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Part I

Basic Theory
Let f(x1, . . . , xr) ∈ Z[x1, . . . , xr]. We want to understand for which points (a1, . . . , ar) ∈ Zr we
have that f(a1, . . . , ar) = 0. This is a very hard question. But instead, we might ask the simpler
question for solutions to

f(x1, . . . , xr) ≡ 0 mod p

f(x1, . . . , xr) ≡ 0 mod p2

· · ·
f(x1, . . . , xr) ≡ 0 mod pn (0.1)

Local fields package all the mod pn information together.

1 Absolute values
Definition 1.1. Let K be a field. An absolute value on K is a function

| · | : K → R≥0 (1.1)

such that

(i) |x| = 0 if and only if x = 0.

(ii) |x||y| = |xy| for all x, y ∈ K.

(iii) |x+ y| ≤ |x|+ |y| for all x, y ∈ K.

We say that (K, | · |) is a value field.

Example 1.2. 1. |a+bi| =
√
a2 + b2 in K = Q,R,C. This is the | · |∞, the valuation at infinity.

2. The trivial absolute value for any field K is

|x| =

{
0 x = 0

1 x ̸= 0
(1.2)

We will mostly ignore the trivial absolute value in this course.

3. Let K = Q, then the p-adic absolute value is

|x|p =

{
p−vp(x) x ̸= 0

0 x = 0
(1.3)

where x = pvp(x) ab with p ∤ ab.

Lemma 1.3. | · |p is an absolute value.
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Proof. We go through the 3 conditions in Definition 1.1. They are all easy.

An absolute value on K induces a metric d(x, y) = |x− y|, which in turn induces a topology on
K.

Definition 1.4. Let | · |, | · |′ be two absolute values on K. We say that they are equivalent if they
induce the same topology.

Definition 1.5. An equivalence class of absolute values is called a place.

Proposition 1.6. Let | · |, | · |′ be two absolute values on K. The following are equivalent:

(i) | · | and | · |′ are equivalent.

(ii) |x| < 1 if and only if |x|′ < 1 (unit balls are the same).

(iii) There exists c ∈ R>0 such that |x|c = |x|′.

Proof. (i) =⇒ (ii): We have that |x| < 1 if and only if xn → 0 with respect to | · | if and only if
xn → 0 with respect to | · |′ (by (i)) if and only if |x′| < 1.

(ii) =⇒ (iii): We have that |x|c = |x|′ if and only if c log |x| = log |x|′. Let a ∈ K× such that
|a| > 1, which exists because | · | is nontrivial. We need that for all x ∈ K that

log |x|
log |a|

=
log |x|′

log |a|′
. (1.4)

Assume that
log |x|
log |a|

<
log |x|′

log |a|′
. (1.5)

Choose m,n ∈ Z, n > 0 such that

log |x|
log |a|

<
m

n
<

log |x|′

log |a|′
. (1.6)

Then n log |x| < m log |a| and n log |x|′ > m log |a|′, so∣∣∣∣ xnam
∣∣∣∣ < 1,

∣∣∣∣ xnam
∣∣∣∣′ > 1, (1.7)

which is a contradiction by (ii).
(iii) =⇒ (i): This is clear because the open balls are the same.

Remark 1.7. | · |2∞ on C is not an absolute value by our definition because the triangle inequality
does not hold. Some authors replace the triangle inequality by

|x+ y|β ≤ |x|β + |y|β (1.8)

for some β ∈ R>0.

Definition 1.8. An absolute value onK is non-archimedean if it satisfies the ultrametric inequality :

|x+ y| ≤ max(|x|, |y|) (1.9)

If | · | is not non-archimedean, we say that it is archimedean.
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Example 1.9. | · |∞ is archimedean, | · |p is non-archimedean.

Lemma 1.10. Let (K, | · |) be non-archimedean and x, y ∈ K. If |x| < |y|, then |x− y| = |y|.

Proof. We have that |x− y| ≤ max(|x|, |y|) = |y| and |y| ≤ max(|x− y|, |x|) = |x− y| so |x− y| =
|y|.

Proposition 1.11. Let (K, | · |) be non-archimedean and (xn) a sequence. If |xn−xn+1| → 0, then
the sequence is Cauchy. So if K is complete, then xn → x.

Proof. We have that

|xm − xn| ≤ max(|xm − xm−1|, . . . , |xn+1 − xn|) < ϵ (1.10)

if |xi+1 − xi| < ϵ.

Example 1.12. Let p = 5, and construct a sequence (xn)
∞
n=1 in Z such that x2n + 1 ≡ 0 mod 5n

and xn ≡ xn+1 mod 5n. Then |xn − xn+1|5 ≤ 5−n so the sequence is Cauchy.
Take x1 = 2, and let x2n + 1 = a5n and set xn+1 = xn + b5n. Then

x2n+1 + 1 = 1 + x2n + 5n(2bxn + b25n)

= a5n + 5n(2bxn + b25n (1.11)

So we can choose b so that a + 2bxn ≡ 0 mod 5. The sequence goes 2, 7, 32, . . .. Suppose that
xn → ℓ ∈ Q. Then x2n → ℓ2. But we have that x2n → −1, so ℓ2 = −1. So (Q, | · |5) is not complete.

Definition 1.13. The field of p-adic numbers Qp is the completion of Q with respect to | · |p.

Let (K, | · |) be a non-archimedean field, and for x ∈ K and r ∈ R>0 define

B(x, r) = {y ∈ K | |x− y| < r}
B(x, r) = {y ∈ K | |x− y| ≤ r} (1.12)

the open and closed balls around x of radius r.

Lemma 1.14. Let z ∈ B(x, r). Then

(i) B(z, r) = B(x, r).

(ii) B(z, r) = B(x, r).

(iii) B(x, r) is closed.

(iv) B(x, r) is open.

Proof. (i) Let y ∈ B(x, r). Then |x− y| < r, so

|z − y| = |(z − x) + (x− y)| ≤ max(|x− z|, |x− y|) < r. (1.13)

Thus B(x, r) = B(z, r) by symmetry.
(ii) The same argument as above holds.
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(iii) Let y /∈ B(x, r). If z ∈ B(x, r) ∩ B(y, r), then B(x, r) = B(z, r) = B(y, r). So y ∈ B(x, r),
which is a contradiction. Thus B(x, r)∩B(y, r) = ∅. So there exists an open neighborhood around
y not containing B(x, r), so B(x, r) is closed.

(iv) If z ∈ B(x, r), then B(z, r) ⊆ B(z, r) = B(x, r) so B(z, r) is an open neighborhood in
B(x, r), and

B(x, r) =
⋃

z∈B(x,r)

B(z, r) (1.14)

2 Valuation rings
Definition 2.1. Let K be a field. A valuation on K is a group map v : K× → R such that

(i) v(xy) = v(x) + v(y).

(ii) v(x+ y) ≥ min(v(x), v(y)).

Fix 0 < α < 1. If v is a valuation on K, then define

|x| =

{
αv(x) x ̸= 0

0 x = 0
(2.1)

which determines a non-archimedean absolute value. Conversely, given an absolute value | · |, we
can define a valuation

v(x) = logα |x|. (2.2)

Remark 2.2. We ignore the trivial valuation v(x) = 0 for all x, which induces the trivial absolute
value.

We say that two valuations v1, v2 are equivalent if there exists c ∈ R>0 such that v1(x) = cv2(x)
for all x ∈ K×.

Example 2.3. 1. Let K = Q, and vp(x) = logp |x|p = n, where x = pn · rs with p ∤ rs.

2. Let k be a field, and K = k(t) = Frac(k[t]) the function field of k. Then we can define a
valuation

v

(
tn
f(t)

g(t)

)
= n (2.3)

where f(0), g(0) ̸= 0. This is the t-adic evaluation.

3. Let K = k((t)) = Frac(k[[t]]) the ring of formal Laurent series, and let v(P (t)) be the smallest
nonzero index. We have that k((t)) is the t-adic completion of k(t), and

Qp = Z((t))/(t− p) (2.4)

Definition 2.4. Let (K, | · |) be a non-archimedean field. The valuation ring is defined to be

OK = {x ∈ K | |x| ≤ 1} = B(0, 1)

= {x ∈ K× | v(x) ≥ 0} ∪ {0} (2.5)
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Proposition 2.5. (i) OK is an open subring of K.

(ii) The subsets {x ∈ K | |x| ≤ r} = B(0, r) and {x ∈ K | |x| < r} = B(0, r) for r ≤ 1 are open
ideal in OK .

(iii) The units of the valuation ring are

O×
K = {x ∈ K | |x| = 1} = {x ∈ K | v(x) = 0} (2.6)

Proof. (i) We have that |0| = 0, and |1| = 1, so 0, 1 ∈ OK . If x ∈ Ok, then |−x| = |x|, so −x ∈ OK .
If x, y ∈ OK , then |x+ y| ≤ max |x|, |y| ≤ 1, so x+ y ∈ O−K. Also |xy| = |x||y| ≤ 1, so xy ∈ OK .
Thus OK is a ring.

(ii) Same as (i).
(iii) We have that |x||x−1| = 1, so x, x−1 ∈ OK if and only if |x| = 1.

By the above, we have that
m := {x ∈ OK | |x| < 1} (2.7)

is the unique maximal ideal of OK . It is unique because if x /∈ m, then x ∈ O×
K . We have that

k := OK/m (2.8)

is the residue field of K.

Corollary 2.6. OK is a local ring.

Example 2.7. Let K = Q with absolute value | · |p. Then

OK = Z(p) =
{a
b
∈ Q | p ∤ b

}
(2.9)

and m = pZ(p), and k = Fp.

Definition 2.8. Let v : K× → R be a valuation. If v(K×) ∼= Z, so that v(K×) is a discrete
subgroup, we say that | · | is a discrete valuation on K.

An element π ∈ OK is a uniformizer if v(π) > 0 and v(π) generates v(K×).

Example 2.9. 1. K = Q with vp is a discrete valuation.

2. K = k(t) with the t-adic valuation is a discrete.

3. k(t, t1/2, t1/4, . . .) with the t-adic valuation is not a discrete valuation as the t-adic valuation
has image Z[1/2], which is not discrete.

Remark 2.10. If v is a discrete valuation, we can rescale so that v(K×) = Z (the normalized
valuation) Then the uniformizer has v(π) = 1.

Lemma 2.11. Let v be a valuation on K. The following are equivalent:

(i) v is discrete.

(ii) OK is a PID.

(iii) OK is Noetherian.
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(iv) m is principal.

Proof. (i) =⇒ (ii): OK is an integral domain because OK ⊂ K. Let I ⊂ OK be a nonzero ideal.
Let x ∈ I be such that v(x) is minimal. Such an x exists because v is discrete. We want to show
that

xOK = {a ∈ OK | v(a) ≥ v(x)} = I (2.10)

We have that xOK ⊂ I trivially. Let y ∈ I. Then v(x−1y) ≥ 0, so y = x(x−1y) ∈ xOK .
(ii) =⇒ (iii): immediate.
(iii) =⇒ (iv): Write m = x1OK + · · ·+ xnOK . WLOG we have that

v(x1) ≤ v(x2) ≤ · · · ≤ v(xn) (2.11)

so x2, . . . , xn ∈ x1OK , so m = x1OK .
(iv) =⇒ (i): Let m = πOK for π ∈ OK , and let c = v(π). If v(x) > 0, then x ∈ m, so v(x) ≥ c,

so v(K×) ∩ (0, c) = ∅, so v is discrete.

Let v be a discrete valuation on K, and let π ∈ OK be a uniformizer so that v(π) = 1. Then
for any x ∈ K×, let n ∈ Z be such that v(x) = nv(π) = n. Then if u = π−nx ∈ O×

K , then x = uπn.
Thus

K = Frac(OK) = OK [π−1] (2.12)

Definition 2.12. A ring R is a discrete valuation ring (DVR) is it is a PID with exactly one
nonzero prime ideal (which is therefore maximal).

A priori we don’t know that discrete valuation rings and discrete valuations are connected. The
next lemma shows that they are.

Lemma 2.13. (i) Let v be a discrete valuation on a field K. Then OK is a discrete valuation
ring.

(ii) Let R be a discrete valuation ring. Then there exists a valuation v on K = Frac(R) such that
R = OK .

Proof. (i) OK is a PID by Lemma 2.11, so any nonzero prime ideal is maximal. So OK is a DVR
because it is local.

(ii) Let R be a DVR with maximal ideal m = (π) for some π ∈ R. Since every PID is a UFD,
we can write any x ∈ R \ {0} uniquely as πnu, u ∈ R×. So any y ∈ K× can be written as πmu
with m ∈ Z. So define v(πmu) = m. Then OK = R.

It’s now clear that many of the examples above are discrete valuation rings.

3 p-adic numbers
Recall that Qp is the completion of Q with respect to the p-adic valuation vp. Qp is a field, and
| · |p extends to a discrete valuation on Qp.
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Definition 3.1. The ring of p-adic integers Zp is the valuation ring of Qp, so that

Zp = {x ∈ Qp | |x|p ≤ 1, vp(x) ≥ 0} (3.1)

By Lemma 2.13, Zp is a discrete valuation ring with maximal ideal pZp, and all the ideals are
of the form pnZp.

Proposition 3.2. Zp is the closure of Z inside Qp. In particular, Zp is the completion of Z iwth
respect to | · |p.

Proof. We need to show that Z is dense in Zp since Zp is closed. By definition Q is dense in Qp.
Since Zp ⊆ Qp is open, Zp ∩Q is dense in Zp. But

Zp ∩Q = {x ∈ Q | |x|p ≤ 1} = Z(p). (3.2)

So we want to show that Z is dense in Z(p).
Let a/b ∈ Z(p), such that a, b ∈ Z with p ∤ b. For n ∈ N, choose yn ∈ Z such that byn ≡ a

mod pn. Then yn → a/b as n→∞. In particular, Zp is complete and Z ⊂ Zp is dense.

3.1 Inverse limits
Let (An)

∞
n=1 be a sequence of objects (e.g rings) in a category with maps φn : An+1 → An. So we

have

· · · An+1 An An−1 · · · A1 A1
φn φn−1 φ1

The inverse limit of (An)∞n=1, if it exists, is an object

lim←−An = {(an)∞n=1 ∈
∏

An | φn(an+1) = an ∀n} (3.3)

equipped with projection maps θm : lim←−An → Am which commute with the φns. The inverse limit
satisfies the following universal property.

Proposition 3.3. For any object B with maps ψn : B → An such that the commutative diagram
below commutes, there exists a unique ψ : B → lim←−An such that ψn factors thorugh θn by ψ so that
θn ◦ ψ = ψn. In diagram form we have

B lim←−An

An+1 An

!∃ψ

ψn+1
ψn

θn

φn

Proof. Define ψ : B →
∏
An by ψ(b) =

∏
ψn(b). The commutativity of the diagram gives ψ(b) ∈

lim←−An, and the map is unique because it is determined by ψn = θn ◦ψ, and it is a map because ψn
is.

Definition 3.4. Let I ⊂ R be an ideal. Then the I-adic completion of R is defined to be

R̂ = lim←−R/I
n, (3.4)

where R/In+1 → R/In is given by the obvious x+ In+1 → x+ In for any x ∈ R.
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There exists a natural map i : R → R̂ by x →
∏
x + In. We say that R is I-adically complete

if i is an isomorphism.

Remark 3.5. The kernel of the map i : R→ R̂ is
⋂
In, which we typically want to be 0 so that i

is injective.

Now let (K, | · |) be a non-archimdedean valued field and π ∈ OK with |π| < 1, so that v(π) > 0.

Proposition 3.6. Assume that K is complete with respect to | · |. Then

(i) OK ∼= lim←−OK/π
nOk, so OK is π-adically complete.

(ii) Every x ∈ OK can be written uniquely as

x =

∞∑
i=0

aiπ
i, (3.5)

where ai ∈ A, A ⊂ OK are coset representatives for OK/πOK .

Proof. (i): Since K is complete and OK is closed, OK is complete. We have that ker i =
⋂
πnOK ,

so x ∈ ker i if and only if v(x) ≥ nv(π) for all n, so if and only if x = 0. So i is injective.
Let (xn)

∞
n=1 ∈ lim←−OK/π

nOK and for each n, let yn ∈ OK be any lifting of xn ∈ OK/πnOK .
Then yn − yn+1 ∈ πnOK so that v(yn − yn+1) ≥ nv(π) → ∞. Thus (yn) is Cauchy and in OK so
it converges to some y ∈ OK . Then xn → y also because y − xn ∈ OK/πnOK , so the map i is
surjective as well.

(ii): Example Sheet.

Corollary 3.7. (i) Zp ∼= lim←−Z/pnZ.

(ii) Every element of x ∈ Qp can be written uniquely as

x =

∞∑
i=n

aip
i (3.6)

where n ∈ Z, and ai ∈ {0, 1, . . . , p− 1} and an ̸= 0 (unless x = 0). If n ≥ 0, then x ∈ Zp.

Proof. (i): By Proposition 3.6, we have that

Zp = lim←−Zp/pnZp (3.7)

so we just need to show that Zp/pnZp ∼= Z/pnZ. Let fn : Z→ Zp/pnZp be the natural map sending
x→ x+ pnZp. We have that

ker fn = {x ∈ Z | vp(x) ≥ n} = pnZ (3.8)

so we can lift to an injection Z/pnZ→ Zp → pnZp. Let z ∈ Zp/pnZp and c ∈ Zp be a lift. Since Z
is dense in Zp, there exists x ∈ Z such that x ∈ c+ pnZp because pnZp is open. Then fn(x) = τ .

(ii) Follows from Proposition 3.6 (ii).
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Example 3.8. We have that
1

1− p
= 1 + p+ p2 + · · · (3.9)

Part II

Complete Valued Fields
4 Hensel’s Lemma
Theorem 4.1 (Hensel’s Lemma, Version 1). Let (K, | · |) be a complete discretely valued field.
Let f(x) ∈ OK [x] and assume that there exists a ∈ OK such that |f(a)| < |f ′(a)|2, where f ′(a)
is the formal derivative of f(a). Then there exists a unique x ∈ OK such that f(x) = 0 and
|x− a| < |f ′(a)|.

Proof. Let π ∈ OK be a uniformizer and let r = v(f ′(a)). We inductively construct a sequence
(xn)

∞
n=1 in OK such that

(i) f(xn) ≡ 0 mod πn+2r, so v(f(xn)) ≥ n+ 2r.

(ii) xn+1 ≡ xn mod πn+r.

Take x1 = a, and then v(f(x1)) ≥ 2v(f ′(a)) + 1 = 2r + 1 so our base case is done. Now suppose
the conditions hold up to xn, and set

xn+1 = xn −
f(xn)

f ′(xn)
(4.1)

Since xn ≡ x1 mod πr+1, we have that v(f ′(xn)) = v(f ′(x1)) = r (as f ′(xn) = f ′(x1 + πr+1c)), so

v

(
f(xn)

f ′(xn)

)
≥ n+ r. (4.2)

It follows that xn+1 ≡ xn mod pin+r, so (ii) holds.
To show property (i), note that for X,Y indeterminates, we have that

f(X + Y ) = f0(X) + Y f1(X) + Y 2f2(X) + · · · (4.3)

where f0(x) = f(x) and f1(x) = f ′(x). Thus taking X = xn and Y = f(xn)/f
′(xn), we have that

f(xn+1) = f(xn) + f ′(xn)c+ c2(· · · ) (4.4)

where c = −f(xn)/f ′(xn). Since v(c) ≥ n+ r, we have that

v(f(xn+1)) ≥ v(f(xn) + f ′(xn)c+ c2)

≥ 2n+ 2r

≥ n+ 1 + 2r (4.5)
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Property (ii) implies that (xn) is Cauchy, and hence convergent. So let x = limxn. Then
f(x) = lim f(xn) = 0. By (ii), a = x1 satisfies |a − x| < |f ′(a)| so x satisfies the condition of the
theorem.

For uniqueness, suppose that x′ also satisfies the conditions and set δ = x − x′ ̸= 0. Then
|x′ − a| < |f ′(a)| and |x− a| < |f ′(a)| so the ultrametric inequality implies that

|δ| = |(x− a)− (x′ − a)| < |f ′(a)| = |f ′(x)|. (4.6)

But 0 = f(x′) = f(x + δ) = f(x) + f ′(x)δ + δ2(· · · ) = f ′(x)δ + δ2(· · · ). Thus |f ′(x)δ| ≤ |δ2|, so
|f ′(x)| ≤ δ, which contradicts (4.6).

Essentially what we are doing above is Newton’s method. We have a point a where the slope
f ′(a) is “large” relative to f(a). Then applying Newton’s method, the size of the slope stays large,
so we are guaranteed to descend to a solution.

We obtain the following corollary in the case where v(f ′(a)) = 0.

Corollary 4.2. Let (K, | · |) be a complete disceretely valued field. Let f(x) ∈ OK [x] and τ ∈ k =
OK/m be a simple root of

F (x) = f(x) mod m ∈ k[x]. (4.7)

Then there exists a unique x ∈ OK such that f(x) = 0 and x ≡ τ mod m.

Proof. Apply Theorem 4.1 to a lift c ∈ OK of τ . Then |f(c)| < 1 = |f ′(c)|2 because c is a simple
root, so we can applyg the theorem.

Example 4.3. f(x) = x2 − 2 has a simple root mod 7. Thus there exists a solution in Z7, so we
have that “

√
2 ∈ Z7”.

Hensel’s lemma gives us an explicit way to study solutions to polynomials in Qp using polyno-
mials in Fp, as we promised at the very start of the course. Here is one nice application.

Corollary 4.4. We have that

Q×
p /(Q×

p )
2 ∼=

{
(Z/2Z)2 p > 2

(Z/2Z)3 p = 2
(4.8)

Proof. Let p > 2, and let b ∈ Z×
p . Applying Corollary 4.2 to f(x) = x2 − b, we find that b ∈ (Z×

p )
2

if and only if b ∈ (F×
p )

2. Thus

Z×
p /(Z×

p )
2 ∼= F×

p /(F×
p )

2 ∼= Z/2Z. (4.9)

We have an isomorphism Zp × Z ∼= Q×
p given by (u, n)→ upn which gives the deisred result when

p > 2.
If p = 2, then let b ∈ Z×

2 , and consider f(x) = x2 − b. Then f ′(x) = 2x = 0 mod 2. Let b ≡ 1
mod 8. Then |f(1)| = 2−3 < 2−2 = |f ′(1)|2 so we can apply Hensel’s Lemma. Thus we have that
b ∈ (Z×

2 )
2 if and only if b ≡ 1 mod 8, as if b ̸≡ 1 mod 8, then x2− b has no solutions in Z/8Z, and

hence none in Z2. Thus we have that

Q×
2 /(Q

×
2 )

2 ∼= (Z/2Z)3. (4.10)
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We can prove another version of Hensel’s lemma “for polynomials”.

Theorem 4.5 (Hensel’s Lemma, Version 2). Let (K, | · |) be a complete discrete valued field and
f(x) ∈ OK [x]. Suppose that

f(x) := f(x) mod m ∈ K[x] (4.11)

factors as f(x) = g(x)h(x) with g(x), h(x) coprime. Then there is a factorisation f(x) = g(x)h(x)
in OK [x] with g(x) ≡ g(x) mod m, h(x) = h(x) mod m, and deg g = deg g.

Proof. Example Sheet 1. Cauchy sequence of polynomials.

Corollary 4.6. Let (K, | · |) be a complete discretely valued field. Let f(x) = anx
n+ · · ·+a0 ∈ K[x]

with an, a0 ̸= 0. If f(x) is irreducible, then |ai| ≤ max(|a0|, |an|) for all i.

Proof. After scaling we may assume that f(x) ∈ OK [x] with max(|ai|) = 1. Thus we need to show
that max |a0|, |an| = 1. If not, let r be the minimal value such that |ar| = 1, 0 < r < n. Thus we
have that

f(x) = xr(ar + · · ·+ anx
n−r) mod m. (4.12)

This is a factorisation of f(x). Then Theorem 4.5 implies that the factorisation lifts to a factorisation
f(x) = g(x)h(x) with 0 < deg g < n, which is a contradiction as we have assumed that f is
irreducible.

5 Teichmüller Lifts
Definition 5.1. A ring R of prime characeristic p > 0 is a perfect ring if the Frobenius map
x→ xp. is a bijection.

A field of characteristic p > 0 is perfect if it is perfect as a ring.
By convention, a field of characteristic 0 is always perfect.

Remark 5.2. Since charR = p > 0, (x+ y)p = xp + yp so the Frobenius map is a ring homomor-
phism.

Example 5.3. (i) Fpn and Fpn are perfect fields.

(ii) Fp[t] is not perfect because t /∈ im(Frobp).

(iii) Fp(t1/p
∞
) = Fp(t, t1/p, t1/p

2

, . . .) is perfect (we add in all pth roots). This is the “perfection”
of Fp(t), and gives rise to Scholze’s thoery of perfectoid spaces.

Remark 5.4. A field of char p > 0 is perfect if and only if any finite extension of K is separable,
so that any irreducible polynomial in K has simple roots.

Theorem 5.5. Let (K, | · |) be a complete discrete value field such that k = OK/m is perfect of
characteristic char k = p > 0. Then there exists a unique map, the Teichmüller map

[·] : k → OK (5.1)

such that

(i) a = [a] mod m for all a ∈ k.

13



(ii) [ab] = [a][b] for all a, b ∈ k.

Moreover, if charOK = p, then [a+ b] = [a] + [b], so [·] is a ring homomorphism.

We do a little work before we prove the theorem.

Definition 5.6. The element [a] ∈ OK constructed above is the Teichm̈uller lift of a.

Lemma 5.7. Let (K, | · |) be as in Theorem 5.5, and fix a uniformizer π ∈ OK . Let x, y ∈ OK
such that x ≡ y mod πn. Then xp ≡ yp mod πn+1.

Proof. Let x = y + uπn for some u ∈ OK . Then

xp = yp +

p∑
i=1

(
p

i

)
yp−i(uπn)i = yp + pyp−1(uπn) mod πn+1. (5.2)

Since OK/πOK has characteristic p, we have that p ∈ πOK , so pyp−1(uπn) ∈ πn+1OK .

Proof of Theorem 5.5. Let a ∈ k. For each i ≥ 0, we choose a lift yi ∈ OK of a1/p
i

, which exists
because k is perfect. Define xi = yp

i

i .

Claim: (xi) is Cauchy, and the limit is independent of the choice of yi.
By construction, yi ≡ ypi+1 mod π. By Lemma 5.7 and induction on n, we have that yp

n

i ≡ y
pn+1

i+1

mod πn+1 and hence xi ≡ xi+1 mod πi+1. So (xi) is Cauchy, so xi → x ∈ OK .
Suppose (x′i) is another sequence arising from some sequence (y′i) of liftings of a1/p

i

i . Then (x′i)
is Cauchy and converges to some x′. Let

x′′i =

{
xi i even
x′i i odd

(5.3)

Then x′′i arises from the liftings

y′′i =

{
yi i even
y′i i odd

(5.4)

Then x′′i → x′′, and we obviously have that x′′ = x = x′. So we can define [a] = x, and the previous
argument shows that this is well defined. We want to show that [a] = x is a valid Teichmüller lift.
We have that

xi = yp
i

i = (a1/p
i

)p
i

≡ a mod π (5.5)

so x ≡ a mod π. Let b ∈ k, so that [b] = z with z = lim zi, where zi = up
i

i and ui = b1/p
i

mod m.
Then uiyi is a lift of (ab)1/p

i

, so [ab] = lim zixi = zx = [a][b]. If charOK = p, then yi + ui is a lift
of a1/p

i

+ b1/p
i

= (a+ b)1/p
i

, so [a+ b] = lim(yi + ui)
pi = lim yp

i

i + up
i

i = [a] + [b].
It’s also easy to check that [0] = 0 and [1] = 1 as we can set xi = 0 or xi = 1, respectively.
For the uniqueness of the Teichmüller map, let ϕ : k → OK be another such map. Then for all

a ∈ k, ϕ(a1/pi) is a lift of a1/p
i

and we can define another Teichmüller lift under this condition as
before. Then ϕ(a) = [a], because

[a] = limϕ(a1/p
i

)p
i

= limϕ(a) = ϕ(a). (5.6)
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The key idea is that the Teichmüller map is a lifting of a ∈ k which gets rid of all the “pth power
imperfection”. We take a lift of a1/p

i

, and then we take the pith power. Taking pith powers gets
rid of all the pith root of unity stuff. The proof shows that no matter what lift we take we get the
same result.

Example 5.8. If K = Qp, then [·] : Fp → Zp. If a ∈ F×
p , then [a]p−1 = [ap−1] = [1] = 1, so [a] is a

(p − 1)th root of unity. So Qp contains all (p − 1)th roots unity since the Teichmüller lifts are all
different as [a] ≡ a mod m.

Lemma 5.9. Let (K, | · |) be a complete discretely valued field. If k = OK/m ⊂ Fp and a ∈ k×,
then [a] is a root of unity.

Proof. If a ∈ k×, then a ∈ F×
pn for some n. Then [a]p

n−1 = [ap
n−1] = [1] = 1.

Theorem 5.10. Let (K, | · |) be a complete discretely valued field with char(K) = p > 0 such that
k is perfect. Then K = k((t)).

Proof. Since K = Frac(OK), it suffices to show that OK ∼= k[[t]]. Fix π ∈ OK a uniformizer, let
[·] : k → OK be the Teichmüller lift, and define

φ : k[[t]]→ OK

φ

( ∞∑
i=0

ait
i

)
=

∞∑
i=0

[ai]π
i. (5.7)

Then φ is a ring homomorphism since char(K) = char k = p, and it is a bijection by Proposition
3.6 (ii).

6 Extensions of Complete Value Fields
Let L/K be a finite extension of fields. Then we can think of L as a finite dimensional K vector
space. Recall the field norm NL/K : L→ K defined by

NL/K(y) = detK(mult(y)), (6.1)

where det is the determinant and mult(y) is the K-linear map given by x 7→ xy. We have that
NL/K(xy) = NL/K(x)NL/K(y). If xn + an−1x

n−1 + · · · + a0 ∈ K[x] is the minimal polynomial of
y ∈ L, then NL/K(y) = ±am0 for some am0 . So NL/K(y) = 0 if and only if y = 0.

The following theorem which allows us to extend discrete valuations on K to those on L.

Theorem 6.1. Let (K, | · |) be a complete discretely valued field and let L/K be a finite extension
of degree n. Then

(i) | · | extends uniquely to an absolute value | · |L on L defined by

|y|L = |NL/K(y)|1/n (6.2)

for all y ∈ L.

(ii) L is complete with respect to | · |L.
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We build up some machinery before we prove this theorem.

Definition 6.2. Let (K, | · |) be a nonarchimedean valued field and V a vector space over K. A
norm on V is a function ∥ · ∥ : V → R≥0 such that

(i) ∥x∥ = 0 if and only if x = 0.

(ii) ∥λx∥ = |λ|∥x∥ for all λ ∈ K, x ∈ V .

(iii) ∥x+ y∥ ≤ max(∥x∥, ∥y∥) for all x, y ∈ V (ultrametric).

Example 6.3. If V is a finite dimensional over K and e1, . . . , en is a basis, then the supremum
(sup) norm ∥ · ∥sup on V is defined

∥x∥sup = max
i
|xi (6.3)

where x =
∑
xiei. It is an easy exercise to show that ∥ · ∥sup is a norm.

Definition 6.4. Two norms ∥ · ∥1, ∥ · ∥2 on V are equivalent if there exists C,D ∈ R>0 such that

C∥x∥1 ≤ ∥x∥2 ≤ D∥x∥1 (6.4)

for all x ∈ V .

Its easy to see that a norm defines a topology on V by the induced metric d(x, y) = ∥x − y∥,
and it follows that equivalent norms induce the same topology.

Proposition 6.5. Let (K, | · |) be a complete, non-archimedean field, and V a finite dimensional
vector space over K. Then V is complete with respect to ∥ · ∥sup.

Proof. Let (vi) be a Cauchy sequence in V and e1, . . . , en a basis for V . Write vi =
∑
j x

i
jej . Then

(xij)
∞
i=1 is Cauchy in K, so (xij)→ xj ∈ K. So then v =

∑
xjej is the limit of vi.

Theorem 6.6. Let (K, | · |) be a non-archimedean field, and let V be a finite dimensional vector
space over K. Then any two norms on V are equivalent. In particular, they are equivalent to the
sup norm, and hence V is complete with respect to any norm.

Proof. Equivalence of norms defines an equivalence relation on the set of norms, so it suffices to
show that any norm equivalent to the sup norm. Let e1, . . . , en be a basis for V , and ∥ · ∥ a norm
on V . Set D = maxi ∥ei∥ > 0. Then for x =

∑
xiei, we have that

∥x∥ ≤ max ∥xiei∥ = max |xi|∥ei∥ ≤ max |xi|D = D∥x∥sup. (6.5)

We need to find C such that C∥x∥sup ≤ ∥x∥ for all x ∈ K. We proceed by induction on dimV . For
n = 1, we have that ∥x∥ = |x1|∥e1∥ = ∥e1∥∥x∥sup so we may take C = ∥e1∥.

For n > 1, assume the claim holds up to n − 1, and set Vi = Span{e1, . . . , êi, . . . , en}. This is
an (n − 1)-dimensional subspace, and ∥ · ∥sup and ∥ · ∥ restrict to each Vi and are equivalent and
complete by the inductive hypothesis. Since Vi is complete with respect to ∥ · ∥, it is closed. Then
the translation ei + Vi is closed for all i, and hence

S =

n⋃
i=1

(ei + Vi) (6.6)
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is a closed subset not containing 0. So there exists an open ball around 0 of radius C not containing
S.

Let x =
∑
xiei and let j be an index where |xj | = maxi |xi|. Then ∥x∥sup = |xj | and 1

xj
x ∈

ej + Vj ⊂ S. Thus ∥ 1
xj
x∥ ≥ C, so

∥x∥ ≥ C|xj | = C∥x∥sup (6.7)

as desired.

We recall some facts about integral elements of rings.

Definition 6.7. Let R ⊂ S be rings. We say that s ∈ S is integral over R if there exists a monic
polynomial f(x) ∈ R[x] such that f(s) = 0.

The integral closure Rint(S) of R inside S is the set of all elements of S which are integral over
R.

The ring R is integrally closed in S if Rint(S) = R.
We will sometimes say that R is integrally closed if it is integrally closed in Frac(R).

Proposition 6.8. Rint(S) is a subring of S. Moreover, Rint(S) is integrally closed in S.

Proof. Example Sheet 2.

Lemma 6.9. Let (K, | · |) be a non-archimedean valued field. Then OK is integrally closed in K.

Proof. Let x ∈ K be integral, and assume that x ̸= 0. Let xn + an−1x
n−1 + · · · a0 = 0 for some

ai ∈ OK . Then
x = −an−1x

0 − an−2x
−1 − · · · − a0x−n+1. (6.8)

If |x| > 1, we have that the RHS has absolute valued less than 1, which is a contradiction. Thus
|x| ≤ 1, so x ∈ OK .

Set
OL = {y ∈ L | |y|L ≤ 1} (6.9)

where | · |L is the map defined in (6.2) (which we do not yet know is an absolute value).

Lemma 6.10. OL is the integral closure of OK inside L.

Proof. Let y ∈ L× and f(x) = xd + ad−1x
d−1 + · · · + a0 ∈ K[x] be the minimal polynomial of y

over K.

Claim: y is integral over OK if and only if f(x) ∈ OK [x].
If f(x) ∈ OK [x], then y is integral over OK by definition.
So let y be integral over OK , so there exists a monic polynomial g(x) ∈ OK [x] such that g(y) = 0.

Then f | g in K[x] as f is the minimal polynomial of y, so every root of f is a root of g. But then
every root of f in K is integral over OK But then each ai is integral over OK because each ai is a
sum of products of roots (Vieta’s formula). But then ai ∈ OK because OK is integrally closed over
K by Lemma 6.9, which proves the claim.
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Now, by Corollary 4.6 we have that |ai| ≤ max(|a0|, 1), and by the properties of the norm,
NL/K(y) = ±am0 for some m ≥ 1. Then

y ∈ OL ⇐⇒ |NL/K(y)| ≤ 1

⇐⇒ |a0| ≤ 1

⇐⇒ |ai| ≤ 1∀i
⇐⇒ ai ∈ OK∀i
⇐⇒ f(x) ∈ OK [x]

⇐⇒ y is integral over OK (6.10)

which shows that OL is the integral closure of OK in L.

It is now fairly easy to prove our big theorem.

Proof of Theorem 6.1. (i) We need to show that | · |L = |NL/K(·)|1/n satisfies the absolute value
axioms.

First we have that |y|L = 0 if and only if |NL/K(y)| = 0 if and only if NL/K(y) = 0 if and only
if y = 0.

Next we have that |y1y2|L = |NL/K(y1y2)|1/n = |y1|L|y2|L because NL/K is a norm, and hence
multiplicative.

Finally, we need to show that ultrametric inequality holds. Let x, y ∈ L and WLOG assume
that |x|L ≤ |y|L. Then |x/y|L ≤ 1, so x/y ∈ OL. Since 1 ∈ OL and OL is a ring by Lemma 6.10,
we have that 1 + x/y ∈ OL and hence |1 + x/y|L ≤ 1. Then |x+ y|L ≤ |y|L = max |x|L, |y|L which
is the ultrametric inequality so | · |L is an absolute value.

We have that NL/K(x) = xn for all x ∈ K, so | · |L restricts to | · | on K. IF | · |′L is another
absolute value on L extending | · |, then | · |L, | · |′L are norms on L considered as a K-vector space.
By Theorem 6.6, | · |L and | · |′L are equivalent norms, so they induce same topology. Thus by
Proposition 1.6 we have that | · |′L = | · |cL for some c. Since both norms extend | · |, we have that
c = 1, so | · |′L = | · |L.

(ii) This also follows from Theorem 6.6.

Corollary 6.11. Let L/K be a finite field extension and let (K, | · |) be a complete discretely valued
field. Then

(i) L is discretely valued with respect to | · |L.

(ii) OL is the integral closure of OK in L.

Proof. (i): Set [L : K] = n. Let v be the valuation on K, and vL the valuation on L which extends
v. Then for all y ∈ L×, |y|L = |NL/K(y)|1/n, so vL(y) = 1

n (NL/K(y)), so im vL(L
×) ⊂ 1

nZ.
(ii): This is Lemma 6.10.

We can extend our results to the algebraic closure of K, which is the profinite limit of all the
finite extensions of K, and hence behaves like a finite extension in many ways.

Corollary 6.12. Let K/K be an algebraic closure of K. Then | · | extends uniquely to | · |K on K.
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Proof. Let x ∈ K. Then x ∈ L for some finite extension L/K, and we can set |x|K = |x|L. This is
well-defined (independent of the choice of L) by the uniqueness part of Theorem 6.1. In particular,
if x ∈ L′, then x ∈ LL′, and |x|L = |x|L′ = |x|LL′ .

We can check the other axioms similarly using compositums.

Remark 6.13. 1. | · |K on K extending | · | on K is never discrete. If |x| = 1, then |x|1/n = 1/n,
and |x|1/n2

= 1/n2, and so on.

2. Qp is not complete with respect to | · |Qp
. If Cp is the completion of Qp with respect to | · |Qp

,
then Cp is algebraically closed, which ends our tower of alternating completions and algebraic
closures:

Q ⊂ Qp ⊂ Qp ⊂ Cp (6.11)

Proposition 6.14. Let L/K be a finite extension of complete DV fields. Assume that:

(i) OK is compact.

(ii) The extension of residue fields kL/k is finite and separable (in fact this follows from (i)).

Then there exists α ∈ OL such that OL = OK [α].

Proof. We’ll choose α ∈ OL such that there exists β ∈ OK [α] which is a uniformizer for OL and
OK [α] ↠ kL is surjective.

Since kL/k is separable, there exists α ∈ kL such that kL = k(α). Let g(x) ∈ k[x] be the
minimal polynomial for α. Let α ∈ OL be a lift of α, and let g(x) ∈ OK [x] be a monic lift of g(x).
Fix a uniformizer πL ∈ OL. Then g(x) ∈ K[x] is irreducible and separable, so g(α) = 0 mod πL
and g′(α) ̸= 0 mod πL. If g(α) ̸= 0 mod π2

L, then we can take β = g(α), because vL(g(α)) = 1. If
g(α) = 0 mod π2

L, then
g(α+ πL) = g(α) + πLg

′(α) mod π2
L. (6.12)

Thus
vL(g(α+ πL)) = vL(πLg

′(α)) = 1. (6.13)

α+πL is also a lift of α, so we may replace α by α+πL, and thus we may assume that vL(g(α)) = 1,
so that β = g(α) is a uniformizer for OL in OK [α]. Then OK [α] ⊂ L is the image of a continuous
map

OnK → L

(x0, . . . , xn−1) 7→
∑

xiα
i (6.14)

where n = [K(α) : K]. Since OK is compact, we have that OK [α] ⊂ L is compact and hence closed.
Since kL = k(α), OK [α] contains a set of coset representatives for kL = OL/βOL. Let y ∈ OL. By
Proposition 3.6 (ii), y =

∑
λiβ

i for some λi ∈ OK [α]. But ym =
∑m
i=0 λiβ

i ∈ OK [α] for each m,
so y ∈ OK [α] because OK [α] is closed.
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Part III

Local Fields
7 Basic Properties of Local Fields
A topological space X is said to be locally compact if for all x ∈ X, there exists an open set U and
a compact set C such that x ∈ U ⊂ C.

Definition 7.1. Let (K, | · |) be a valued field. K is a local field if it is complete and locally
compact.

For example, R and C are local fields under the usual Euclidean absolute value.

Proposition 7.2. Let (K, | · |) be a non-archimedean complete valued field. The following are
equivalent:

(i) K is locally compact.

(ii) OK is compact.

(iii) v is discrete and k = OK/m is finite.

Proof. (i) =⇒ (ii): Let U be a compact neighborhood of 0, so that U is open and there is a compact
Z such that 0 ∈ U ⊂ Z. Then there exists x ∈ OK such that xOK ⊂ U . Since xOK is closed, we
have that xOK is compact, so OK is compact.

(ii) =⇒ (i): OK is compact, so a+OK is compact, so K is locally compact.
(ii) =⇒ (iii): Let x ∈ m, and Ax ⊂ OK be a set of coset representatives for OK/xOK . Then

OK =
⊔
y∈Ax

y + xOK (7.1)

is a disjoint open cover. But since OK is compact, Ax is finite, so OK/xOK is finite, so k is finite.
Suppose v is not discrete and let x1, x2, . . . be a sequence such that v(x1) > v(x2) > · · · > 0.

Then x1OK ⊊ x2OK ⊊ · · · ⊊ OK , but the union of xiOK covers OK , which is a contradiction as
OK is compact and there is no finite subcover.

(iii) =⇒ (ii): Since OK is a metric space, it suffices to show that OK is sequentially compact,
so that every sequence has a convergent subsequence. Let (xn) be a sequence in OK and π a
uniformizer. Since πiOK/πi+1OK ∼= k, we have that OK/πiOK is finite for all i. Since OK/πOK
is finite, there exists an infinite subsequence such that x1,n ≡ a1 mod π for all n for some a1.
Continuing, we get subsequences xi,n ≡ ai mod πi such that ai ≡ ai+1 mod πi. Setting yi = xii,
we have that yi ≡ ai ≡ ai+1 ≡ yi+1 mod πi, so yi is Cauchy, and hence convergent.

The above proposition tells us that a complete DV field with finite residue field is a local field.
As a consequence, Qp and Fp((t)) are local fields.
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7.1 More on inverse limits
Let (An) be a sequence of sets/groups/rings and φn : An+1 → An a homomorphism between these
objects. Assume that each An is finite.

Definition 7.3. The profinite topology on A = lim←−An is the weakest topology on A such that
θn : A→ An is continuous for all n, where An has the discrete topology.

When equipped with the profinite topology, A = lim←−An is compact, totally disconnected, and
Hausdorff.

Proposition 7.4. Let K be a non-archimedean local field. Under the isomorphism

OK ∼= lim←−OK/π
nOK , (7.2)

the topology on OK is the same as the profinite topology.

Proof. We can check that the sets

B = {a+ πnOK | n ∈ N≥1, a ∈ OK} (7.3)

are a basis of open sets for both topologies. For | · | this is clear because the open/closed balls are
closed/open. For the profinite topology, OK → OK/πnOK is continuous if and only if a+πnOK is
open for all a ∈ OK .

7.2 Classification of Local Fields
It turns out that the property of being a local field is quite restrictive, and in fact we can classify
all of them as being one of three simple types in Corollary 7.13

Lemma 7.5. Let K be a non-archimedean local field and L/K a finite extension. Then L is also
a local field.

Proof. Theorem 6.1 implies that L is complete and discretely valued. So it suffices to show that
kL := OL/mL is finite and then apply Proposition 7.2. Let α1, . . . , αn be a basis for L as a K-
vector space. As the sup norm is equivalent to | · |L, we have that there exists an r > 0 such that
OL ⊂ {x ∈ L | ∥x∥sup ≤ r}. Take some a ∈ K such that |a| ≥ r. Then

OL ⊂
n⊕
i=1

aαiOK ⊂ L (7.4)

which implies that OL is finitely generated as a module over OK , so kL is finitely generated as a
module over k, so kL is finite because k is.

Definition 7.6. A non-archimedean valued field (K, |·|) with residue field k has equal characteristic
if char(K) = char(k). Otherwise it has mixed characteristic.

Example 7.7. Qp has mixed characteristic because char(Qp) = 0 but char(Zp/pZp) = p.

Remark 7.8. If K is a local field, we always have char(k) > 0 by Proposition 7.2, so K has equal
characteristic if and only if char(K) > 0 as well.
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Theorem 7.9. Let K be a non-archimedean local field of equal characteristic p > 0. Then K ∼=
Fpn((t)) for some p and some n ≥ 1.

Proof. K is complete, discretely valued, and charK > 0. Moreover k ∼= Fpn is finite, and hence
perfect. Then by Theorem 5.10 we have that K ∼= Fpn((t)).

Lemma 7.10. An absolute value | · | on a field K is non-archimedean if and only if |n| is bounded
for all n ∈ Z.

Proof. Assume that | · | is non-archimedean. Since | − 1| = |1| = 1, we have that | − n| = |n|, so it
suffices to show that result for Z≥1. We have that |n| ≤ max |n−1|, 1, so by induction |n| ≤ |1| = 1.

Now suppose |n| ≤ B for all n ∈ Z for some B ∈ R>0. Let x, y ∈ K and WLOG assume that
|x| ≤ |y|. Then we have that

|x+ y|m =

∣∣∣∣∣
m∑
i=0

(
m

i

)
xiym−i

∣∣∣∣∣
≤

m∑
i=0

∣∣∣∣(mi
)
xiym−i

∣∣∣∣
≤ B(m+ 1)|y|m. (7.5)

Taking mth roots gives |x+ y| ≤ (B(m+ 1))1/m|y|. As m→∞ we have that (B(m+ 1))1/m → 1,
so |x+ y| ≤ |y|.

Theorem 7.11 (Ostrowski). Any non-trivial absolute value on Q is | · |∞ or | · |p for some prime
p.

Proof. We divide into the case where | · | is and is not archimedean.

Case 1: | · | is archimedean. By Lemma 7.10, | · | is unbounded on Z. We fix b > 1 an integer
such that |b| > 1. Let a > 1 be an integer and write bn in base a:

bn = cma
m + cm−1a

m−1 + · · ·+ c0 (7.6)

for 0 ≤ ci < a, cm ̸= 0, where m ≤ loga b
n = n loga b. Let B = max0≤c≤a−1 |c|. Then we have that

|bn| ≤ (m+ 1)Bmax(|a|m, 1) (7.7)

so

|b| ≤ [n(loga b+ 1)B]
1/n

max(|a|loga b, 1) (7.8)

Taking n→∞, we have that |b| ≤ max(|a|loga b, 1). Since |b| > 1, we have that |a| > 1, so

|b| ≤ |a|loga b. (7.9)

Since |a| > 1, we can swap a and b and write

|a| ≤ |b|logb a (7.10)

Then (7.9) and (7.10) give
log |a|
log a

=
log |b|
log b

= λ (7.11)

for some λ ∈ R>0. Then |a| = aλ for all a ∈ Z>1. Then by Q = Z−1Z, we have that |x| = xλ for
all x ∈ Q, so | · | = | · |∞.
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Case 2: | · | is non-archimedean. As in Lemma 7.10, we have that |n| ≤ 1 for all n ∈ Z. But
since | · | is nontrivial, there exists n ∈ Z>1 such that |n| < 1. Write n = pe11 · · · perr . Then |p| < 1
for some p = pi. Suppose |q| < 1 for some q ̸= p. Then by Bezout’s we have that rp + sq = 1, so
|1| ≤ max(rp, sq) < 1, which is a contradiction. So |sq| = 1, so |q| = 1. So p is the unique prime
with |p| < 1, so | · | = | · |p.

Theorem 7.12. Let (K, | · |) be a non-archimedean local field of mixed characteristic. Then K is
a finite extension of Qp.

Proof. As K has mixed characteristic, charK = 0. Thus Q ⊂ K, and since | · | is non-archimedean,
| · | restricted to Q is | · |p for some p. But K is complete, so Qp ⊂ K.

Thus it suffices to show that K is a finite dimensional Qp vector space, so it suffices to show
that OK is a finitely generated Zp-module. Let π ∈ OK be a uniformizer, and set v(p) = e. Then
OK/pOk ∼= Ok/πeOK if finite. WE have that

Fp ∼= Z/pZ ↪→ OK/pOK , (7.12)

so OK/pOK is a finite dimensional Fp-vector space. Let x1, . . . , xn ∈ OK be coset representatives
of {e1, . . . , en}, where {e1, . . . , en} is a basis for OK/pOK over Fp. Then

n∑
j=1

ajxj | ai ∈ {0, . . . , p− 1}

 (7.13)

is a set of coset representatives for OK/pOK . Let y ∈ OK . By Proposition 3.6 (ii), for any y ∈ OK ,
we have that

y =

∞∑
i=0

 n∑
j=1

aijxj

 pi =

n∑
j=1

( ∞∑
i=0

aijp
i

)
xj ∈ x1Zp + x2Zp + · · ·+ xnZp (7.14)

so OK is a finitely generated Zp-module with generators (x1, . . . , xn).

On Example Sheet 2, we show that if K is complete and archimedean, then either K ∼= R or
K ∼= C. This completes the classification, which we summarize below.

Corollary 7.13. If K is a local field, then either

(i) K ∼= R or K ∼= C (archimedean case).

(ii) K ∼= Fpn((t)) (non-archimedean, equal characteristic case).

(iii) K/Qp is a finite extension of Qp (non-archimedean, mixed characteristic case).

8 Global Fields
Although the term “global field” sounds like the opposite of “local field”, the two are closely con-
nected. In fact, a local field is just the completion of a global field under some absolute value
(Theorem 8.5), so we can think of global fields as “incomplete” local fields.
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Definition 8.1. A global field is a field which is either

(i) An algebraic number field (a finite extension of Q).

(ii) A global function field (a finite extension of Fp(t)).

Lemma 8.2. Let (K, | · |K) be a complete, discretely valued field. Let L/K be a finite Galois
extension with absolute value | · |L extending | · |K . Then for x ∈ L and σ ∈ Gal(L/K) we have that
|σ(x)|L = |x|L.

Proof. Since x → |σ(x)|L is another absolute value on L extending | · |K , this follows from the
uniqueness of | · |L.

The next lemma is very useful.

Lemma 8.3 (Krasner). Let (K, |·|) be a complete discretely valued field and f(x) ∈ K[x] a separable
and irreducible polynomial with roots α1, . . . , αn ∈ Ksep the separable closure of K. Suppose we
have β ∈ Ksep with |β − α1| < |β − αi| for i = 2, . . . , n. Then α1 ∈ K(β).

Proof. Let L = K(β), L′ = L(α1, . . . , αn). Then L′/L is a Galois extension. Let σ ∈ Gal(L′/L).
We have that |β − σ(α1)| = |σ(β − α1)| = |β − α1| by Lemma 8.2. But σ(α1) = αi for some i, and
|β − αi| ≠ |β − α1| unless i = 1, so σ(α1) = α1, so α1 ∈ L = K(β).

The next proposition is very important. It tells us, roughly, that “nearby polynomials define the
same extension”.

Proposition 8.4. Let (K, | · |) be a complete DV field and let f(x) =
∑
aix

i ∈ OK [x] be separable,
irreducible, and monic. Let α ∈ Ksep be a root of f . Then there exists ϵ > 0 such that for any
g(x) =

∑
bix

i ∈ OK [x] monic with |ai − bi| < ϵ, g(x) has a root β such that K(α) = K(β).

Proof. Let α1, . . . , αn ∈ Ksep be the roots of f . These are distinct because f is separable, so
f ′(α1) ̸= 0. We choose ϵ small enough so that |g(α1)| < |f ′(α1)|2 and |f ′(α1)− g′(α1)| < |f ′(α1)|,
and hence |f ′(α1)| = |g′(α1)| by the reverse ultrametric inequality Lemma 1.10. We can choose ϵ
small enough because g is a continuous function in its coefficients and |f(α1)| = 0.

Then we have that |g(α1)| < |f ′(α1)|2 = |g′(α1)|2, so we can apply Hensel’s lemma. Applying
Hensel’s lemma to K(α1), we have that there exists β ∈ K(α1) such that g(β) = 0 and |β − α1| <
|g′(α1)|. Then

|g′(α1)| = |f ′(α1)|

=

n∏
i=2

|α1 − αi|

≤ |α1 − αi (8.1)

because |α1 − αi| ≤ 1 because the αi are integral. Since |β − α1| < |α1 − αi| = |β − αi|, we can
apply Krasner’s Lemma 8.3 which gives that α1 ∈ K(β), so K(β) = K(α1).

Theorem 8.5. Let (K, | · |) be a local field. Then K is the completion of a global field.

Proof. We divide into three cases as in the classification of local fields.
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Case 1: | · | is archimedean. We have that K ∼= R or K ∼= C, so K = Q̂ or K = Q̂(i).

Case 2: | · | is non-archimedean, equal characteristic. We have that K ∼= Fq((t)) is the
completion of Fq(t) with respect to the t-adic absolute value.

Case 3: | · | is non-archimedean, mixed characteristic. We have that K = Qp(α), where
α is the root of a monic, irreducible polynomial f(x) ∈ Zp[x]. Since Z is dense in Zp, then we
can approximate f(x) be g(x) ∈ Z[x] by Proposition 8.4. Then K = Qp(β), where β is a root of
g(x). Since Q(β) is dense in Qp(β), K is the completion of Q(β) with respect to vp by the unique
extension of vp to Q(β).

Part IV

Dedekind Domains
9 Basic Theory
Definition 9.1. A Dedekind domain is a ring R satisfying

(i) R is a Noetherian integral domain.

(ii) R is integrally closed in Frac(R) (R is integrally closed).

(iii) Every nonzero prime ideal is maximal.

Example 9.2. Here are a couple examples of Dedekind domains.

1. OK , where K is a number field.

2. Any PID (and hence any DVR).

We have the following important theorem connected DVRs and Dedekind domains.

Theorem 9.3. A ring R is a DVR if and only if R is a Dedekind domain with exactly one nonzero
prime ideal.

We need to develop some theory from commutative algebra before we prove this.

Lemma 9.4. Let R be a Noetherian ring and I ⊂ R a nonzero ideal. Then there exists nonzero
prime ideal p1, . . . , pr such that p1 . . . pr ⊂ I.

Proof. Suppose not. Then since R is Noetherian, there exists a maximal ideal I satisfying this
property. Then I is not prime, so there exists x, y ∈ R \ I such that xy ∈ I. But then I1 = I + (x)
and I2 = I + (y) are ideals which properly contain I. Then by the maximality of I, there exists
p1, . . . , pr, q1, . . . , qs such that p1 · · · pr ⊂ I1 and q1 · · · qs ⊂ I2, so

p1 · · · prq1 · · · qs ⊂ I1I2 ⊂ I, (9.1)

which is a contradiction.
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Lemma 9.5. Let R be an integral domain which is integrally closed. Let 0 ̸= I ⊂ R be a finitely
generated ideal and let x ∈ K = R−1R. Then if xI ⊂ I, then x ∈ R.

Proof. Let I = (c1, . . . , cn) and suppose xI ⊂ I. We write xci =
∑
j aijcj for some aij ∈ R. Let A

be the matrix A = (aij) and set B = x idn−A ⊂ Matn×n(K). Then B · c⃗i = 0 in Kn. Let Adj(B)
be the adjugate matrix for B, so that Adj(B) ·B · c⃗i = detB idn c⃗i = 0, so detB = 0. But DetB is
a monic polynomial in x with coefficients in R. So x ∈ R because R is integrally closed.

We are now ready to prove our big theorem.

Proof of Theorem 9.3. First R be a Dedekind with exactly one prime. We just need to show that
R is a PID. Let m be the unique maximal ideal of R.

Claim 1: m is principal. Let 0 ̸= x ∈ m. By Lemma 9.4, (x) ⊃ mn for some n ≥ 1. Let n be
the minimal value such that this is true. Then we can choose y ∈ mn−1 such that y /∈ (x). Set
π = x/y ∈ K. Then we have that ym ⊂ mn ⊂ (x), so π−1m ⊂ R. Thus π−1m is an ideal of R. If
π−1m ⊂ m, then π−1 ∈ R by Lemma 9.5, so y ∈ (x), which is a contradiction. Thus π−1m = R
since m is the unique maximal ideal, so m = πR is principal.

Claim 2: R is a PID. Let I ⊂ R be any nonzero ideal. Consider the sequence of fractional
ideals

I ⊂ π−1I ⊂ π−2I ⊂ · · · (9.2)

in K. These are all finitely generated as OK-modules. Then since π−1 /∈ R, we have that π−kI ̸=
π−(k+1)I by Lemma 9.5. Therefore, since R is Noetherian, we may choose a maximal n such that
π−nI ⊂ R (since R is Noetherian and we have an infinite chain of fractional ideals, eventually this
chase must exit R). If π−nI ⊂ m = (π), then π−(n+1) ⊂ R. So we must have that π−nI = R
because m is maximal, so then I = (πn).

The Localization of a Dedekind domain is a DVR.
This fact is very nice, and helps one understand Dedekind domains (or DVRs).
We recall some facts about localizations. Let R be an integral domain and S a multiplicatively

closed set. Recall the localization S−1R, and if S = R \ p for p a prime ideal, then we write
S−1R = Rp.

Example 9.6. If R = Z, then

Z(p) =
{a
b
| a ∈ Z, (b, p) = 1

}
(9.3)

If R is Noetherian, then S−1R is Noetherian. The prime ideals in S−1R are in bijection with
the prime ideals of R such that S ∩ p = ∅.

Corollary 9.7. Let R be a Dedekind domain and p ⊂ R a nonzero prime ideal. Then R(p) is a
DVR.

Proof. By the properties of localization, R(p) is a Noetherian integral domain and has a unique
nonzero prime ideal. It suffices to show that Rp is integrally closed in Frac(Rp) = Frac(R) and then
apply Theorem 9.3. Let x ∈ Frac(R) be integral over Rp. Then xn+an−1x

n−1+· · ·+a0 = 0 for some
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ai = bi/si ∈ Rp. Then multiplying by s = s1 · · · sn−1, we have that sxn + cn−1x
n−1 + · · ·+ c0 = 0

for some ci ∈ R. Multiplying by sn−1, we have that xs is integral over R, so xs ∈ R, so x ∈ Rp

since s ∈ R \ p.

Definition 9.8. If R is a Dedekind domain and p ⊂ R is a nonzero prime ideal, we write vp
for the normalized valuation on Frac(R) = Frac(Rp) corresponding to the DVR Rp, given by
v(x/y) = v(x)− v(y) for x, y ∈ Rp.

Example 9.9. If R = Z, then vp = v(p) is the p-adic valuation.

Theorem 9.10. Let R be a Dedekind domain. Then every nonzero ideal I ⊂ R can be written
uniquely as a product of prime ideals

I = pe11 · · · perr (9.4)

where ei ≥ 1 and the pi are distinct.

This theorem is immediate if R is a PID, as any PID is a UFD. We also need the following
results on localizations.

Lemma 9.11. Let I, J be ideals in a commutative ring R. Then I = J if and only if IRm = JRm

for all maximal ideals m ⊂ R.

Lemma 9.12. If R is a Dedekind domain, and p1, p2 are two nonzero prime ideals, then

p1Rp2 =

{
p2Rp2

p1 = p2

Rp2
otherwise.

(9.5)

Proof of Theorem 9.10. Let I ⊂ R be a nonzero ideal. By Lemma 9.4 there are distinct prime
ideal p1, . . . , pr such that pβ1

1 · · · pβr
r ⊂ I, where βi > 0. Let p ̸= 0 be such that p ̸= pi for all i.

Then by Lemma 9.12, we have that piRp = Rp, so IRp = Rp. Since Rpi is a DVR by Corollary
9.7, we have that IRpi = (piRpi)

αi = pαi
i Rpi for some 0 ≤ αi ≤ βi. Thus I = pα1

1 · · · pαr
r because

IRp = (pα1
1 · · · pαr

r )Rp for all p ∈ SpecR. If I = pγ11 · · · pγrr , then pαi
i Rpi

= pγii Rpi
so αi = γi by the

unique factorization property of DVRs.

10 Dedekind domains and extensions
Let L/K be a finite extension. For x ∈ L, we write TrL/K(x) ∈ K to be the trace of the K-linear
map L→ L given by x 7→ xy. If L/K is a separable extension of degree n and σ1, . . . , σn : L→ K
are the set of embeddings of L into an algebraic closure of K, then

TrL/K(x) =

n∑
i=1

σi(x). (10.1)

This is invariant under any K-automorphism of K (any element of Gal(K/K), so TrL/K(x) ∈ K.

Lemma 10.1. Let L/K be a finite separable extension of fields of degree n. Then the symmetric
bilinear form

(·, ·) : L× L→ K

(x, y) 7→ TrL/K(xy) (10.2)

is called the trace form, and is nondegenerate.
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Proof. L/K is separable, so L = K(α) for some α ∈ L. Then consider the matrix for (·, ·) in the
K-basis for L given by {1, α, . . . , αn−1}. Then

Aij = TrL/K(αi+j)

=

n∑
i=1

σi(α)
i+j

= [BBT ]ij (10.3)

where

B =


1 1 · · · 1

σ1(α) σ2(α) · · · σn(α)
· · · · · · · · · · · ·

σ1(α)
n−1 σ2(α)

n−1 · · · σn(α)
n−1

 (10.4)

This is a Vandermonde matrix, so its determinant is

DetB =
∏

1≤i<j≤n

(σi(α)− σj(α)). (10.5)

Thus
DetA = (DetB)2 =

∏
1≤i<j≤n

(σi(α)− σj(α))2 ̸= 0 (10.6)

because the extension is separable. Thus (·, ·) is nondegenerate.

On Example Sheet 3 we will prove the converse, so that L/K is separable if and only if the trace
form is nondegenerate.

Theorem 10.2. Let OK be a Dedekind domain and L a finite separable extension of K = Frac(OK).
Then OL, the integral closure of OK in L, is a Dedekind domain.

Proof. OL is a subring of L so OL is an integral domain. We need to show that

(i) OL is Noetherian.

(ii) OL is integrally closed in L.

(iii) Every nonzero prime ideal p in OL is maximal.

(i): We want to construct a finitely generated OK-submodule of L containing OL, and then
since OK is Noetherian we are done. Let e1, . . . , en ∈ L be a K-basis for L. Upon rescaling by K,
we may assume that ei ∈ OL. This is because ei ∈ L, so it satisfies a polynomial in K, which after
rescaling can be monic with coefficients in OK , so that ei ∈ OL since OL is the integral closure of
OK in L. Let fi ∈ L be the dual basis with respect to the trace form (·, ·). Let x ∈ OL, and write
x =

∑
λifi with λi ∈ K. Then λi = TrL/K(xei). If z ∈ OL, then TrL/K(z) is a sum of elements

in K which are integral over OK , and TrL/K(z) ∈ K, so TrL/K(z) ∈ OK , so λi ∈ OK . Then
OL ⊂ OKf1 + · · ·+OKfn ⊂ L. Since OK is Noetherian, OL is finitely generated as a OK-module,
so OL is Noetherian.

(ii): Example sheet 2.

28



(iii): Let P be a nonzero prime ideal of OL, and let p := P ∩ OK be a prime ideal in OK . Let
0 ̸= x ∈ P. Then x satisfies an equation xn + an−1x

n−1 + · · · + a0 = 0 with a0 ̸= 0, ai ∈ OK .
Then a0 ∈ P, so a0 ∈ p, so p ̸= 0, so p is maximal because OK is Dedekind. We have an injection
OK/p ↪→ OL/P, so OL/P is a finite dimensional OK/p vector space. Since OL/P is an integral
domain, it is a field. This is because if x ∈ (OL/P)×, then y 7→ xy is an injection, so it is a
bijection, so there exists y such that xy = 1 by rank-nullity.

Remark 10.3. Theorem 10.2 holds without the assumption that L/K is a separable extension.

Corollary 10.4. The ring of integers of a number field is a Dedekind domain.

Proof. If K/Q is a number field, then OK is the integral closure of Z = OQ in K.

If OK is the ring of integers of a number field and p ⊂ OK is a nonzero prime, we normalize
| · |p by

|x|p = (Np)vp(x) (10.7)

where Np = #OK/p.
Let OK be a Dedekind domain and K = Frac(OK). Let L/K be a finite, separable extension,

and OL the integral closure of OK in L. Then OL is a Dedekind domain by Theorem 10.2.

Lemma 10.5. Let 0 ̸= x ∈ OK . Then

(x) =
∏
p̸=0

pvp(x) (10.8)

Proof. Consider x(OK)p = (p(OK)p)
vp(x) by the definition of vp(x). The lemma then follows from

Lemma 9.11.

Let P ⊂ OL, p ⊂ OK be nonzero prime ideal. We write P | p if pOL = Pe1
1 · · ·Per

r and P = Pi

for some i.

Theorem 10.6. Let OK ,OL,K, L be as above. For p a nonzero prime ideal of OK , we write
pOL = Pe1

1 · · ·Per
r . Then the absolute values on L extending | · |p (up to equivalence) are precisely

| · |P1
, . . . , | · |Pr

.

Proof. First, for any 0 ̸= x ∈ OK and any i, we have that vPi(x) = eivp(x). Hence, up to
equivalence, | · |Pi extends | · |p. Now, suppose | · | is an absolute value on L extending | · |p. Then
| · | is bounded on OK and hence on Z, so it is non-archimedean. Let

R = {x ∈ L | |x| ≤ 1} (10.9)

be the valuation ring for L with respect to | · |. Then OK ⊂ R because | · | extends | · |p, and since
R is integrally closed in L by Lemma 6.9, we have that OL ⊂ R. Set

P = {x ∈ OL | |x| < 1} = mR ∩ OL (10.10)

where mR is the maximal ideal of R. Then P is a prime ideal in OL, and it is nonzero since p ⊂ P.
Then (OL)P ⊂ R since if s ∈ OL \ P then |s| = 1. But (OL)P is a DVR, and hence a maximal
subring of L, so (OL)P = R.

Hence | · | is equivalent to | · |P because the closed unit balls are the same (Proposition 1.6).
Since | · | extends | · |p, we have that OK ∩P = p. But then Pe1

1 · · ·Per
r ⊂ P, so P = Pi for some

i.
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Remark 10.7. LetK be a number field. If σ : K → R,C is an embedding, then x 7→ |x|σ = |σ(x)|∞
defines an absolute value on K.

Corollary 10.8. Let K be a number field with ring of integers OK . Then any absolute value on
K is equivalent to either

(i) | · |p for some nonzero prime ideal p of OK .

(ii) | · |σ for some embedding σ : K → R,C.

Proof. We divide into archimedean and non-archimedean cases.

Case 1: | · | is non-archimedean. We have that | · | restricted to Q is equivalent to | · |p for
some p ∈ Q by Ostrowski’s Theorem 7.11. Theorem 10.6 then implies that | · | is equivalent to | · |p
for some prime ideal p such that p | p.

Case 2: | · | is archimedean. Example Sheet.

10.1 Completions
Let OK be a Dedekind domain and L/K a finite separable extension. Let p ⊂ OK , P ⊂ OL be
nonzero prime ideals such that P | p. We write Kp and LP for the completions of K and L with
respect to | · |p and | · |P, respectively.

Lemma 10.9. (i) The natural map πP : L⊗K Kp → LP given by ℓ⊗ x 7→ ℓx is surjective.

(ii) [LP : Kp] ≤ [L : K].

Proof. Let M = LKp = Im(πP) ⊂ LP be the subfield generated by LKp, and write L = K(α).
Then M = Kp(α), so M is a finite extension of Kp, and [M : Kp] ≤ [L : K] because the minimal
polynomial has smaller degree. Moreover, M is complete by Theorem 6.1, and since L ⊂M ⊂ LP,
we have that M = LP.

Lemma 10.10 (Chinese Remainder Theorem). Let R be a ring and I1, . . . , Ir be ideals such that
Ii + Ij = R for all i ̸= j. Then

(i)
⋂
Ii =

∏
Ii = I.

(ii) R/I ∼=
⊕
R/Ii

Proof. Example sheet.

Theorem 10.11. The natural map

L⊗K Kp →
∏
P|p

LP (10.11)

is an isomorphism.
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Proof. Write L = K(α) and let f(x) ∈ K[x] be the minimal polynomial of α. Then we have that
f(x) = f1(x) · · · fr(x) in Kp[x], where fi(x) ∈ KP[x] are distinct because of separability. Since
L ∼= K[x]/(f(x)), we have that

L⊗K Kp
∼= Kp(x)/(f(x))

∼=
∏

Kp(x)/fi(x)

=
∏

Li (10.12)

Now, Li contains both Kp and L, since K[x]/f(x) → Kp[x]/fi(x) is injective. Moreover, L is
dense inside Li, as we can approximate the coefficients of some f(x) ∈ Kp[x]/fi(x) with some
g ∈ K[x]/f(x). The theorem follows from the following three claims:

(i) Li ∼= LP for some prime P of OL dividing p.

(ii) Each P appears at most once.

(iii) Each P appears at least once.

(i): Since [Li : Kp] < ∞, there exists a unique valuation on Li extending | · |p. Theorem 10.6
implies that | · | restricted to L is | · |P for some P | p. Since L is dense in Li and Li is complete,
we have that Li ∼= LP.

(ii)If Li ∼= LP
∼= Lj , then fi = fj ,

Suppose φ : Li → Lj is an isomorphism preserving L and Kp. Then

φ : Kp[x]/fi(x)→ Kp[x]/fj(x) (10.13)

takes x to x, so fi = fj .
(iii) By Lemma 10.9, πP : L⊗K Kp → LP is surjective, and since LP is a field, πP must factor

through Li for some i. But then ψ injective because it is a field map, so Li ∼= LP. Furthermore πP
sends L→ L and Kp → Kp, so ψ is also an L-algebra and Kp-algebra homomorphism.

Example 10.12. Let K = Q, L = Q(i), and f(x) = x2 + 1. Then

Q(i)⊗Q5
∼=
∏
P|5

Q(i)P (10.14)

Hensel’s lemma shows that f(x) has a root in Q5, so that (5) splits in Q(i).

Corollary 10.13. Let 0 ̸= p ⊂ OK be a prime ideal. If x ∈ L, then

NL/K(x) =
∏
P|p

NLP/Kp
(x). (10.15)

Proof. Let pOL = Pe1
1 · · ·Per

r and B1, . . . , Br be bases for LP1
, . . . , LPr

as Kp vector spaces. Then
B =

⋃
Bi is a basis for L⊗Kp

∼=
∏
LPi

over Kp. Let [mult(x)]B be the matrix for the map

mult(x) : L⊗K Kp → L⊗Kp

ℓ⊗ k 7→ x(ℓ⊗ k) (10.16)
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with respect to the basis B and let [mult(x)]Bi be the matrix for the analogous map LPi → LPi with
respect to the basis Bi. Because of the decomposition L ⊗Kp

∼=
∏
LPi , we have that [mult(x)]B

is the block diagonal matrix of [mult(x)]Bi
s. We then have that

NL/K(x) = Det[mult(x)]B =
∏

Det[mult(x)]Bi
=
∏

NLPi
/Kp

(10.17)

11 Decomposition groups
If we want to study the Galois group of a global field, part of it looks like the Galois group of a
local field.

Let 0 ̸= p be a prime in OK and let pOL = Pe1
1 · · ·Per

r where the Pi are distinct primes in OL
and ei > 0.

Definition 11.1. (i) ei is the ramification index of Pi over p.

(ii) We say that p ramifies in L if some ei > 1.

Example 11.2. Let OK = C[t], and OL = C[T ], and let OK → OL be the map sending t 7→ Tn.
Then (t) is a prime in OK , and tOL = (Tn) = (T )n. The ramification of (T ) over (t) is n.

This corresponds geometrically to a degree n covering of Riemann surfaces C → C sending
x 7→ xn.

Definition 11.3. fi = [OL/Pi : OK/p] is the residue class degree of Pi over p.

Theorem 11.4. We have that
r∑
i=1

eifi = [L : K]. (11.1)

Proof. Let S = OK \ p. The following three basic facts about localization are an exercise:

(i) S−1OL is the integral closure of S−1OK in L.

(ii) (S−1p)S−1OL ∼= S−1(Pe1
1 · · ·Per

r ).

(iii) S−1OL/S−1Pi
∼= OL/Pi and S−1OK/S−1p ∼= OK/p.

In particular (ii) and (iii) imply that ei and fi don’t change when we replace OK and OL by
S−1OK and S−1OL. Thus we may assume that OK is a DVR and hence a PID. By the Chinese
remainder theorem, we have that

OL/pOL ∼=
∏
OL/Pei

i . (11.2)

We count the dimensions of both sides as k = OK/p vector spaces.

RHS: For each i, there exists a decreasing sequence of k-subspaces

0 ⊂ Pei−1
i /Pei

i ⊂ Pei−2
i /Pei

i ⊂ · · · ⊂ Pi/P
ei
i ⊂ OL/P

ei
i . (11.3)

We have that dimkOL/Pei
i =

∑
dimk(P

j
i/P

j+1
i ). Note that Pj

i/P
j+1
i is an OL/Pi-module

and x ∈ Pj
i \ P

j+1
i is a generator, which we can prove by localizing at Pi. So the quotients are

1-dimensional over OL/Pi, so they are fi-dimensional over k. Then dimkOL/Pei
i = eifi so the

RHS has dimension
∑
eifi.
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LHS: The structure theorem for finitely generated modules (OL is a finitely generated module over
OK) and the fact that OL is torsion free implies that OL is a free OK-module of rank n = [L : K].
Thus OL/pOL ∼= (OK/p)n as k-vector spaces, so the LHS has dimension n.

Remark 11.5. The previous theorem has a geometric analogue: let f : X → Y be a degree n
cover of Riemann surfaces. For y ∈ Y , we have that

n =
∑

x∈f−1(y)

ex. (11.4)

Now assume that the L/K is Galois. The Galois group preserves integral elements, so it acts
on OL. Then for any σ ∈ Gal(L/K), σ(Pi) ∩ OK = p and hence σ(Pi) = Pj for some j.

Proposition 11.6. The action of Gal(L/K) on {P1, . . . ,Pr} is transitive.

Proof. Suppose not, so that there exists i ̸= j such that σ(Pi) ̸= Pj for all σ ∈ Gal(L/K).
By the CRT, we may choose x ∈ OL such that x ≡ 0 mod Pi and x ≡ 1 mod σ(Pj) for all
σ ∈ Gal(L/K). Then NL/K(x) =

∏
σ∈Gal(L/K) σ(x) ∈ OK ∩ Pi = p ⊂ Pj . But Pj is prime, so

there exists τ ∈ Gal(L/K) such that τ(x) ∈ Pj , so x ∈ τ−1(Pj), so x ≡ 0 mod τ−1(Pj), which is
a contradiction as x ≡ 1 mod τ−1(Pj) by assumption.

Corollary 11.7. Suppose L/K is Galois. Then e1 = · · · = er = e and f1 = · · · = fr = f , and then
n = efr.

Proof. For any σ ∈ Gal(L/K), we have that pOL = σ(p)OL = σ(P1)
e1 · · ·σ(Pr)

er , and by the
unique factorization we have that e1 = · · · = er = e.

We have that OL/Pi
∼= OL/σ(Pi) via x 7→ σ(x), so f1 = · · · = fr = f .

In the case where L/K is a extension of DV fields, we have the following.

Corollary 11.8. Let L/K be an extension of complete DV fields with valuations vL, vK , uniformiz-
ers πL, πK . Then there are unique prime ideals in both, so we can define e = eL/K = vL(πK) since
πK = πeL for some e. The residue degree is f = fL/K = [kL : k]. Then if L/K is finite, separable,
then [L : K] = ef .

Definition 11.9. Let OK be a Dedekind domain, L/K finite, Galois. The decomposition group at
a prime P of OL is the subgroup of Gal(L/K) given by

GP = {σ ∈ Gal(L/K) | σ(P) = P}. (11.5)

It has size ef , which makes sense if you write down p = (P1 · · ·Pr)
e

Proposition 11.10. Suppose that P | p ⊂ OK . Then

(i) LP/Kp is Galois.

(ii) There is a natural map
res : Gal(LP/Kp)→ Gal(L/K) (11.6)

which is injective and has image GP.
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Proof. (i): If L/K is Galois, then L is the splitting field of a separable polynomial f(x) ∈ K[x].
Then LP is the splitting field of f(x) ∈ Kp[x], so LP/Kp is Galois.

(ii): Let σ ∈ Gal(LP/Kp). Then σ(L) = L since L is L/K is normal (and σ is an embedding of
L in K). Thus we have a map

res : Gal(LP/Kp)→ Gal(L/K)

σ 7→ σ|L (11.7)

Since L is dense in LP, res is injective (as is res(σ) = idL, then σ is constant on a dense subset of
LP, and hence constant). By Lemma 8.2, we have that |σ(x)|P = |x|P for all σ ∈ Gal(LP/Kp) and
all x ∈ LP. But then σ(P) = P for all σ ∈ Gal(LP/Kp), so res(σ) ∈ GP for all σ ∈ Gal(LP/Kp).
To show surjectivity onto GP, we compare cardinalities. So that

|GP| = |Gal(LP/Kp)| = ef = [LP : Kp]. (11.8)

Write pOL = (P1 · · ·Pr)
e, and f = [OL/Pi : OK/p]. Then |GP| = ef . For [LP : Kp], apply

Corollary 11.8 and note that e and f don’t change when we take completions (see the proof of
Theorem 11.6).

Thus a piece of the Galois group of a number field extension L/K corresponds to an extension
of local fields LP/Kp.

Part V

Ramification Theory
Ramification theory studies how prime ideals split in extensions. For example, if p ∈ Z is prime,
then p = p1p2 ∈ Z[i] splits if and only if p = x2 + y2, if and only if p ≡ 1 mod 4.

Let L/K be an extension of algebraic number fields of degree [L : K] = n.

12 Different and discriminant
Let x1, . . . , xn ∈ L. Then the discriminant of these elements is

∆(x1, . . . , xn) = det(TrL/K(xixj)) ∈ K. (12.1)

If x1, . . . , xn form a basis, this is the determinant of the trace form. Now, let σℓ : L → K for
ℓ = 1, . . . , n be the n embeddings of L into K. Then

∆(x1, . . . , xn) = det

(
n∑
ℓ=1

σℓ(xi)σℓ(xj)

)
= det(BBT ) (12.2)

where B = (σi(xj))ij .

Remark 12.1. (i) If yj =
∑
aijxj for aij , then

∆(y1, . . . , yn) = det(A)2∆(x1, . . . , xn) (12.3)

where A = (aij).
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(ii) If x1, . . . , xn ∈ OL, ∆(x1, . . . , xn) ∈ OK because it is a product and sum of elements of OK
(recall the trace of an element of OL is in OK).

Lemma 12.2. Let k be a perfect field and let R be a k-algebra which is a finite-dimensional as a
k-vector space. The trace form

(·, ·) : R×R→ k

(x, y) 7→ TrR/k(xy) = Trk(mult(xy)) (12.4)

is nondegenerate if and only if R ∼= k1 × · · · × kr, where ki/k is a finite separable extension of k.

Proof. Example Sheet?

Theorem 12.3. Let 0 ̸= p ⊂ OK be a prime.

(i) If p ramifies in L, then for every x1, . . . , xn ∈ OL, we have that ∆(x1, . . . , xn) ≡ 0 mod p.

(ii) If p is unramified in L, then there exists x1, . . . , xn ∈ OL such that p ∤ ∆(x1, . . . , xn).

Proof. (i) Let pOL = Pe1
1 · · ·Per

r and assume that p ramifies so that ei > 1 for some i. Set

R = OL/pOL ∼=
r∏
i=1

OL/Pei
i . (12.5)

If p ramifies, thenOL/pOL has nilpotents, soOL/Pei
i is not a finite separable extension ofOK/pOK .

If x1, . . . xn forms a basis for OL/pOL, then by Lemma 12.2 we have that ∆(x1, . . . , xn) = 0. If
x1, . . . xn does not form a basis, then ∆(x1, . . . xn) = (detA)2∆(y1, . . . , yn) = 0 where y1, . . . , yn is
a basis and xj =

∑
aijyi. Now, we have a commutative diagram

OL OL/POL = R

OK OK/pOK

TrL/K TrR/k

Thus if we lift any x1, . . . , xn ∈ OL/pOL to any x1, . . . , xn ∈ OL, we find that ∆(x1, . . . , xn) ≡ 0
mod p.

(ii): If p is unramified, then OL/pOL will be a product of finite extensions of k = OK/pOK .
Then the trace form will be nondegenerate by Lemma 12.2, so we can find a basis x1, . . . , xn for
OL/pOL such that ∆(x1, . . . , xn) ̸= 0. Then lifting gives ∆(x1, . . . , xn) ̸≡ 0 mod p.

The discriminant is an ideal which captures all the ∆s, and hence all the ramification.

Definition 12.4. The discriminant ideal dL/K ⊂ OK is the ideal generated by ∆(x1, . . . , xn) for
all choice of x1, . . . , xn ∈ OL.

Corollary 12.5. p ramifies in L if and only if p | dL/K . In particular, only finitely many primes
ramify in L.

Proof. This follows immediately from Theorem 12.3 and the unique factorization of ideals in OK .
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Next we will define the different. It is the inverse of an inverse.

Definition 12.6. The inverse different is

D−1
L/K

:= {y ∈ L | TrL/K(xy) ∈ OK∀x ∈ OL}. (12.6)

It is the dual lattice of OL with respect to the trace form.

Lemma 12.7. D−1
L/K is a fractional ideal in L.

Proof. Let x1, . . . , xn ∈ OL be a K-basis for L/K and set

d = ∆(x1, . . . , xn) = det(TrL/K(xixj)) ̸= 0 (12.7)

as the the trace form is nondegenerate because the extension is separable (Lemma 10.1).
For x ∈ DL/K , we can write x =

∑
λjxj with λj ∈ K. We want to show that λj ∈ d−1OK .

We have that TrL/K(xxi) =
∑
λj TrL/K(xixj) ∈ OK . Set Aij = TrL/K(xixj). Multiplying by the

adjugate matrix Adj(A), we get the determinant, so

Adj(A)A

λ1
· · ·
λm

 = det(A)

λ1
· · ·
λm

 = d

λ1
· · ·
λm

 = Adj(A)

TrL/K(xx1)
· · ·

TrL/K(xxn)

 (12.8)

Adj(A) and TrL/K(xxi) are in OK , so λi ∈ 1
dOK , so x ∈ 1

dOL. Thus D−1
L/K ⊂

1
dOL, so D−1

L/K is a
fractional ideal.

Definition 12.8. The different ideal DL/K is the inverse of D−1
L/K .

We have that DL/K ⊂ OL because OL ⊂ D−1
L/K and D−1

L/K is a fractional ideal.

Let IL, IK be the group of fractional ideals of L,K. By Proposition 9.10, we have that

IL ∼=
⊕

0̸=P∈SpecOL

Z, IK ∼=
⊕

0̸=p∈SpecOK

Z (12.9)

Define NL/K : IL → IK induced by P 7→ pf where p = P∩OK and f = f(P/p). Then the following
diagram commutes:

L× IL

K× IK

NL/K NL/K

In other words, we have that NL/K((x)) = (NL/K(x)). This follows from Corollary 10.13 and the
fact that

vp(NLP/Kp
(x)) = fP/pvP(x) (12.10)

for x ∈ L×
P. In particular, we have that

vp(NL/K((x))) =
∑
P|p

f(P/p)vP(x) (12.11)
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by definition, and

vp((NL/K(x))) = vp

∏
P|p

(NLP/Kp
(x))


=
∑
P|p

vp(NLP/Kp
(x))

=
∑
P|p

fP/pvP(x) (12.12)

as desired.

Theorem 12.9. NL/K(DL/K) = dL/K .

Proof. First, assume that OK and OL are PIDs. Let x1, . . . , xn be an OK-basis for OL. Then
dL/K = (∆(x1, . . . , xn)) because any change of basis matrix is a unit in OK . Let y1, . . . , yn be the
dual basis with respect to the trace form. Then y1, . . . , yn is an OK-basis for D−1

L/K (essentially by
the definition of D−1

L/K). Let σ1, . . . , σn : L→ K be the distinct embeddings of L into K. Then

n∑
i=1

σi(xj)σi(yk) = Tr(xjyk) = δjk. (12.13)

But ∆(x1, . . . , xn) = det(σi(xj))
2. Thus ∆(x1, . . . , xn)∆(y1, . . . , yn) = 1. Write D−1

L/K = βOL for
some β ∈ OL. Then

d−1
L/K = (∆(x1, . . . , xn)

−1)

= (∆(y1, . . . , yn)). (12.14)

Now, since change of basis matrices are invertible in OK , we have that

(∆(y1, . . . , yn)) = (∆(βx1, . . . , βxn)) (12.15)

since βx1, . . . , βxn is a basis for βOL = D−1
L/K . Now, the change of basis matrix from xi 7→ βxi is

multiplication by β, which has determinant NL/K(β). By (12.3) we then have that

(∆(βx1, . . . , βxn)) = NL/K(β2)∆(x1, . . . , xn). (12.16)

Putting it all together gives
d−1
L/K = NL/K(D−1

L/K)2dL/K (12.17)

so NL/K(DL/K) = dL/K .
To prove the general case, localize at S = OK \ p and use that S−1DL/K = DS−1OL/S−1OK

and
S−1dL/K = dS−1OL/S−1OK

.

Theorem 12.10. If OL = OK [α] and α has monic minimal polynomial g(x) ∈ OK [x], then
DL/K = (g′(α)).
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Proof. Let α = α1, α2, . . . , αn be roots of g. Write g(x)/(x−α) = βn−1x
n−1+ · · ·+β1x+β0, where

βi ∈ OL and βn−1 = 1. We claim that
n∑
i=1

g(x)

x− αi
· αri
g′(αi)

= xr (12.18)

for 0 ≤ r ≤ n − 1. Indeed, the difference is a polynomial of degree less than n which vanishes
at α1, . . . , αn, so the difference is zero. Comparing coefficients on both sides gives that the xs
coefficient is

TrL/K

(
αrβs
g′(α)

)
= δrs (12.19)

by (10.1). So 1, α, . . . , αn−1 is a basis for OL, and we have explicitly constructed the dual basis
under the trace form, which will be a basis for D−1

L/K :

β0
g′(α)

,
β1
g′(α)

, . . . ,
βn−1

g′(α)
=

1

g′(α)
(12.20)

Since βi ∈ OL, D−1
L/K is generated as an OL-module by 1/g′(α), so DL/K is generated by g′(α) as

an OL-ideal.

Now, let P be a prime ideal of OL and p = OK ∩P. Then we can define DLP/Kp
analogously

to DL/K using OKp
,OLP

. DLP/Kp
is an ideal of the DVR OLP

, so it is a power of P. We identify
DLP/Kp

with a power of P in OL.

Theorem 12.11. We have that

DL/K =
∏

0 ̸=P∈SpecOL

DLP/Kp
. (12.21)

In particular, the right hand side is finite.

Proof. Let x ∈ L and p ⊂ OK . Then similarly to Corollary 10.13, we have that

TrL/K(x) =
∑
P|p

TrLP/Kp
(x). (12.22)

Let r(P) = vP(DL/K), and s(P) = vP(DLP/Kp
). Fix some x ∈ L with vP(x) ≥ −s(P) for all P.

Then TrLP/Kp
(xy) ∈ OKp

for all y ∈ OL and all primes P. So TrL/K(xy) ∈ OKp
for all y ∈ OL

and all p by (12.22). Thus TrL/K(xy) ∈ OK for all y ∈ OL. So x ∈ D−1
L/K , so r(P) ≥ s(P) and

DL/K ⊂
∏

PDLP/Kp
. Fix P and let x ∈ P−r(P)\P−r(P)+1. Then vP(x) = −r(P), and vP′(x) ≥ 0

for all P′ ̸= P. By (12.22), we have that

TrLP/Kp
(xy) = TrL/K(xy)−

∑
P ̸=P′|p

TrLP′/Kp
(xy) (12.23)

for all y ∈ OL. All the terms on the RHS are in OKp
, so we have that TrLP/Kp

(xy) ∈ OKp
for all

y ∈ OLP
. Thus x ∈ D−1

LP/Kp
, so −vP(x) = r(P) ≤ s(P). This gives the desired result.

Corollary 12.12.
dL/K =

∏
P|p

dLP/Kp
. (12.24)

Proof. Take the norm of both sides of (12.21) and use Corollary 10.13.
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13 Unramified and totally ramified extensions of local fields
Let L/K be a finite separable extension of non-archimedean local fields. By Corollary 11.8, we have
that [L : K] = eL/KfL/K .

Lemma 13.1. Let M/L/K be finite separable extensions of non-archimedean local fields. Then

(i) fM/K = fM/LfL/K .

(ii) eM/K = eM/LeL/K .

Proof. (i): We have that fM/K = [kM : k] = [kM : kL][kL : k] = fM/LfL/K .
(ii): This follows from (i) and the fact that [L : K] = eL/KfL/K .

Definition 13.2. The extension L/K is unramified if eL/K = 1, or equivalently fL/K = [L : K].
Otherwise it is ramified, so eL/K > 1, or fL/K < [L : K]. If eL/K = [L : K], so that fL/K = 1, the
extension is totally ramified.

Theorem 13.3. Let L/K be a finite separable extension of local fields. There exists a field K0 such
that L/K0/K is a sub extension and

(i) K0/K is unramified.

(ii) L/K0 is totally ramified.

Moreover, [L : K0] = eL/K and [K0 : K] = fL/K and K0/K is Galois.

Proof. Let k = OK/m = Fq, so that kL = Fqf with f = fL/K . Set m = qf − 1 = |k×L |, and let
[·] : Fqf → L be the Teichmüller map for L. Let ζm = [α] be the Teichmüller lift for α, where α is
a generator for F×

qf
. Then ζm is a primitive mth root of unity as [α]m = [αm] = 1 and [αi] ̸= 1 for

i < m as α generates F×
qf

. Set K0 = K(ζm) ⊂ L. Then K0/K is Galois and K0 has residue field
k0 = Fq(α) = kL. Thus fL/K0

= 1 so L/K0 is totally ramified. Let res : Gal(K0/K) → Gal(k0/k)
be the restriction map. For σ ∈ Gal(K0/K), we have that σ is trivial if and only if σ(ζm) = ζm
if and only if σ(ζm) ≡ ζm mod m0 since µm(K0) ∼= µm(k0) by Hensel’s lemma applied to xm − 1.
Hence res is injective. Thus |Gal(K0/K)| ≤ |Gal(k0/k)| = fK0/K , so [K0 : K] = fK0/K because
fK0/K ≤ |Gal(K0/K)| always. Thus eK0/K = 1, so K0/K is unramified.

Recall that the Tecihmuüller lift is an element of OK without “pth power imperfection”. Thus
K0/K is an extension without pth power imperfection, and all the pth power stuff goes into the
totally ramified extension L/K0. We will make this precise later.

Theorem 13.4. Let K be a local field, and set k = Fq. For each n ≥ 1, there is a unique unramified
extension L/K of degree n. Moreover, L/K is Galois and the natural map res : Gal(L/K) →
Gal(kL/k) is an isomorphism. In particular, Gal(L/K) ∼= ⟨FrobL/K⟩ is cyclic, where FrobL/K(x) =
xq mod mL for all x ∈ OL.

Proof. For n ≥ 1, take L = K(ζm) where m = qn − 1. As in Theorem 13.3, we have that
Gal(L/K) ∼= Gal(kL/k) ∼= Gal(Fqn/Fq). Thus Gal(L/K) is cyclic and generated by a lift of
Frobq : x 7→ xq, which is a generator for Gal(Fqn/Fq).

To show uniqueness, let L/K be a degree n unramified extension. By the Teichmüller lifting,
ζm ∈ L, so L = K(ζm) by degree properties.
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Corollary 13.5. Let L/K be a finite Galois extension of local fields. Then res : Gal(L/K) →
Gal(kL/k) is surjective.

Proof. res factors as Gal(L/K) ↠ Gal(K0/K) ∼= Gal(k0/k) ∼= Gal(kL/k) because kL = k0.

Definition 13.6. The inertia subgroup is defined to be

IL/K = ker(res : Gal(L/K)→ Gal(kL/k)). (13.1)

L/K breaks up into unramified and totally ramified parts, the inertia subgroup captures the
ramified part (Gal(kL/k) ∼= Gal(K0/K) captures the unramified part).

Remark 13.7.

1. Since eL/KfL/K = [L : K] and fL/K = |Gal(kL/k)|, we have that |IL/K | = eL/K .

2. We have that IL/K = Gal(L/K0) as in Theorem 13.3.

Definition 13.8. Let f(x) = xn + an−1x
n−1 + · · · + a0 ∈ OK [x]. Then f(x) is Eisenstein if

vK(ai) ≥ 1 for all i, and vK(a0) = 1.

It is a fact that if f(x) is Eisenstein, then it is irreducible.

Theorem 13.9.

(i) Let L/K be finite and totally ramified, and let πL ∈ OL be a uniformizer. Then the minimal
polynomial of πL is Eisenstein and OL = OK [πL] as an OK-algebra, so L = K[πL].

(ii) Any root α of an Eisenstein f(x) ∈ OK [x] generates a totally ramified extension L = K(α)/K,
and α is a uniformizer of L.

Proof. (i): Suppose L/K is totally ramified, so that [L : K] = eL/K = e. Let πL be a uniformizer,
and let f(x) = xm + am−1x

m−1 + · · · + a0 ∈ OK [x] be the minimal polynomial for πL. Then
m ≤ e. Since vL(K×) = eZ and ai ∈ K, we have that vL(aiπi) = i mod e for i < m. Since
i < m < e, the valuations vL(aiπi) are all distinct. As πmL = −

∑
aiπ

i
L, we have that m =

vL(π
m) = min vL(aiπ

i
L) = min(i + evK(ai)). Since i < m, we need vK(ai) ≥ 1 for all i. Also, we

need min(i+ evK(ai)) = m ≤ e, and this can only happen if m = e and vK(a0) = 1. Thus f(x) is
Eisenstein of degree e, so L = K(πL).

If y ∈ L, we can write y =
∑
πiLbi with bi ∈ K. We have that y ∈ OL if and only vL(y) > 0,

and vL(y) = min(vL(π
i
Lbi)) = min(i+ evK(bi)). So we need bi ∈ OK , so y ∈ OK [πL].

(ii) Let f(x) = xn+an−1x
n−1+ · · ·+a0 be Eisenstein. Then vL(ai) = evK(ai) ≥ e and vL(a0) =

e. Let α be a root of f and set L = K(α). If vL(α) ≤ 0, then we would have vL(αn) < vL(−
∑
aiα

i),
which is a contradiction. Thus vL(α) > 0. For i > 0, we have that vL(aiαi) > e = vL(a0). Therefore
vL(α

n) = vL(−
∑
aiα

i) = vL(a0) = e. Thus nvL(α) = e. But e | n, so n = e and vL(α) = 1.

13.1 Structure of units
Let [K : Qp] <∞ be a finite extension of Qp and set e := eK/Qp

and let π be a uniformizer of K.

Proposition 13.10. If r > e
p−1 then exp(x) =

∑
xn

n! converges on πrOK and induces an isomor-
phism of groups

(πrOK ,+) ∼= (1 + πrOK ,×). (13.2)
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Proof. To show convergence, we have that

vK(n!) = evp(n!)

= e · n− sp(n)
p− 1

≤ e · n− 1

p− 1
(13.3)

where sp(n) is the base p digit sum of n. For x ∈ πrOK and n ≥ 1, we have that

vK

(
xn

n!

)
≥ nr − e · n− 1

p− 1
= r + (n− 1)(r − e

p− 1
). (13.4)

This is greater than 0 if r > e
p−1 , and in this case vK(x

n

n! → 0 so exp(x) converges.
Since vK(xn/n!) ≥ r for all n ≥ 1, we have that exp(x) ∈ 1 + πrOK . Consider the log map

log(1 + ·) : 1 + πrOK → πrOK

x 7→
∞∑
n=1

(−1)n−1

n
xn. (13.5)

This converges as before as vK(n) ≤ vK(n!). In Q[X,Y ], we have the identities

(i) exp(X + Y ) = exp(X) exp(Y ).

(ii) exp(log(1 + x)) = 1 + x.

(iii) log(exp(x)) = x.

Thus log is the inverse of exp, so exp is an isomorphism.

Now let K be any local field with uniformizer π, and set UK := OK .

Definition 13.11. For any s ∈ Z≥1, the sth unit group U
(s)
K is determined by

U
(s)
K = (1 + πsOK ,×). (13.6)

By convention, set U (0)
K = UK . Then we have a filtration

UK = U
(0)
K ⊃ U (1)

K ⊃ · · · (13.7)

Proposition 13.12.

(i) U
(0)
K /U

(1)
K
∼= (k×,×).

(ii) U
(s)
K /U

(s+1)
K

∼= (k,+).

Proof. (i): The reduction mod π map O×
K → k× is surjective and has kernel 1 + πOK ∼= U

(1)
K .

(ii): We have a map f : U
(s)
K → k given by 1 + πsx→ x mod π. As

(1 + πsx)(1 + πsy) = 1 + πs(x+ y + πsxy) (13.8)

we have that f is a group homomorphism. f is clearly surjective with kernel 1+ πs+1OK = U
(s+1)
K

so we are done.
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Remark 13.13. Let [K : Qp] <∞. By Proposition 13.9 and 13.10, we can find some finite index
subgroup of O×

K isomorphic to (OK ,+) by taking U (r)
K with r sufficiently large as in Proposition

13.9.

Example 13.14. Let OK = Zp for p > 2. Then e = 1, so we can take r = 1. Then

Z×
p
∼= (Z/pZ)× × (1 + pZp)× ∼= Z/(p− 1)Z× Zp (13.9)

where the first map is given by

x 7→ (x mod p, x/[x mod p] (13.10)

where [x mod p] is the Teichmüller lift.
If p = 2, then e = 1, but we need to take r = 2. Then

Z×
2
∼= (Z/4Z)× × (1 + 4Z2) ∼= Z/2Z× Z2 (13.11)

where the first isomorphism is given by

x 7→ (x mod 4, x · ϵ(x) (13.12)

where

ϵ(x) =

{
1 x = 1 mod 4

−1 x = 3 mod 4
(13.13)

From this it is apparent that

Z×
p /(Z×

p )
2 ∼=

{
Z/2Z p > 2

(Z/2Z)2 p = 2
(13.14)

14 Higher ramification groups
The higher ramification groups are analogous to higher unit groups. Let L/K be a finite Galois
extension of local fields and πL ∈ OL a unit.

Definition 14.1. Let vL be the normalized valuation on OL. For s ∈ R≥−1, the sth ramification
group is

Gs(L/K) = {σ ∈ Gal(L/K) | vL(σ(x)− x) ≥ s+ 1 ∀x ∈ OL}. (14.1)

It is the elements of Gal(L/K) which “reduce to the identity mod πs”.

Remark 14.2. Gs only changes at integers. But we define Gs for any R≥−1 so that we can later
define the “upper numbering” (see the end of these notes).

Example 14.3.

1. G−1 = Gal(L/K).

2.

G0(L/K) = {σ ∈ Gal(L/K) | σ(x) ≡ x mod πL ∀x ∈ OL}
= ker(res : Gal(L/K)→ Gal(kL/k))

= IL/K (14.2)
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For s ∈ Z≥0, we have that

Gs(L/K) = ker(Gal(L/K)→ Aut(OL/πs+1
L OL)). (14.3)

Thus Gs(L/K) is normal in G, and we have a filtration

Gal(L/K) = G−1 ⊃ G0 ⊃ G1 ⊃ · · · (14.4)

Theorem 14.4.

(i) For s ≥ 1,
Gs = {σ ∈ G0 | vL(σ(πL)− πL) ≥ s+ 1}. (14.5)

(ii)
∞⋂
n=0

Gn = {1}. (14.6)

(iii) There is an injective group homomorphism for s ∈ Z≥0

Gs/Gs+1 ↪→ U
(s)
L /U

(s+1)
L . (14.7)

induced by σ 7→ σ(πL)
πL

. This map is independent of the choice of πL.

Proof. Let K ⊂ K0 ⊂ L be the maximal unramified subextension of L/K, upon replacing K by
K0 we may assume that L/K is totally ramified, which we can do because it does not change the
inertia group. By Theorem 13.9, OL = OK [πL].

(i): Suppose that vL(σ(πL)−πL) ≥ s+1. Let x ∈ OL, so then x = f(πL) for some f(x) ∈ OK [x].
Then

σ(x)− x = σ(f(πL))− f(πL)
= f(σ(πL))− f(πL)
= (σ(πL)− πL)g(πL) (14.8)

for some g(x) ∈ OK [x] as σ(x)m − xm = (σ(x)− x)(σ(x)m+1 + · · ·xm+1). Thus

vL(σ(x)− x) = vL(σ(πL)− πL) + vL(g(πL))

≥ s− 1. (14.9)

(ii): Suppose σ ∈ Gal(L/K) with σ ̸= 1. Then σ(πL) − πL ̸= 0, because L = K(πL), so
vL(σ(πL)− πL) <∞. Thus σ /∈ Gs for s > vL(σ(πL)− πL) by (i).

(iii): For σ ∈ Gs with s ∈ Z≥0, we have that σ(πL) ∈ πL + πs+1
L OL so

σ(πL)

πL
∈ 1 + πsLOL = U

(s)
L . (14.10)

Thus the map φ : Gs → U
(s)
L /U

(s+1)
L is well-defined.

43



We want to show φ is a group homomorphism with kernel Gs+1. For σ, τ ∈ Gs, let τ(πL) = uπL
with u ∈ O×

L . Then

στ(πL)

πL
=
σ(τ(πL))

τ(πL)
· τ(πL)
πL

=
σ(u)

u
· σ(πL)

πL
· τ(πL)
πL

. (14.11)

In order to show that this is a group homomorphism, we need to show that σ(u)
u ∈ U (s+1)

L . But
σ(u) ∈ u+ π

(s+1)
L OL since σ ∈ Gs, so we are done.

Moreover we have that

kerφ = {σ ∈ Gs | σ(πL) ≡ πL mod πs+2
L } = Gs+1 (14.12)

since in this case σ(πL)/πL ≡ 1 mod πs+2
L .

If π′
L = uπL is another uniformizer with u ∈ O×

L , then

σ(π′
L)

π′
L

=
σ(u)

u
· σ(πL)

πL
(14.13)

and since σ(u)
u ∈ U (s+1)

L , we get the same map.

Corollary 14.5. Gal(L/K) is solvable.

Proof. By Proposition 13.12, Theorem 14.4, and Theorem 13.4, we have that

Gs/Gs+1
∼= a subgroup of


Gal(kL/k) s = −1
(k×L ,×) s = 0

(kL,+) s ≥ 1

(14.14)

These groups are all abelian, and since
⋂
Gn = {1}, the successive quotients are all abelian and

“exhaust” Gal(L/K), so Gal(L/K) is solvable.

Let char(k) = p. Then G0/G1 embeds into a group of order pm−1, so p ∤ |G0/G1| and |G1| = pn.
Thus G1 is the unique (and hence normal) Sylow p-subgroup of G0 = IL/K .

Definition 14.6. G1 is the wild inertia group and G0/G1 is the tame quotient.
Now let L/K be separable, finite. We say that L/K is tamely ramified if char k ∤ eL/K . Otherwise

it is wildly ramified.

Theorem 14.7 (Different measures ramification upstairs). Let [K : Qp] < ∞, L/K finite, and
DL/K = (πδ(L/K)). Then δ(L/K) ≥ eL/K − 1, with equality if and only if L/K is tamely ramified.
In particular, L/K is unramified if and only if DL/K = OL.

Proof. By Sheet 3, DL/K = DL/K0
DK0/K so it suffices to check the totally ramified and unramified

cases.

Case 1: L/K unramified: By Proposition 6.14, we have a power basis OL = OK [α] where
α ∈ OL satisfies kL = k(α). Let g(x) = OK [x] be the monic minimal polynomial of α. Then
[L : K] = [kL : k] because L/K is unramified, so g(x) is the minimal polynomial of α. Thus g(x) is
separable, so g′(α) ̸= 0 mod πL. By Theorem 12.10, we then have that DL/K = (g′(α)) = OL.
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Case 2: L/K totally ramified We have that [L : K] = e, OL = OK [πL], where πL is a root of
g(x) = xe + ae−1x

e−1 + · · ·+ a0 ∈ OK [x] an Eisenstein polynomial. Then

g′(πL) = eπe−1
L +

e−1∑
i=0

iaiπ
i−1
i (14.15)

The first term has valuation vL greater than e − 1, and the terms in the sum have valuation vL
greater than e as g is Eisenstein, so vL(g′(πL)) ≥ e − 1, with equality if and only if vL(e) = 0, if
and only if p ∤ e, if and only if L/K is tamely ramified.

Corollary 14.8. Let L/K be an extension of number fields, P ⊂ OL, and P ∩ OK = p. Then
e(P/p) > 1 if and only if P | DL/K .

Proof. By Theorem 12.11 DL/K =
∏

PDLP/Kp
, and e(P/p) = eLP/Kp

. So applying Theorem 14.7
gives the result.

In particular, we have that e(P/p) > 1 if and only if δ(LP/Kp) > 0 if and only if P | DLP/Kp

if and only if P | DL/K .

Example 14.9. Let K = Qp, ζpn a primitive pn th root of unity, and L = Qp(ζpn). The pth
cyclotomic polynomial is

Φpn(x) = xp
n−1(p−1) + xp

n−1(p−2) + · · ·+ 1 = (xp
n

− 1)(xp − 1) ∈ Zp[x]. (14.16)

On sheet 3, we will show that

1. Φpn(x) is irreducible, so Φpn is the minimal polynomial of ζpn .

2. L/Qp is Galois, totally ramified of degree pn−1(p− 1).

3. π = ζpn − 1 is a uniformizer of OL, so OL = Zp[ζpn − 1] = Zp[ζpn ].

4. Gal(L/Qp) ∼= (Z/pnZ)× is abelian, and the isomorphism is given by σm 7→ m, where
σm(ζpn) = ζmpn .

We want to understand the decomposition groups Gs that σm lies in. So we need to understand

vL(σm(π)− π) = vL(σm(ζpn − 1)− (ζpn − 1)) = vL(ζpn)vL(ζ
m−1
pn − 1) = vL(ζ

m−1
pn − 1). (14.17)

Let k be the maximal integer such that pk | m− 1. Then ζm−1
pn is a primitive pn−kth root of unity,

so π′ = ζm−1
pn − 1 is a uniformizer of L′ = Qp(ζm−1

pn ). So

vL(ζ
m−1
pn ) = eL/L′

=
eL/Qp

eL′/Qp

=
[L : Qp]
[L′ : Qp]

=
pn−1(p− 1)

pn−k−1(p− 1)
= pk (14.18)
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Then by Theorem 14.4 (i), σm ∈ Gi if and only if pk ≥ i+ 1. Thus

Gi ∼=


(Z/pnZ)× i = 0

(1 + pkZ)/pnZ pk−1 − 1 < i ≤ pk − 1

{1} pn−1 − 1 < i

(14.19)

Part VI

Local class field theory
15 Filler section
In my notes there is no Section 15 so we skip to Section 16

16 Infinite Galois theory
Let L/K be an algebraic extension of fields of possibly infinite degree.

Definition 16.1.

(i) L/K is separable if for all x ∈ L, the minimal polynomial fα(x) ∈ K[x] for α is separable.

(ii) L/K is normal if fα(x) splits in L for all α ∈ L.

(iii) L/K is Galois if it is separable and normal.

If L/K is finite and Galois, the Galois correspondence gives us a bijection between subextensions
K ⊂ K ′ ⊂ L and subgroups of Gal(L/K) where normal subgroups correspond to Galois (normal)
subextensions.

The infinite case is not exactly the same, as we need to define a topology on Gal(L/K) so we
only look at closed subgroups (general subgroups can get unwieldy very quickly).

Definition 16.2. Let (I,≤) be a poset. We say that I is a directed set if for all i, j ∈ I, there
exists k ∈ I such that i ≤ k and j ≤ k. So i and j always have a join.

Example 16.3. Any total order is a directed set.

Definition 16.4. Let (I,≤) be a directed set, and (Gi)i∈I a collection of groups with morphisms
φij : Gj → Gi for all i ≤ j such that φik = φij ◦ φjk for all i ≤ j ≤ k and φii = idGi . We say that
((Gi)i∈I , (φij)) is an inverse system, and the inverse limit of ((Gi), (φij)) is

lim←−
i∈I

Gi = {(gi)i∈I | φij(gi) = gj} (16.1)

Remark 16.5. We have projection maps ψj : lim←−i∈I Gi → Gj given by (gi) 7→ gj .
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The universal property of inverse limits is that for any objection X with morphisms ηj : X → Gj
which are compatible with φij , the morphisms ηj factor through ψj by some unique morphism η.

The profinite topology on lim←−Gi is the weakest topology such that ψj are all continuous, where
Gj has the discrete topology. So ψ−1

j (g) is clopen for all g ∈ Gj .

Proposition 16.6. Let L/K be Galois.

(i) The set I = {F/K finite | F ⊂ L,F Galois} is a directed set under inclusion (the compositum
is the join).

(ii) For F, F ′ ∈ I, F ⊂ F ′, there is a restriction map

resF,F ′ : Gal(F ′/K)→ Gal(F/K) (16.2)

and the natural map
Gal(L/K)→ lim←−

F ′⊂F
Gal(F/K) (16.3)

is an isomorphism.

Theorem 16.7 (Fundamental theorem of infinite Galois theory). Let L/K be Galois, and endow
Gal(L/K) with the profinite topology (which is discrete if L/K is finite). Then there exists a
bijection

{subextensions L/F/K} ⇔ {closed subgroups of Gal(L/K)}
F 7→ Gal(L/F )

LH 7→H ⊂ Gal(L/K) (16.4)

Moreover, F/K is finite if and only if Gal(L/F ) is open and F/K is Galois if and only if
Gal(L/F ) is normal.

Proof. Example Sheet 4.

Example 16.8. Let K = Fq, and L = F q be the algebraic closure. Then L/K is Galois because
Fq is perfect. The finite subextensions of L are of the form Fqn for n ≥ 1, and Fqm ⊂ Fqn if and
only if m | n. There exists a commutative diagram (where the vertical maps are Frobq ↔ 1)

Gal(Fqn/Fq) Gal(Fqm/Fq)

Z/nZ Z/mZ

res

proj

So Gal(Fq/Fq) ∼= limZ/nZ = Ẑ, the profinite integers. We have that ⟨Frobq⟩ corresponds to Z ⊂ Ẑ.

16.1 The Weil Group
Let K be a local field, and L/K a separable algebraic extension.

Definition 16.9.

47



(i) L/K is unramified if all finite subextensions are unramified.

(ii) L/K is totally ramified if all finite subextensions are totally ramified.

Proposition 16.10. Let L/K be unramified. Then L/K is Galois and Gal(L/K) ∼= Gal(kL/k).

Proof. We reduce to the finite case. Every finite subextension F/K is unramified, and hence Galois,
so L/K is normal and separable, and hence Galois. Moreover, there exists a diagram

Gal(L/K) Gal(kL/k)

lim←−Gal(F/K) lim←−Gal(k′/k)

res

⋆

The map ⋆ exists because finite subextensions of L are in bijection with finite subextensions k′/k.
This is because given any k ⊂ k′ ⊂ kL, we can lift to an unramified subextension K ⊂ K ′ ⊂ KL

by adding roots of unity (this is the basic theory of unramified extensions). Thus the index sets
match, so ⋆ exists and res is an isomorphism.

If L1, L2/K are both finite and unramified implies that L1L2/K is unramified (Sheet 3). Thus
for any L/K there exists a maximal unramified subextension K0/K which is the compositum of all
the unramified subextensions.

Now, let L/K be Galois. Then there exists a surjection

res : Gal(L/K) ↠ Gal(K0/K) ∼= Gal(kL/k). (16.5)

Set IL/K := ker(res) to be the inertia subgroup. Let FrobkL/k ∈ Gal(kL/k) be the Frobenius
element x 7→ x|k| and let ⟨FrobkL/k⟩ be the subgroup generated by FrobkL/k.

Definition 16.11. Let L/K Galois. The Weil group W (L/K) ⊂ Gal(L/K) is res−1(⟨FrobkL/k⟩).

Remark 16.12. If kL/k is finite, then W (L/K) = Gal(L/K). Otherwise W (L/K) ⊊ Gal(L/K).
There exists a commutative diagram with exact rows

0 IL/K W (L/K) ⟨FrobkL/k⟩ 0

0 IL/K Gal(L/K) Gal(kL/k) 0

=

So W (L/K) is the part of Gal(L/K) corresponding to FrobkL/k.

We endow W (L/K) with the weakest topology such that

1. W (L/K) is a topological group.

2. IL/K is an open subgroup of W (L/K)

where IL/K = Gal(L/K0) has the profinite topology. So W (L/K) has a basis of open sets given
by translates of open sets in IL/K by elements of W (L/K). So the basis is of the form w+U with
w ∈W (L/K) and U ⊂ IL/K open.
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Remark 16.13. Warning! The topology on W (L/K) is not the subspace topology induced by
W (L/K) ⊂ Gal(L/K) if kL/k is infinite.

For example, IL/K ⊂ W (L/K) is not open in the subspace topology because IL/K does not
have finite index.

Proposition 16.14. Let L/K be Galois.

(i) W (L/K) is dense in Gal(L/K).

(ii) If F/K is a finite subextension of L/K, then

W (L/F ) ∼=W (L/K) ∩Gal(L/F ). (16.6)

(iii) If F/K is a finite Galois subextension, then

Gal(F/K) ∼=W (L/K)/W (L/F ) (16.7)

Proof. (i): W (L/K) is dense if and only if for all F/K finite Galois, W (L/K) intersects every coset
of Gal(L/F ). This is true if and only if for all F/K finite Galois, W (L/K) ↠ Gal(F/K). Consider
the diagram

0 IL/K W (L/K) ⟨FrobkL/k⟩ 0

0 IF/K W (F/K) = Gal(F/K) ⟨FrobkF /k⟩ = Gal(kF /k) 0

a b c

Let L/K0/K be the maximal unramified subextension. Then K0 ∩ F is the maximal unramified
subextension of F/K. So Gal(L/K0) ↠ Gal(FK0/K0) = Gal(F/K0 ∩ F ), so a is surjective as
IF/K ∼= Gal(F/K0∩F ) and IL/K ∼= Gal(L/K0). We have that Gal(kF /k) is generated by FrobkF /k
so c is surjective. So by the snake lemma, b is surjective.

(ii): We have a commutative diagram

Gal(L/F ) Gal(kL/kF ) ⟨FrobkL/kF ⟩

Gal(L/K) Gal(kL/k) ⟨FrobkL/k⟩

⊇

⊇

For σ ∈ Gal(L/F ), σ ∈W (L/F ) if and only if σ|kL ∈ ⟨FrobkL/kF ⟩, if and only if σ|kL ∈ ⟨FrobkL/k⟩.
Now, we have that Gal(kL/kF ) ∩ ⟨FrobkL/k⟩ = ⟨FrobkL/kF ⟩, which follows from the fact that
nẐ ∩ Z = nZ, so σ|kL ∈ ⟨FrobkL/k⟩ if and only if σ ∈W (L/K).

(iii) We do a messy derivation

W (L/K)/W (L/F ) =W (L/K)/(W (L/K) ∩Gal(L/F ))
∼=W (L/K)Gal(L/F )/Gal(L/F )

⋆ ∼= Gal(L/K)/Gal(L/F )
∼= Gal(F/K). (16.8)

⋆ follows from part (i) and the fact that Gal(L/F ) is an open subgroup.
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17 Statements of local class field theory
Let K be a local field.

Definition 17.1. An extension L/K is abelian if it is Galois and Gal(L/K) is abelian. We have
that

(i) If L1, L2/K are abelian, then L1L2/K is abelian.

(ii) If L1 ∩ L2 = K, then there exists a canonical isomorphism

Gal(L1L2/K) ∼= Gal(L1/K)×Gal(L2/K). (17.1)

(i) implies that there exists a maximal abelian extension Kab of K by taking the compositum of
all abelian extensions.

Example 17.2. Let Kab denote the maximal abelian extension of K inside Ksep. Let

Kun =
⋃
m≥1

K(ζqm−1) (17.2)

where |k| = q. Then Kun is the maximal unramified extension of K by the theory of unramified
extensions, and kKun = Fq. We have that Gal(Kun/K) ∼= Gal(Fq/Fq) ∼= Ẑ, so the maximal
unramified extension is abelian, and hence contained in Kab. Thus kKab = Fq, so there exists a
SES

0 IKab/K W (Kab/K) Z ∼= ⟨FrobKab/K⟩ 0

Theorem 17.3 (Locally Artin reciprocity).

(i) There exists a unique topological isomorphism (a group isomorphism and a homeomorphism)

ArtK : K× →W (Kab/K) (17.3)

which satisfies

(a) ArtK(π)|Kun = FrobKun/K for any uniformizer π ∈ K.

(b) For each finite abelian subextension L/K in Kab/K,

ArtK(NL/K(L×))|L = {1} (17.4)

(ii) Let L/K be a finite abelian. Then ArtK induces an isomorphism

K×/NL/K(L×) ∼=W (Kab/K)/W (Kab/L) ∼= Gal(L/K) (17.5)

Remark 17.4.

(i) The local Artin map is used to characterize the global Artin map in global class field theory.

(ii) This is a special case of the local Langlands correspondence. The moral of local Langlands
is that the Weil group is hard to study in general, but we can look at representations of the
Weil-(Deligne) group, and compare to p-adic groups.
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17.1 Properties of the Artin map
Theorem 17.5 (Existence Theorem). For any H ⊂ K× open, finite index, there exists L/K a finite
abelian extension such that NL/K(L×) = H. In particular, we can understand abelian extensions
by studying K×. The Artin map induces an isomorphism of posets (which is inclusion reversing)

open finite index subsets of K× ⇔ {finite abelian extensions of K}
H 7→ (Kab)ArtK(H)

NL/K(L×) 7→L/K (17.6)

Theorem 17.6 (Norm functoriality). Let L/K be any finite separable extension. Then the following
diagram commutes

L× W (Lab/L)

K× W (Kab/K)

ArtL

NL/K res

ArtK

17.2 Construction of the Artin map for Qp

Recall that

Qun
p =

∞⋃
m=1

Qp(ζpm−1) =
⋃
p∤m

Qp(ζm) (17.7)

is the extension of Qp obtained by adjoing all roots of unity relatively prime to p. Also, Qp(ζpn)/Qp
is totally ramified of degree pn−1(p− 1) with isomorphism

θn : Gal(Qp(ζpn)/Qp)→ (Z/pnZ)×. (17.8)

For n ≥ m ≥ 1, there exists a diagram

Gal(Qp(ζpn)/Qp) Gal(Qp(ζpm)/Qp)

(Z/pnZ)× (Z/pmZ)×

θn

res

θm

Set

Qp(ζp∞) =

∞⋃
n=1

Q(ζpn). (17.9)

Then Qp(ζp∞) is Galois and we have

θ : Gal(Qp(ζp∞)/Qp)
∼=−→ lim←−(Z/p

nZ)× ∼= Z×
p (17.10)

We have that Qp(ζp∞)∩Qun
p = Qp because one is totally ramified, and the other is unramified. So

then there exists an isomorphism

Gal
(
Qp(ζp∞)Qun

p /Qp
) ∼= Ẑ× Z×

p . (17.11)
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Theorem 17.7.
Qab
p = Qun

p Qp(ζp∞) (17.12)

Remark 17.8. Qp(ζp∞) is not the canonical totally ramified extension, and non exists.

We construct ArtQp
as follows: we have that

Q×
p
∼= Z× Z×

p (17.13)

which is non-canonical! Then

ArtQp(p
nu) =

(
(FrobQur

p /Qp
)n, θ−1(u−1)

)
∈ Gal(Qur

p /Qp)×Gal(Qp(ζp∞)/Qp) ∼= Gal(Qab
p /Qp)

(17.14)
We can check that the image lies inW (Qab

p /Qp), which is intuitive as we would expectW (Qab
p /Qp) ∼=

Z× Z×
p ⊂ Ẑ× Z×

p
∼= Gal(Qab

p /Qp).
We can also check that this map is independent of the choice of totally ramified extension,

π ∈ Qp.

17.3 Construction of Artin map for arbitrary K

Based off of the Qp case, our question is how to adjoin pnth roots of unity to a local field K? Let K
be a local field and π a uniformizer. For n ≥ 1, construct Kπ,n a totally ramified Galois extension
such that

(i) K ⊂ Kπ,1 ⊂ · · · .

(ii) For n ≥ m ≥ 1, there exists a commutative diagram

Gal(Kπ,n/K) Gal(Kπ,m/K)

O×
K/U

(n)
K O×

K/U
(m)
K

ψn
∼= ψm

∼=

proj

(iii) Setting Kπ,∞ =
⋃
Kπ,n, we have that

Kab = KunKπ,∞ (17.15)

Then (ii) implies that there exists an isomorphism

ψ : Gal(Kπ,∞/K) ∼= lim←−O
×
K/U

(n)
k = O×

K . (17.16)

We define ArtK by

K× ∼= Z×O×
K → Gal(Kun/K)×Gal(Kπ,∞/K) ∼= Gal(Kab/K)

πnu 7→ (n, u) 7→ ((FrobKun/K)n, ψ−1(u−1)) (17.17)

The analogy with the Qp case is
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Qab
p Kab

Qun
p Qp(ζp∞) Kun Kπ,∞

Qp K

Ẑ
Z×
p

Ẑ

O×
K

Remark 17.9. Both Kπ,∞ and the isomorphism K× ∼= Z×O×
K depend on π. For different choice

of π, the Artin maps agree, so ArtK is canonical.

So now, our goal is to construct Kπ,n. This will take some work.

Part VII

Lubin-Tate theory
The main idea is that ζpn are torsion points in Q×

p .

18 Formal group laws
Let R be a ring, and R[[x1, . . . , xn]] the ring of formal power series.

Definition 18.1. A (1-dimensional, commutative) formal group law over R is a power series
F (X,Y ) ∈ R[[X,Y ]] satisfying

(i) F (X,Y ) = F (Y,X).

(ii) F (X, 0) = X, F (0, Y ) = Y .

(iii) F (X,F (Y, Z)) = F (F (X,Y ), Z).

Example 18.2.

1. Ĝa(X,Y ) = X + Y the formal additive group.

2. Ĝm(X,Y ) = X + Y +XY the formal multiplicative group.

Lemma 18.3. There exists a unique i(X) ∈ R[[X]] such that i(0) = 0 and F (X, i(X)) = 0.

Proof. Sheet 4.

Now let K be a complete, non-archimedean valued field. If F is a formal group law over OK ,
then F (X,Y ) converges for all x, y ∈ m to an element of m. Define x ·F y = F (x, y), then (mK , ·F )
is a commutative group.

Example 18.4. Let Ĝm/Zp be the formal group x·Ĝm
y = x+y+xy. Then (pZp, ·Ĝm

) ∼= (1+pZp,×)
under x 7→ 1 + x which is easy to verify.
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Definition 18.5. Homorphism of formal groups. Define EndR(F ) to be the set of formal group
homomorphisms f : F → F .

Proposition 18.6. Suppose R is a Q-algebra. There is an isomorphism of formal group laws
exp(X) : Ĝa → Ĝm given by

exp(X) =

∞∑
n=1

Xn

n!
= eX − 1. (18.1)

Proof. Define

logX = sum∞
n=1

(−1)n−1Xn

n
. (18.2)

Then there exists an equality of formal power series by log(exp(X)) = X = exp(log(X)). We can
also check that

exp(Ĝa(X,Y )) = Ĝm(exp(X), exp(Y )). (18.3)

Lemma 18.7. EndR(F ) is a ring with

(f +F g)(X) = F (f(X), g(X))

(f ·F g)(X) = f ◦ g(X) (18.4)

Proof. Let f, g ∈ EndR(F ). Then

(f +F g) ◦ F (X,Y ) = F (f(F (X,Y )), g(F (X,Y )))

= F (F (f(X), f(Y )), F (g(X), g(Y )))

= F (F (f(X), g(X)), F (f(Y ), g(Y )))

= F (f +F g(X), f +F g(Y )) (18.5)

so f +F g is an endomorphism. We can similarly check that f ◦ g ◦ F = f ◦ F ◦ g = F ◦ f ◦ g so
f ◦ g = f ·F g is also an endomorphism. The rest is tedious.

19 Lubin-Tate formal group laws
Let K be a non-archimedean local field, with |k| = q.

Definition 19.1. A formal OK-module over OK is a formal group law F (X,Y ) ∈ OK [[X,Y ]]
together with a ring homomorphism [·]F : OK → EndOK

(F ) such that for all a ∈ OK we have that

[a]F ≡ aX mod X2. (19.1)

A homomorphism/isomorphism f : F → G of formal OK-modules is a homomorphism/isomorphism
of formal group laws such that f ◦ [a]F = [a]G ◦ f for all a ∈ OK .

Definition 19.2. Let π ∈ OK be a uniformizer. A Lubin-Tate series for π is a power series
f(X) ∈ OK [[X]] such that

(i) f(X) ≡ πX mod X2.
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(ii) f(X) ≡ xq mod π.

Theorem 19.3. Let f(X) be a Lubin-Tate series for π. Then

(i) There exists a unique formal group law Ff over OK such that f ∈ EndOK
(Ff ).

(ii) There exists a ring homomorphism

[·]f : OK → EndOK
(Ff ) (19.2)

such that [π]f (X) = f(X), which makes Ff a formal OK-module over OK .

(iii) If g(X) is another Lubin-Tate series for π, then Ff ∼= Fg as formal OK-modules.

Ff is a Lubin-Tate formal group law for π, and it depends on π up to isomorphism.

Example 19.4. Let K = Qp. Then f(X) = (X + 1)p − 1 is a Lubin-Tate series for p. We claim
that the Lubin-Tate formal group law Ff is Ĝm. It suffices to show that f ◦ Ĝm = Ĝm ◦ f , as then
f ∈ EndOK

(Ĝm), and Ĝm = Ff is unique. We have that

f(Ĝm(X,Y )) = ((X + 1)(Y + 1)− 1 + 1)p − 1

= (X + 1)p(Y + 1)p − 1

= ((X + 1)p − 1 + 1)((Y + 1)p − 1 + 1)− 1

= Ĝm(f(X), f(Y )). (19.3)

In order to prove Theorem 19.3, we use the following key lemma. It tells us that we can uniquely
construct a power series with specified degree 1 terms which intertwines with Lubin-Tate series.
Thus if two power series are equivalent modulo degree 2 terms and intertwine with Lubin-Tate
series, then they are equal.

Lemma 19.5. Let f(X), g(X) be Lubin-Tate series for π. Suppose L(X1, . . . , Xn) =
∑
aiXi

for ai ∈ OK is some linear form. Then there exists a unique power series F (X1, . . . , Xn) ∈
OK [[X1, . . . , Xn]] such that

(i) F (X1, . . . , Xn) = L(X1, . . . , Xn) mod deg 2.

(ii) f(F (X1, . . . , Xn)) = F (g(X1), . . . , g(Xn)).

Proof. We show by induction there exists a unique polynomial Fm ∈ OK [X1, . . . , Xn] of degree at
most m such that

(a) f(Fm(X1, . . . , Xn)) = Fm(g(X1), . . . , g(Xn)) mod deg(m+ 1).

(b) Fm(X1, . . . , Xm) = L(X1, . . . , Xm) mod deg 2.

(c) Fm = Fm+1 mod deg(m+ 1).

For m = 1 we take F1 = L(X1, . . . , Xn) which immediately satisfies (b). We have that

f(F1(X1, . . . , Xn)) = πL(X1, . . . , Xn) mod deg 2

= F1(g(X1), . . . , g(Xn)) mod deg 2 (19.4)
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as f, g are both Lubin-Tate series for π. Suppose we have built Fm for some m ≥ 1. Set Fm+1 =
Fm+h, where h ∈ OK [X1, . . . , Xn] is homogeneous of degreem+1. Since f(X+Y ) = f(X)+f ′(X)Y
mod Y 2 and f ′(X) ≡ π mod X, we have that

f ◦ (Fm + h) = f ◦ Fm + πh mod deg(m+ 2) (19.5)

Similarly,

(Fm + h) ◦ g = Fm ◦ g + h ◦ g
= Fm ◦ g + h(πX1, . . . , πXn) mod deg(m+ 2)

= Fm ◦ g + πm+1h (19.6)

as g is a Lubin-Tate series for π. Thus (a), (b), (c) are satisfied if and only if

f ◦ Fm − Fm ◦ g = (π − πm+1)h mod deg(m+ 2) (19.7)

We want to “divide” by π − πm+1, but we need to check that the result is still in OK [X1, . . . , Xn].
But f(X) = g(X) = xq mod π, so

f ◦ Fm − Fm ◦ g = Fm(X1, . . . , Xn)
q − Fm(Xq

1 , . . . , X
q
n) mod π = 0 mod π (19.8)

Thus f ◦ Fm − Fm ◦ g ∈ πOK [X1, . . . , Xn]. Let r(X1, . . . , Xn) be the degree m + 1 terms of
f ◦ Fm − Fm ◦ g. Then we have that

h =
1

(π − πm+1)
r ∈ OK [X1, . . . , Xn] (19.9)

works. Since h is determined uniquely by (19.7), which is equivalent to (a), (b), (c), Fm+1 is
uniquely determined. Set F = limFm, then F satisfies (i), (ii). The uniqueness follows from the
uniqueness of Fm, because if G is another such series, then we must have that Gm = Fm, where
Gm is the mth partial sum of G.

Proof of Theorem 19.3. Out proof strategy is to spam Lemma 19.5 until we’re sick of it.
(i) By Lemma 19.5, there exists a unique Ff (X,Y ) ∈ OK [X,Y ] such that

Ff (X,Y ) = X + Y mod deg 2

f(Ff (X,Y )) = Ff (f(X), f(Y )) (19.10)

We claim that Ff is a formal group law. To show associativity, we have that

Ff (X,Ff (Y, Z)) ≡ Ff (Ff (X,Y ), Z) ≡ X + Y + Z mod deg 2 (19.11)

We also have that

f ◦ Ff (X,Ff (Y,Z)) = Ff (f(X), f(Ff (Y, Z))) = Ff (f(X), Ff (f(Y ), f(Z))) (19.12)

and
f ◦ Ff (Ff (X,Y ), Z) = Ff (f(Ff (X,Y )), f(Z)) = Ff (Ff (f(X), f(Y )), f(Z)) (19.13)
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So both Ff (X,Ff (Y,Z)) and Ff (Ff (X,Y ), Z) satisfy the condition of Lemma 19.5 with L(X,Y, Z) =
X + Y + Z, so they are equal. Commutativity follows by the same argument, so Ff is a formal
group law. (19.10) then shows that f ∈ EndOK

(Ff ).
(ii) By Lemma 19.5, for a ∈ OK we have that there exists a unique [a]Ff

∈ OK [[X]] such that
[a]Ff

= aX mod X2 and f ◦ [a]Ff
= [a]Ff

◦ f . Then

f ◦ ([a]Ff
◦ Ff ) = ([a]Ff

◦ Ff ) ◦ f
f ◦ (Ff ◦ [a]Ff

) = (Ff ◦ [a]Ff
) ◦ f (19.14)

and [a]Ff
◦ Ff = Ff ◦ [a]Ff

mod deg 2, so [a]Ff
◦ Ff = Ff ◦ [a]Ff

by Lemma 19.5. Thus [a]Ff
∈

EndOK
(Ff ). Likewise, the map [·]Ff

: OK → EndOK
(Ff ) is a ring homomorphism by Lemma 19.5.

So Ff is a formal OK-module over OK , and [π]Ff
= f by Lemma 19.5.

(iii) If g(X) is another Lubin-Tate series for π, let θ(X) ∈ OK [[X]] be the unique power series
such that θ(X) = X mod X2 and θ ◦ f = g ◦ θ. We have that

(θ ◦ Ff ) ◦ f = g ◦ (θ ◦ Ff )
(Fg ◦ θ) ◦ f = g ◦ (Fg ◦ θ) (19.15)

and as Ff = Fg = X + Y mod deg 2 and θ = X mod deg 2, we have that θ ◦ Ff = Fg ◦ θ by
Lemma 19.5. Thusθ ∈ Hom(Ff , Fg). Swapping f and g, we get some ψ ∈ Hom(Fg, Ff ). We have
that θ ◦ψ = ψ ◦ θ = X by Lemma 19.5 (compare with i(X) = X). It also follows from Lemma 19.5
that θ ◦ [a]Ff

= [a]Fg ◦ θ for all a ∈ OK , and hence θ is an isomorphism of formal OK-modules.

20 Lubin-Tate Extensions
Let K be an algebraic closure of K, and m ⊂ OK the maximal ideal. The next lemma justifies the
use of the term “formal OK-module”.

Lemma 20.1. Let F be a formal OK-module over OK . Then m is an OK-module under (for all
x, y ∈ m, a ∈ OK)

x+F y = F (x, y)

a ·F x = [a]F (x) (20.1)

Proof. It’s important to note that K is not complete, so we need to be a bit careful.
If x ∈ m, then x ∈ mL for some L/K finite. Then [a]F ∈ OK [[X]], so [a]Ff

(X) converges in L
and since mL is closed, [a]F (x) ∈ mL ∈ m. Similarly x +F y ∈ m. The module structure follows
from the definitions.

Recall that if Ff is a Lubin-Tate formal group law, then [π]Ff
= f .

Definition 20.2. The πn-torsion subgroup is

µf,n := {x ∈ m | πn ·Ff
x = 0}

= {x ∈ m | fn(X) = f ◦ f ◦ · · · ◦ f(X) = 0}. (20.2)

In fact, µf,n is an OK-submodule, and µf,n ⊂ µf,n+1 for all n ≥ 1.
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Example 20.3. Let K = Qp, and f(X) = (X + 1)p − 1. Then

[pn]Ff
(X) = f ◦ f · · · ◦ f(X) = (X + 1)p

n

− 1. (20.3)

Thus
µf,n = {ζipn − 1 | i = 0, 1, . . . , pn − 1} (20.4)

Thus the µf,ns seem to be our desired analogues for p-power roots of unity!

Now let f(X) = πX +Xq be a Lubin-Tate series for π, and set fn = f ◦ fn−1(X) = fn−1(X) ·
(π + fn−1(X)q−1). Then we can define the analogue of the cyclotomic polynomial as

hn(X) =
fn(X)

fn−1(X)
= π + fn−1(X)q−1 (20.5)

Proposition 20.4. hn(X) is a separable Eisenstein polynomial of degree qn−1(q − 1).

Proof. It is clear that hn(X) is monic as it is the quotient of monics, and has degree qn − qn−1 =
qn−1(q − 1).

As f(X) = Xq mod π, we have that fn−1(X)q−1 = Xqn−1q−1 mod π. Since fn−1(X) has 0
constant term, hn(X) has constant term π. Thus hn(X) is Eisenstein.

Since hn(X) is irreducible, it is separable if and only if charK = 0, or charK = p and h′n(X) ̸= 0.
Assume that charK = p and induct on n. Then h1(X) = π + Xq−1 is separable. Suppose
h1(X), . . . , hn−1(X) is separable. Then fn−1(X) = Xh1(X) · · ·hn−1(X) is separable as it is the
product of separable irreducible polynomials of different degrees. Then hn(X) = π + fn−1(X)q−1,
so h′n(X) = (q − 1)f ′n−1(X)fn−1(X)q−2 ̸= 0, so hn(X) is separable.

We need to understand the module structure on µf,n.

Proposition 20.5.

(i) µf,n is a free OK/πnOK-module of rank 1.

(ii) If g is another Lubin-Tate series for π, then µf,n ∼= µg,n as OK-modules and K(µf,n) =
K(µg,n).

Proof. (i): Fix a root α of hn(X). Since hn(X) is coprime to fn−1(X), α ∈ µf,n \ µf,n−1. Then
the map

φ̃ : OK → µf,n

a 7→ a ·Ff
α (20.6)

is an OK-module homomorphism. Since α is a πn torsion point, ker φ̃ ⊃ πnOK . Since α /∈ µf,n−1,
πn−1 · Ffα ̸= 0, so πn−1OK ̸⊂ ker φ̃. Since kerφ is an ideal, this means that ker φ̃ = πnOK . Thus
φ̃ induces an injection

φ : OK/πnOK → µf,n. (20.7)

Since fn(X) is separable, |µf,n| ≤ deg fn(X) ≤ deg fn(X) = qn = |OK/πnOK |, so φ is an isomor-
phism by the pigeon-hole principle.
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(ii): Let θ ∈ HomOK
(Ff , Fg) be an isomorphism of formal OK-modules. Then θ induces an

isomorphism
θ̃ : (m,+Ff

)→ (m,+Fg
) (20.8)

ofOK-modules. This can be seen by a proof similar to that of Lemma 20.1. Hence µf,n ∼= µg,n. Since
µf,n is algebraic, K(µf,n)/K is finite, hence complete, and as θ̃(X) ∈ OK [[X]], we have that for all
α ∈ µf,n, θ̃(α) ∈ K(µf,n). So K(µg,n) ⊂ K(µf,n). Reversing f and g gives K(µf,n) ⊂ K(µg,n) so
we are done.

Definition 20.6. Set Kπ,n = K(µf,n). The Kπ,n are Lubin-Tate extensions.

Remark 20.7.

1. Kπ,n do not depend on the choice of Lubin-Tate series by Proposition 20.5.

2. Kπ,0 ⊂ Kπ,1 ⊂ · · ·

Proposition 20.8. Kπ,n/K are totally ramified and Galois of degree qn−1(q − 1).

Proof. We may pick a Lubin-Tate series f(x) = πX +Xq for π. Then Kπ,n/K is Galois because
it is the splitting field of fn(X). Let α be a root of hn(X) = fn(X)/fn−1(X). It suffices to show
that K(α) = K(µf,n), since α is a root of an Eisenstein polynomial. Clearly K(α) ⊂ K(µf,n). By
Proposition 20.5, if x ∈ µf,n then x = a ·Ff

α for some a ∈ OK . Then since K(α) is complete and
[a]Ff

(X) ∈ OK [[X]], we have that x = [a]Ff
(α) ∈ K(α). Thus K(µf,n) ⊂ K(α).

Theorem 20.9. There exists an isomorphism

ψn : Gal(Kπ,n/K)
∼=−→ (OK/πnOK)× ∼= O×

K/U
(n)
k (20.9)

characterized by
ψn(σ) ·Ff

x = σ(x) (20.10)

for all x ∈ µf,n, σ ∈ Gal(Kπ,n/K). ψn does not depend on f .

Proof. Let σ ∈ Gal(Kπ,n/K). Then σ preserves µf,n and acts continuously on Kπ,n = K(µf,n).
Since Ff (X,Y ) ∈ OK [[X,Y ]] and [a]Ff

∈ OK [[X]] for all a ∈ OK , we have by the continuity of σ
that for all x ∈ µf,n, a ∈ OK that (look at the partial sums)

σ(x+Ff
y) = σ(x) +Ff

σ(y)

σ(a ·Ff
x) = a ·Ff

σ(x) (20.11)

Thus σ ∈ AutOK
(µf,n), so we have a group homomorphism

Gal(Kπ,n/K)→ AutOK
(µf,n) (20.12)

which is injective since Kπ,n = K(µf,n) so σ = id in AutOK
(µf,n) if and only if σ(x) = x for all

x ∈ µf,n, if and only if σ = id in Kπ,n. Since µf,n ∼= OK/πnOK as OK-modules, we have that

AutOK
(µf,n) ∼= AutOK/πnOK

(µf,n) = (OK/πnOK)×. (20.13)
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This is true as for any ring R and any free R-module of rank 1 M , we have that AutR(M) = R×.
Thus we get a map ψn as described above. Since [Kπ,n : K] = qn(q − 1) = |(OK/πnOK)×|, ψn is
an isomorphism since it is an injection.

Now let g be another Lubin-Tate series for π. Then repeating the construction as above, we
get a map ψ′ : Gal(Kπ,n/K)→ (OK/πnOK)×. Let θ : Ff → Fg be an isomorphism of formal OK-
modules. This induces an isomorphism θ : µf,n → µg,n of OK-modules and hence for all x ∈ µf,n
and all σ ∈ Gal(Kπ,n/K) we have that

θ(ψn(σ) ·Ff
x) = ψn(σ) ·Fg

θ(x). (20.14)

But θ ∈ OK [[X]] has coefficients in OK , so θ(σ(x)) = σ(θ(x)). Then

θ(ψn(σ) ·Ff
x) = θ(σ(x))

= σ(θ(x))

= ψ′
n(σ) ·Fg

θ(x) (20.15)

Then ψn(σ) ·Fg θ(x) = ψ′
n(σ) ·Fg θ(x) so ψn(σ) = ψ′

n(σ).

Now, set
Kπ,∞ :=

⋃
n≥1

Kπ,n. (20.16)

The isomorphisms ψn are compatible with descending on n (so ψn|Gal(Kπ,n−1/K) = ψn−1), so we an
isomorphism

ψ : Gal(Kπ,∞/K) ∼= lim←−(OK/π
nOK)× ∼= O×

K . (20.17)

We conclude by showing that Kπ,∞ is analogous to Qp(ζp∞) as totally ramified extensions.

Theorem 20.10 (Generalized local Kronecker-Weber theorem). Kab = Kπ,∞K
un

The proof of this result is long and difficult. We then have that

ArtK : K× ∼= Z×O×
K → Gal(Kab/K) ∼= Gal(Kun/K)×Gal(Kπ,∞/K)

πnu 7→ (n, u) 7→ (FrobnKun/K , ψ
−1(u−1)) (20.18)

and the construction of this map is independent of the choice of π.

Part VIII

Non-examinable fun!
Will fill in when I am non-examining.
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