G for s > vr(o(nr) —7r) by (i).
(iii): For o € G, with s € Z>(, we have that o(7y) € 7 + 7Ti+1OL )

@ cl+m0, =UY. (14.10)
L

Thus the map ¢ : G5 — Ués)/UfH) is well-defined.
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We want to show ¢ is a group homomorphism with kernel G,11. For 0,7 € G, let 7(7) = unp,
with u € Of. Then

or(ry)  o(r(my)) 7(mr)

L T(7TL) L
_ o o(m) 7(m) (14.11)
u L L

In order to show that this is a group homomorphism, we need to show that # eU SH). But

o(u) €u+ W(LSH)(’)L since o € G, so we are done.

Moreover we have that

kerp = {0 € Gy | o(n) =7 mod 751?} = Gy (14.12)

since in this case o(rr)/7, =1 mod 75"

If 7}, = wry, is another uniformizer with u € Of, then

J(T’L) _o(u) o(r) (14.13)
Uy U s

o(u)

and since —— € Uésﬂ), we get the same map. O

Corollary 14.5. Gal(L/K) is solvable.
Proof. By Proposition [I3.12] Theorem and Theorem we have that
Gal(k/k) s—=—1
Gs/Gsq1 = asubgroup of ¢ (kf, x) s=0 (14.14)
(kr,+) s>1

These groups are all abelian, and since (|G, = {1}, the successive quotients are all abelian and
“exhaust” Gal(L/K), so Gal(L/K) is solvable. O

Let char(k) = p. Then G/G1 embeds into a group of order p™—1, so p 1 |Go/G1| and |G| = p™.
Thus G is the unique (and hence normal) Sylow p-subgroup of G = I,k

Definition 14.6. G; is the wild inertia group and Go/G1 is the tame quotient.

Now let L/ K be separable, finite. We say that L/K is tamely ramified if char k { e, . Otherwise
it is wildly ramified.
Theorem 14.7 (Different measures ramification upstairs). Let [K : Qp] < oo, L/K finite, and
Dk = (wOE/EK)) . Then (LK) > er/kx — 1, with equality if and only if L/ K is tamely ramified.
In particular, L/ K is unramified if and only if Dy /x = Of.

Proof. By Sheet 3, Dy /x = D k,Dk, /K so it suffices to check the totally ramified and unramified
cases.

Case 1: L/K unramified: By Proposition we have a power basis O = Okla] where
a € O satisfies k;, = k(@). Let g(z) = Ok[z] be the monic minimal polynomial of a. Then
[L: K] = [k : k] because L/K is unramified, so g(x) is the minimal polynomial of &@. Thus g(z) is
separable, so ¢’(a) #0 mod 7. By Theorem we then have that Dy /g = (¢'(a)) = OL.
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Case 2: L/K totally ramified We have that [L: K] =e, Op = Og|[r], where 7, is a root of
g(z) = 2° + ae_12°7 1 + -+ + ag € O[z] an Eisenstein polynomial. Then

e—1
g (rp) =ers '+ Ziamf_l (14.15)
i=0

The first term has valuation vy, greater than e — 1, and the terms in the sum have valuation vy,
greater than e as g is Eisenstein, so v (¢'(7r)) > e — 1, with equality if and only if v (e) = 0, if
and only if pte, if and only if L/K is tamely ramified. O

Corollary 14.8. Let L/K be an extension of number fields, B C Or, and PN Ox = p. Then
e(B/p) > 1 if and only if B | Dk

Proof. By Theorem (12.11| Dy /x = Hq3 Dpy /K, and e(B/p) = er, /k,- So applying Theoremm
gives the result.

In particular, we have that e(3/p) > 1 if and only if §(Leqs/Ky) > 0 if and only if B | Dy, /k,
if and only if B | Dy, /x- O

Example 14.9. Let K = Qp, (p» a primitive p” th oot of unity, and L = Qp(¢pn). The pth
cyclotomic polynomial is

Bpn(z) =P P pg" D) = (2" — 1)(aP — 1) € Zp[al. (14.16)
On sheet 3, we will show that
1. ®,n(x) is irreducible, so ®pn is the minimal polynomial of (yn.
2. L/Q, is Galois, totally ramified of degree p"~!(p — 1).
3. ™= (pn — 1 is a uniformizer of Of, so O, = Zy[Cpn — 1] = Zp[(pn].

4. Gal(L/Q,) = (Z/p"Z)* is abelian, and the isomorphism is given by o, +— m, where
om(Gpn) = Cpn -

We want to understand the decomposition groups G that o, lies in. So we need to understand
vL(0m(m) =) = v (Om(Gpr — 1) = (Gpn = 1)) = vp(Gpr)or (G = 1) = vr(Ge™ = 1), (14.17)

Let k be the maximal integer such that p* | m — 1. Then C;'ffl is a primitive p"~*th root of unity,

' — 1 is a uniformizer of L' = Q,(¢Jx"). So

so ' = (pn
v (Gt = epyw
_ CL/Q

o eL’/Qp
_ [L: Q)
(L @p]
n—1 -1
- pf—k—(llzp : )1) = p* (14.18)
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Then by Theorem (i), om € G if and only if p¥ > i + 1. Thus

@ =0
Gi = (L+p*2)/p"Z pFt —1<i<pr—1 (14.19)
1 1<

Part VI
Local class field theory

15 Filler section

In my notes there is no Section [I5] so we skip to Section

16 Infinite Galois theory

Let L/K be an algebraic extension of fields of possibly infinite degree.

Definition 16.1.

(i) L/K is separable if for all x € L, the minimal polynomial f,(z) € K|[z] for « is separable.
(ii) L/K is normal if f,(x) splits in L for all « € L.

(i) L/K is Galois if it is separable and normal.

If L/ K is finite and Galois, the Galois correspondence gives us a bijection between subextensions
K C K’ C L and subgroups of Gal(L/K) where normal subgroups correspond to Galois (normal)
subextensions.

The infinite case is not exactly the same, as we need to define a topology on Gal(L/K) so we
only look at closed subgroups (general subgroups can get unwieldy very quickly).

Definition 16.2. Let (I,<) be a poset. We say that I is a directed set if for all i,j € I, there
exists k € I such that ¢ <k and j < k. So i and j always have a join.

Example 16.3. Any total order is a directed set.

Definition 16.4. Let (I, <) be a directed set, and (G;);cs a collection of groups with morphisms
wij  Gj — Gy for all i < j such that o, = @i 0 )i for all i < j <k and ¢ = idg,. We say that
((Gi)ier, (pij)) is an inverse system, and the inverse limit of ((G;), (vij;)) is

Wm G = {(gi)ier | ¢ij(9:) = 9;} (16.1)

el

Remark 16.5. We have projection maps 9; : ]'glie] G; — G; given by (g;) — g;.
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The universal property of inverse limits is that for any objection X with morphisms n; : X — G
which are compatible with ¢;;, the morphisms 7; factor through v; by some unique morphism 7.
The profinite topology on @Gi is the weakest topology such that ); are all continuous, where

G, has the discrete topology. So wj_l(g) is clopen for all g € G;.
Proposition 16.6. Let L/K be Galois.

(i) The set I = {F/K finite| F C L,F Galois} is a directed set under inclusion (the compositum
is the join).

(ii) For F,F' € I, F C F’, there is a restriction map

resp p : Gal(F'/K) — Gal(F/K) (16.2)
and the natural map
Gal(L/K) — @ Gal(F/K) (16.3)
F'CF

18 an 1somorphism.

Theorem 16.7 (Fundamental theorem of infinite Galois theory). Let L/K be Galois, and endow
Gal(L/K) with the profinite topology (which is discrete if L/K is finite). Then there exists a
bijection
{subextensions L/F/K} < {closed subgroups of Gal(L/K)}
F s Gal(L/F)
L" «+ H c Gal(L/K) (16.4)

Moreover, F/K is finite if and only if Gal(L/F) is open and F/K is Galois if and only if
Gal(L/F) is normal.

Proof. Example Sheet 4. O

Example 16.8. Let K = F,, and L = F, be the algebraic closure. Then L/K is Galois because
F, is perfect. The finite subextensions of L are of the form Fy» for n > 1, and Fym C Fy» if and
only if m | n. There exists a commutative diagram (where the vertical maps are Frob, < 1)

Gal(]Fqn /]Fq) % Gal(]qu /]Fq)

| I

Z/nZ —2 s 7/mZ.

So Gal(F,/F,) = lim Z/nZ = 7, the profinite integers. We have that (Frob,) corresponds to Z C Z.

16.1 The Weil Group
Let K be a local field, and L/K a separable algebraic extension.

Definition 16.9.
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(i) L/K is unramified if all finite subextensions are unramified.

(ii) L/K is totally ramified if all finite subextensions are totally ramified.

Proposition 16.10. Let L/K be unramified. Then L/K is Galois and Gal(L/K) = Gal(kr/k).

Proof. We reduce to the finite case. Every finite subextension F//K is unramified, and hence Galois,
so L/K is normal and separable, and hence Galois. Moreover, there exists a diagram

Gal(L/K) —=— Gal(kp /k)

| I

lim Gal(F/K) —— lim Gal(k' /k)

The map * exists because finite subextensions of L are in bijection with finite subextensions k/k.
This is because given any k C k' C kr, we can lift to an unramified subextension K C K’ C K,
by adding roots of unity (this is the basic theory of unramified extensions). Thus the index sets
match, so x exists and res is an isomorphism. O

If Ly, Lo/ K are both finite and unramified implies that Ly Ls/K is unramified (Sheet 3). Thus
for any L/K there exists a maximal unramified subextension Ky/K which is the compositum of all
the unramified subextensions.

Now, let L/K be Galois. Then there exists a surjection

res : Gal(L/K) — Gal(Ky/K) = Gal(kr/k). (16.5)

Set Ir,x = ker(res) to be the inertia subgroup. Let Froby, ;, € Gal(kr/k) be the Frobenius
element z — z!* and let (Froby,, /i) be the subgroup generated by Froby, /.
Definition 16.11. Let L/K Galois. The Weil group W (L/K) C Gal(L/K) is res™' ((Froby, /i)).

Remark 16.12. If &k, /k is finite, then W(L/K) = Gal(L/K). Otherwise W(L/K) C Gal(L/K).

There exists a commutative diagram with exact rows

0 Ik W(L/K) ——— (Froby, /) ——— 0
0 Ik Gal(L/K) —— Gal(kp/k) —— 0

So W(L/K) is the part of Gal(L/K) corresponding to Froby, /.
We endow W (L/K) with the weakest topology such that
1. W(L/K) is a topological group.
2. Ip/k is an open subgroup of W (L/K)

where I/ = Gal(L/Ky) has the profinite topology. So W(L/K) has a basis of open sets given
by translates of open sets in I, /i by elements of W(L/K). So the basis is of the form w + U with
we W(L/K)and U C I,k open.
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Remark 16.13. Warning! The topology on W(L/K) is not the subspace topology induced by
W(L/K) C Gal(L/K) if kr,/k is infinite.

For example, I ,x C W(L/K) is not open in the subspace topology because I1,x does not
have finite index.

Proposition 16.14. Let L/K be Galois.
(i) W(L/K) is dense in Gal(L/K).
(i) If F/K is a finite subextension of L/K, then
W(L/F)=W(L/K)NGal(L/F). (16.6)
(ii) If F/K is a finite Galois subextension, then
Gal(F/K) 2 W(L/K)/W(L/F) (16.7)
Proof. (i): W(L/K) is dense if and only if for all F//K finite Galois, W (L/K) intersects every coset

of Gal(L/F). This is true if and only if for all F//K finite Galois, W(L/K) — Gal(F/K). Consider
the diagram

0 —— I g —— W(L/K) (Froby, /) —————— 0

) b |
0 —— Ip/g —— W(F/K) = Gal(F//K) ——— (Froby, /) = Gal(kp/k) —— 0

Let L/Ky/K be the maximal unramified subextension. Then Ky N F is the maximal unramified
subextension of F/K. So Gal(L/Ky) — Gal(FK,/Ky) = Gal(F/KyN F), so a is surjective as
Ip)x = Gal(F/KoNF) and I,/ = Gal(L/Ko). We have that Gal(kr/k) is generated by Froby, /i
so ¢ is surjective. So by the snake lemma, b is surjective.

(ii): We have a commutative diagram

Gal(L/F) —— Gal(ky /kp) +—=— (Froby, i)
Gal(L/K) —— Gal(ky/k) «—=—— (Froby, i)

For o € Gal(L/F), 0 € W(L/F) if and only if oy, € (Froby, /i, ), if and only if |y, € (Froby, /).
Now, we have that Gal(kz/kr) N (Froby, ;i) = (Froby, /i), which follows from the fact that
nZNZ=nlk,so ol, € (Froby, /) if and only if 0 € W(L/K).
(iii) We do a messy derivation
W(L/K)/W(L/F) = W(L/K)/(W(L/K) N Gal(L/F))
~W(L/K)Gal(L/F)/Gal(L/F)
* = Gal(L/K)/Gal(L/F)
~ Gal(F/K). (16.8)

* follows from part (i) and the fact that Gal(L/F) is an open subgroup. O
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17 Statements of local class field theory

Let K be a local field.

Definition 17.1. An extension L/K is abelian if it is Galois and Gal(L/K) is abelian. We have
that

(i) If Ly, Lo/ K are abelian, then L;Lo/K is abelian.
(ii) If Ly N Ly = K, then there exists a canonical isomorphism
Gal(L1Ly/K) = Gal(L1/K) x Gal(Ls/K). (17.1)
(i) implies that there exists a maximal abelian extension K®" of K by taking the compositum of
all abelian extensions.

Example 17.2. Let K?P denote the maximal abelian extension of K inside K®°P. Let

K™ = | K(¢n) (17.2)

m>1

where |k| = ¢. Then K" is the maximal unramified extension of K by the theory of unramified
extensions, and kgw = F,. We have that Gal(K""/K) = Gal(F,/F,) = Z, so the maximal
unramified extension is abelian, and hence contained in K?°. Thus kga» = Fy, so there exists a
SES

0 ——— Igan g —— W(K*/K) ——— Z = (Frobga ) —— 0
Theorem 17.3 (Locally Artin reciprocity).
(i) There exists a unique topological isomorphism (a group isomorphism and a homeomorphism)
Artg : KX — W(K*/K) (17.3)
which satisfies

(a) Artg(m)|guwn = Frobgun i for any uniformizer m € K.
(b) For each finite abelian subextension L/K in K** /K,

Artg (Np e (L™))|L = {1} (17.4)
(ii) Let L/K be a finite abelian. Then Arty induces an isomorphism
K> [Ny i(L*) = W(K*/K)/W(K*/L) = Gal(L/K) (17.5)
Remark 17.4.

(i) The local Artin map is used to characterize the global Artin map in global class field theory.

(ii) This is a special case of the local Langlands correspondence. The moral of local Langlands
is that the Weil group is hard to study in general, but we can look at representations of the
Weil-(Deligne) group, and compare to p-adic groups.
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17.1 Properties of the Artin map

Theorem 17.5 (Existence Theorem). For any H C K* open, finite indez, there exists L/ K a finite
abelian extension such that Ny, (L*) = H. In particular, we can understand abelian evtensions
by studying K*. The Artin map induces an isomorphism of posets (which is inclusion reversing)

open finite index subsets of K> < {finite abelian extensions of K}
H — (Kab)ArtK(H)

Theorem 17.6 (Norm functoriality). Let L/K be any finite separable extension. Then the following
diagram commutes

Lx —20 5 W(L*b/L)

l{N LK Jres

Kx —2 5y (Kb /K)
17.2 Construction of the Artin map for Q,
Recall that

Q;n = U QP(CP’"—I) = U Qp(Cm) (177)
m=1

ptm

is the extension of Q, obtained by adjoing all roots of unity relatively prime to p. Also, Q,((n)/Qp
is totally ramified of degree p"~1(p — 1) with isomorphism

On + Gal(Qp(Gpn)/Qp) — (Z/p"Z) ™. (17.8)

For n > m > 1, there exists a diagram
Gal(Qp(Gpr)/Qp) ——— Gal(Qp(Gpm)/Qp)
- -
(Z/p"7)* ————— (Z/p"L)*
Set
Qp(Gp=) = G Q(Gpm)- (17.9)
Then Q,((p~) is Galois and we have "

0 : Gal(Qy(Gpe)/Qp) — Lim(Z/p"Z)* = 7% (17.10)

We have that Qp((p) N Qp" = Q, because one is totally ramified, and the other is unramified. So
then there exists an isomorphism

Gal (Qp((p)Qu"/Qy) = Z x LY. (17.11)
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Theorem 17.7.
Q" = Q" Qu(Gp) (17.12)

Remark 17.8. Q,((pe) is not the canonical totally ramified extension, and non exists.
We construct Artg, as follows: we have that
Q) =Zx1L) (17.13)

which is non-canonical! Then

Artg, (p"u) = ((Ffonzr /Qp)”,e—l(u—l)) € Gal(QY'/Q,) x Gal(Qp((p=)/Qp) = Gal(QE/Q,)
(17.14
We can check that the image lies in W (Q3/Q,), which is intuitive as we would expect W (Q2"/Q,) =

Z x LX C L x ZX = Gal(Q2>/Q,).
We can also check that this map is independent of the choice of totally ramified extension,
T € Qp.

17.3 Construction of Artin map for arbitrary K

Based off of the @, case, our question is how to adjoin p"™th roots of unity to a local field K? Let K
be a local field and 7 a uniformizer. For n > 1, construct K, ,, a totally ramified Galois extension
such that

(i) KCKy1C---.

(ii) For n > m > 1, there exists a commutative diagram

Gal(K, ,/K) —— Gal(Ky /K)

O /U —s O3 U

(iil) Setting K, oo = |J Kx,n, we have that

K = K"K, (17.15)
Then (ii) implies that there exists an isomorphism

¥ Gal(Kr oo/ K) 2 lim O3 /U™ = O (17.16)
We define Artx by

K* 27 x OF — Gal(K"/K) x Gal(K, «/K) = Gal(K**/K)
7w (n,u) = (Frobgun )™, ¢~ (u™)) (17.17)

The analogy with the Q, case is
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Remark 17.9. Both K o and the isomorphism K* = Z x Oy depend on w. For different choice
of 7, the Artin maps agree, so Artg is canonical.

So now, our goal is to construct K, ,. This will take some work.

Part VII
Lubin-Tate theory

The main idea is that (,» are torsion points in @; .

18 Formal group laws

Let R be a ring, and R[[z1,...,zy]] the ring of formal power series.

Definition 18.1. A (1-dimensional, commutative) formal group law over R is a power series
F(X,Y) € R[[X,Y]] satisfying

(i)
(i)

(iii)
Example 18.2.

Y)
F(X,Y) = F(Y, X).
F(X,0)=X, F(0,Y)=Y.
F(X,F(Y,Z)) = F(F(X,Y),Z).

1. ((A}a(X, Y) = X +Y the formal additive group.

2. @m(X, Y)=X+Y + XY the formal multiplicative group.
Lemma 18.3. There exists a unique i(X) € R[[X]] such that i(0) =0 and F(X,i(X)) = 0.
Proof. Sheet 4. O

Now let K be a complete, non-archimedean valued field. If F is a formal group law over Ok,
then F(X,Y) converges for all z,y € m to an element of m. Define z -y = F(x,y), then (mg, r)
is a commutative group.

Example 18.4. Let @m/Zp be the formal group z-5 y = x+y+xy. Then (pZy, -@m) = (1+4pZy, x)
under x — 1 + x which is easy to verify.
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Definition 18.5. Homorphism of formal groups. Define Endg(F) to be the set of formal group
homomorphisms f: F — F.

Proposition 18.6. Suppose R is a Q-algebra. There is an isomorphism of formal group laws
exp(X) : G, — G, given by

oo

Xn

_ — X _
exp(X) = Zl =t oL (18.1)
Proof. Define
_1\yn—1vyn
log X = sumleu. (18.2)

n

Then there exists an equality of formal power series by log(exp(X)) = X = exp(log(X)). We can
also check that N R
exp(Gq(X,Y)) = Gy (exp(X), exp(Y)). (18.3)

O

Lemma 18.7. Endg(F) is a ring with

(f P g)(X) = foy( (18.4)
Proof. Let f,g € Endg(F). Then
(f+rg)o F(X,Y) = F(f(F(X,Y)),g(F(X,Y)))
= F(F(f(X), f(Y)), F(9(X),9(Y)))
= F(F(f(X),9(X)), F(f(Y),9(Y)))
=F(f+r9(X), f+Frg(Y)) (18.5)

so f 4+r g is an endomorphism. We can similarly check that fogo F = foFog= Fo fogso
fog=f Fgisalso an endomorphism. The rest is tedious. O

19 Lubin-Tate formal group laws

Let K be a non-archimedean local field, with |k| = q.

Definition 19.1. A formal Og-module over Ok is a formal group law F(X,Y) € Okl[[X,Y]]
together with a ring homomorphism [-]r : Ox — Ende, (F') such that for all a € Ok we have that

[a]p =aX mod X?. (19.1)

A homomorphism /isomorphism f : F' — G of formal O g-modules is a homomorphism /isomorphism
of formal group laws such that f o [a]r = [a]g o f for all a € Ok.

Definition 19.2. Let m € Ok be a uniformizer. A Lubin-Tate series for 7w is a power series
f(X) € Ok[[X]] such that

(i) f(X)=7X mod X2
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(ii) f(X) =29 mod 7.
Theorem 19.3. Let f(X) be a Lubin-Tate series for w. Then
(i) There exists a unique formal group law Fy over Ok such that f € Endo, (Fy).
(i) There exists a ring homomorphism
[]f : Ok — Endo, (Fy) (19.2)
such that [7];(X) = f(X), which makes Fy a formal Ox-module over Ok .
(111) If g(X) is another Lubin-Tate series for m, then Fy = F, as formal O -modules.

F¢ is a Lubin-Tate formal group law for m, and it depends on 7 up to isomorphism.

Example 19.4. Let K = Q,. Then f(X) = (X 4+ 1)? — 1 is a Lubin-Tate series for p. We claim
that the Lubin-Tate formal group law F; is G,,. It suffices to show that f o G,, = G,, o f, as then
f € Endo, (G,), and G,, = F; is unique. We have that

FCm(X,Y) = (X + DY +1) = 1+1)P 1
— (X +1P(Y+1)P—1
(X 4+1P—1+1D)(Y +1)P—1+41)—1
= G (J(X), S(Y)). (19.3)

In order to prove Theorem[19.3] we use the following key lemma. It tells us that we can uniquely
construct a power series with specified degree 1 terms which intertwines with Lubin-Tate series.
Thus if two power series are equivalent modulo degree 2 terms and intertwine with Lubin-Tate
series, then they are equal.

Lemma 19.5. Let f(X), g(X) be Lubin-Tate series for w. Suppose L(X1,...,Xpn) = > a;X;
for a; € Ok is some linear form. Then there exists a unique power series F(Xy,...,X,) €
Okl[X1,...,Xy]] such that

(i) F(X1,...,X,) = L(X1,...,X,,) mod deg?2.
(i) f(F(X1,..., X)) = F(9(X1),...,9(Xn)).

Proof. We show by induction there exists a unique polynomial F,, € Okg[X;,...,X,] of degree at
most m such that

(@) f(Fn(Xy1,..., X)) = Fn(g(X1),...,9(X,)) mod deg(m +1).
(b) Fr(X1,...,Xm) = L(Xy,...,X;n) mod deg?2.
(¢) Fyp = Frpy1 mod deg(m + 1).
For m =1 we take F} = L(Xy,...,X,) which immediately satisfies (b). We have that

fF(Xq,..., X)) =7L(X1,...,X,) mod deg?2
= Fi(9(X1),...,9(Xn)) mod deg2 (19.4)
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as f,g are both Lubin-Tate series for w. Suppose we have built F,,, for some m > 1. Set F,,+1 =
F,,+h, where h € Og[X7, ..., X,] is homogeneous of degree m+1. Since f(X+Y) = f(X)+f(X)Y
mod Y? and f'(X) =7 mod X, we have that

fo(Fn+h)=foF,+7h mod deg(m+2) (19.5)
Similarly,

(Fn+h)og=F,og+hog
=Fnog+h(nXy,...,7X,) mod deg(m + 2)
=F,og+ iy (19.6)

as ¢ is a Lubin-Tate series for w. Thus (a), (b), (c) are satisfied if and only if
foF, —Fnog=(r—a"")h mod deg(m + 2) (19.7)

We want to “divide” by m — 71, but we need to check that the result is still in Ox[X1, ..., X,].
But f(X)=g¢(X)=2? mod =, so

foF,—Fy,og9g=F,(X1,....,X,)! = F,(X{,...,X?) modw=0 modm (19.8)

Thus fo F,, — F,0og € nOk[X1,...,Xn]. Let r(X1,...,X,) be the degree m + 1 terms of
foF,, — Fyog. Then we have that

1
h= ey € Ok[X, o X (19.9)

works. Since h is determined uniquely by (19.7), which is equivalent to (a), (b), (c), Fint1 is
uniquely determined. Set F' = lim F),,, then F satisfies (i), (ii). The uniqueness follows from the
uniqueness of F;,, because if G is another such series, then we must have that G,, = F,,, where

G, is the mth partial sum of G.
O

Proof of Theorem[19.3. Out proof strategy is to spam Lemma [I9.5] until we're sick of it.
(i) By Lemma there exists a unique F¢(X,Y) € Og[X, Y] such that

Fr(X,)Y)=X+Y mod deg2
FFE(X,Y)) = Fp(f(X), f(Y)) (19.10)

We claim that F is a formal group law. To show associativity, we have that
Fr(X,Fy (Y, 2)) = Fy(Fy(X,Y),Z) =X +Y +Z mod deg2 (19.11)
We also have that
[ o Fy(X. Fy(Y.2)) = Fy(f(X), [(Fy(Y, 2))) = Ff(F(X), Fy(f(Y), (2))) (19.12)

and
[oFy(Fr(X,Y),Z) = Fr(f(Fy(X,Y)), f(Z)) = Fr(F(f(X), f(Y)), f(2)) (19.13)
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So both F¢(X, F¢(Y,Z)) and Fy(Ff(X,Y), Z) satisfy the condition of Lemma with L(X,Y, Z) =
X +Y + Z, so they are equal. Commutativity follows by the same argument, so Fy is a formal

group law. (|19.10) then shows that f € Ende, (Fy).
(i) By Lemmam7 for a € Ok we have that there exists a unique [a]r, € Ok[[X]] such that

[a]r;, = aX mod X% and fo [a]r, = [a]F, o f. Then

fO ([a]pf OFf) = ([a]pf OFf) Of

fo(Fyolalp,) = (Frolalp)o f (19.14)
and [a]r, o Fy = Fy o [a]p, mod deg2, so [a]r, o Fy = Fy o [a]F, by Lemmam Thus [a]F, €
Endo, (F}). Likewise, the map [-]r, : Ox — Endo, (Fy) is a ring homomorphism by Lemmam
So Fy is a formal Og-module over Ok, and [r]|p, = f by Lemma

(iii) If g(X) is another Lubin-Tate series for 7, let §(X) € Ok|[[X]| be the unique power series
such that (X) = X mod X2 and §o f = go . We have that

(@oFf)of=go(foFy)
(Fgol)of=go(Fy00) (19.15)

and as [y = F;, = X +Y mod deg2 and # = X mod deg2, we have that 6 o Iy = F,, 06 by
Lemmam Thusf € Hom(Fy, F,). Swapping f and g, we get some ¢ € Hom(F, Fy). We have
that fotp = o6 = X by Lemma (compare with i(X) = X). It also follows from Lemma[19.5]
that 0 o [a]r, = [a]F, o 0 for all @ € O, and hence 6 is an isomorphism of formal Ox-modules.

O

20 Lubin-Tate Extensions

Let K be an algebraic closure of K, and m C O the maximal ideal. The next lemma justifies the
use of the term “formal Og-module”.

Lemma 20.1. Let F be a formal Ok -module over Ok. Then m is an Ok -module under (for all
z,yem, a€ Ok)

z+py=F(zy)
a-px=la|lp(z) (20.1)

Proof. It’s important to note that K is not complete, so we need to be a bit careful.

If z € m, then € my, for some L/K finite. Then [a]r € Ox|[[X]], so [a]r,(X) converges in L
and since my, is closed, [a]p(z) € my € m. Similarly  +r y € m. The module structure follows
from the definitions. O

Recall that if Fy is a Lubin-Tate formal group law, then [7]p, = f.

Definition 20.2. The 7"-torsion subgroup is

pfn i ={zem|n" g =0}
—{ze| fu(X)=fofo-of(X)=0l (20.2)

In fact, p¢,y, is an Og-submodule, and py,, C pfpy1 for all n > 1.
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Example 20.3. Let K = Q,, and f(X) = (X +1)? — 1. Then

P"F (X)=fof o f(X)=(X+1)" -1 (20.3)

Thus ‘
/Lfm:{czy"fl ‘Z:O»L»Pn*l} (204)

Thus the zif,5 seem to be our desired analogues for p-power roots of unity!

Now let f(X) = 7X + X? be a Lubin-Tate series for 7, and set f,, = fo f,_1(X) = fn_1(X) -
(7 + fa_1(X)971). Then we can define the analogue of the cyclotomic polynomial as

ho(X) = SnlX) T4 fro1(X)47! (20.5)

B fn—l(X)
Proposition 20.4. h,(X) is a separable Eisenstein polynomial of degree ¢q® (q —1).

Proof. Tt is clear that h,(X) is monic as it is the quotient of monics, and has degree ¢ — ¢" =1 =
" g —1).

As f(X) = X? mod 7, we have that f, 1(X)7"1 = X7"'a=1 mod 7. Since fn—1(X) has 0
constant term, h,(X) has constant term 7. Thus h,(X) is Eisenstein.

Since h,, (X) is irreducible, it is separable if and only if char K = 0, or char K = p and h!,(X) # 0.
Assume that char K = p and induct on n. Then hy(X) = 7 + X9 ! is separable. Suppose
hi(X),..., hy—1(X) is separable. Then f,_1(X) = Xh1(X)---h,—1(X) is separable as it is the
product of separable irreducible polynomials of different degrees. Then h,(X) =7 + f,,_1(X)971,
so W (X)=(q—1)f,_1(X)fn-1(X)?72 £ 0, so h,(X) is separable. O

We need to understand the module structure on gy ,.
Proposition 20.5.
(i) psn is a free Ox /T Or-module of rank 1.

(i) If g is another Lubin-Tate series for m, then pyg, = pgn as Ox-modules and K(us,) =
K(pgn)-

Proof. (i): Fix a root a of h,(X). Since h,(X) is coprime to f,—1(X), & € pyn \ fifn—1. Then
the map

95 : OK — Hfn
a—a-pa (20.6)
is an Og-module homomorphism. Since « is a 7™ torsion point, ker @ D 7" Ok. Since o & fif -1,
7"l Fra # 0, so 71Ok ¢ ker ¢. Since ker ¢ is an ideal, this means that ker = 7"Of. Thus

¢ induces an injection
©: Ok /" Ok — lfn. (20.7)

Since fp(X) is separable, |uf,| < deg f,,(X) < deg fr(X) = ¢" = |Ok /7" Ok]|, so ¢ is an isomor-
phism by the pigeon-hole principle.
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(ii): Let # € Homp, (F, Fy) be an isomorphism of formal Og-modules. Then § induces an
isomorphism

0 : (m, +Ff) — (ﬁ,—FFg) (20.8)

of Og-modules. This can be seen by a proof similar to that of Lemmalﬂ_rfl Hence jif.n = pigrn. Since
[ s, is algebraic, K(uys.,)/K is finite, hence complete, and as §(X) € O [[X]], we have that for all

Q€ lpp, 0(a) € K(upn). So K(pgn) C K(psn). Reversing f and g gives K (pif.) C K(ftg,n) SO
we are done. O

Definition 20.6. Set K, = K(ys,). The K., are Lubin-Tate extensions.

Remark 20.7.
1. Ky do not depend on the choice of Lubin-Tate series by Proposition m
2. Kpo CKrp C---

Proposition 20.8. K, ,,/K are totally ramified and Galois of degree ¢"~*(q — 1).

Proof. We may pick a Lubin-Tate series f(z) = 7X + X9 for 7. Then K., /K is Galois because
it is the splitting field of f,,(X). Let « be a root of h,(X) = f.(X)/fn—1(X). It suffices to show
that K (o) = K(usn), since « is a root of an Eisenstein polynomial. Clearly K («) C K(u¢,n). By
Proposition [20.5} if 2 € jif,, then = a -p; a for some a € Ok. Then since K (o) is complete and
[a]r, (X) € Ok |[|X]], we have that x = [a]r, (o) € K(a). Thus K(uyn) C K(a). O

Theorem 20.9. There exists an isomorphism
b 2 Gal(Ky ) K) S5 (Ok /7O )% 2= OF JUM™ (20.9)

characterized by

Un(0) -p; v = 0() (20.10)
for allx € pg,, 0 € Gal(Ky ., /K). 1, does not depend on f.

Proof. Let 0 € Gal(K,,/K). Then o preserves uy, and acts continuously on K, = K(us,).
Since Fy(X,Y) € Ok[[X,Y]] and [a]r, € Ok[[X]] for all a € Ok, we have by the continuity of o
that for all x € py,,,a € Ok that (look at the partial sums)

o(z+r y) = o(@) +r, 0(y)
o(a-p; v) = a g, o() (20.11)

Thus o € Auto, (ff,n), so we have a group homomorphism
Gal(Kﬂ,n/K) — Auto, (Mf,n) (20.12)

which is injective since K, = K(usn) so 0 =id in Aute, (uy») if and only if o(z) = « for all
T € g, if and only if 0 =id in K ,. Since ps, = Og /1" Ok as Og-modules, we have that

Auto}( (,Ltfm) = AutOK/ﬂ'"OK (,u'f,n) = (OK/ﬂnOK)X' (2013)
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This is true as for any ring R and any free R-module of rank 1 M, we have that Autg(M) = R*.
Thus we get a map ), as described above. Since [K ,, : K] = ¢"(¢ — 1) = |[(Ok /7" OKr)*|, ¥y, is
an isomorphism since it is an injection.

Now let g be another Lubin-Tate series for w. Then repeating the construction as above, we
get a map ¢’ : Gal(Kr »,/K) = (O /m"Ok)*. Let § : Fy — Fy be an isomorphism of formal Og-
modules. This induces an isomorphism 6 : iy, — ftgn of Og-modules and hence for all x € 5,
and all o € Gal(K, ,,/K) we have that

0(Wn(0) Fy ) = Yn(0) R, O(2). (20.14)

But 6 € Ok|[[X]] has coefficients in Ok, so §(c(z)) = o(f(x)). Then

— o (0(x)
=, (0) -F, O(x) (20.15)
Then ¢, (0) -, 0(x) =1, (0) -F, 0(x) s0 Yn(c) =1}, (0). O
Now, set
Kroo = | Krn- (20.16)

The isomorphisms 1, are compatible with descending on n (so ¥n|Gai(x, ,,_,/K) = ¥n—1), SO We an
isomorphism

) Gal(Kr oo/ K) = @(OK/W"OK)X ~ Of. (20.17)
We conclude by showing that K o is analogous to Q,((p~) as totally ramified extensions.
Theorem 20.10 (Generalized local Kronecker-Weber theorem). K*° = K, K"

The proof of this result is long and difficult. We then have that

Artg : KX 2 Z x 0% — Gal(K™/K) = Gal(K"/K) x Gal(K, o /K)
"= (n,u) (Frob’}(un/K,z/J_l(u_l)) (20.18)

and the construction of this map is independent of the choice of 7.

Part VIII
Non-examinable fun!

Will fill in when I am non-examining.

21 Upper numbering of ramification groups
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