
Lie Algebras and their Representations

October 13, 2025

These notes are based on a course of the same title given by Dr. Jef Laga at Cambridge during
Michaelmas Term 2024. They have been written up by Alexander Shashkov. There are likely plenty
of errors, which are my own.

Contents
1 Motivation 3

2 Introduction 3
2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Representations of Lie Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Morphisms of representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Representations of sl2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Complete reducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 More operations of representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.7 Complete reducibility for sl2(C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.8 Tensor products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Solvability and Nilpotents 12
3.1 Ideals of Lie Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Solvable and Nilpotent Lie Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Engel’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 The big three theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Semisimpleness is very nice! 15
4.1 Semisimple Lie Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 The Killing form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 The Cartan-Killing criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 Complete Reducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.5 Jordan Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Root spaces: a new decomposition 21
5.1 The Cartan subalgebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 The root space decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 First properties of roots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4 The zero weight space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1



5.5 Finding sl2s in g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.6 Root strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.7 Φ is a root system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Root spaces: the abstract strikes back 27
6.1 Examples of root systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.2 Irreducible root systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.3 Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.4 Root bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.5 Weyl group and root bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.6 The Cartan matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.7 Dynkin Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7 Root spaces: return of the Lie algebras 35
7.1 Independence of t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.2 Existence and uniqueness theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.3 Classical Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.4 Exceptional Lie algebras for culture . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.5 The root and weight lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

8 Representations of semisimple Lie algebras 39
8.1 The universal enveloping algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
8.2 Poitcare-Birkhoff-Witt Theorem (PBW) . . . . . . . . . . . . . . . . . . . . . . . . . 42
8.3 Highest weight modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.4 Verma modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.5 Classification of irreducible representations . . . . . . . . . . . . . . . . . . . . . . . 45
8.6 The character of V (λ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2



1 Motivation
We begin with some motivation. Let G be a finite group. A representation of G is a group
homomorphism.

ρ : G→ GLn(C) (1.1)

We have that

1. Every representation is a direct sum of irreducible representations.

2. The number of irreducible representations equals the number of conjugacy classes.

3. The representation ρ is uniquely determined by its character χρ = Tr ◦ρ.

We want to generalize this to infinite groups. The issue is most infinite groups are messy. But
there are nice ones, in particular infinite groups with extra structure are often nice.

For example, putting a smooth manifold structure on a group gives you a Lie group. Some
examples of Lie groups are GLn(R),SLn(R),SOn(R), and so on. A representation of a Lie group is
a smooth homomorphism G → GLn(C). Representations of Lie groups have applications in many
areas such as physics, differential geometry, harmonic analysis (automorphic forms), number theory,
algebraic geometry, etc.

Classifying these things seems hard, but the key insight is as follows. Let g = TeG be the
tangent space of G at the origin. This is an R-vector space, and the group structure on G induces
a Lie bracket on g:

[·, ·] : g× g → g (1.2)

which satisfies the axioms of a Lie algebra.

Miracle! We have that (g, [·, ·]) remembers almost everything about G! So in many cases instead
of studying G we can study the Lie algebra g. Precisely, we have that there is a bijection between
connected, simply connected Lie groups and Lie algebras over R given by taking the tangent space
over the origin.

Upshot We can study Lie groups using just the linear algebra of (g, [·, ·]).

Goal To classify the semisimple Lie algebras and their representations. The map G 7→ Lie(G)⊗RC
induces a bijection between compact connected, simply connected Lie groups and complex semisim-
ple Lie algebras. Other motivation is given by the theory of algebraic groups, and the “ADE
classification”.

2 Introduction
We do some definitions, and do some basic stuff with representations, including classifying repre-
sentations of sl2(C).
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2.1 Definitions
Fix a field F , we will almost always work over F = C in this course. All vector space are assumed
to be finite dimensional.

Definition 2.1. A Lie algebra is a vector space g together with a bilinearing pairing known as the
Lie bracket

[·, ·] : g× g → g (2.1)

such that [·, ·] is alternating, so [x, x] = 0 for all x ∈ g, and the Lie bracket satisfies the Jacobi
identity, so that for all x, y, z ∈ g, we have that

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 (2.2)

The requirement that the Lie bracket satisfies the Jacobi identity is motivated by the adjoint
representation, as we will see later.

Definition 2.2. A Lie algebra homomorphism is a linear map φ : g → h such that

φ([x, y]) = [φ(x), φ(y)] (2.3)

for al x, y ∈ g, and φ is an isomorphism if it is a bijection.

Definition 2.3. A Lie subalgebra of a Lie algebra g is a subspace h ⊆ g which is stable under [·, ·],
so that [x, y] ∈ h for all x, y ∈ h, so that h is also a Lie algebra.

Example 2.4. 1. If n ≥ 1 is an integer, let gln(F ) be the Lie algebra with underlying vector
space Matn(F ) the space of n× n matrices. The Lie bracket is given by [A,B] = AB −BA,
we can check that this works.

2. If V is any vector space, then gl(V ) := EndV with [f, g] = f ◦ g− g ◦ f . If V is n-dimensional
then choosing a basis gives an isomorphism gl(V ) → gln(F ). If F = R, then the tangent
space of GLn(R) at 0 is gln(R).

3. We have the Lie subalgebra

sln(F ) = {x ∈ gln(F ) | Tr(x) = 0} (2.4)

This is a subalgebra as Tr[x, y] = Tr(xy)− Tr(yx) = 0.

4. If n = 2, then

sl2(F ) =

{[
a b
c −a

]
| a, b, c ∈ F

}
(2.5)

has basis
e =

[
0 1
0 0

]
, f =

[
0 0
1 0

]
, h =

[
1 0
0 −1

]
(2.6)

We can calculate that [h, e] = 2e, [h, f ] = −2f , and [e, f ] = h. This is the most important Lie
algebra, as pretty much everything we do in this course boils down to showing that things “behave
like sl2”.

bn is the set of upper triangular matrices in gln.

4



nn is the set of strictly upper triangular matrices (0 in diagonal).

dn is the algebra of diagonal matrices. Note that we have [x, y] = 0 for all x, y ∈ dn.

Definition 2.5. A Lie algebra g is abelian when [x, y] = 0 for all x, y ∈ g.
There’s a unique abelian Lie algebra in each dimension, which is a completely trivial fact as we

just take the unique n-dimensional vector space and give it the zero Lie bracket.

Remark 2.6. Since [x, x] = 0 we have that [x, y] = −[y, x], and the converse holds when charF ̸= 2.

Given a non-degenerate bilinear form ⟨·, ·, ⟩ : V × V → F , the subset

g = {f ∈ gln(V ) | ⟨f(v), w⟩+ ⟨v, f(w)⟩ = 0 ∀v, w ∈ V } (2.7)

is a Lie subalgebra of gl(V ) (exercise).
If ⟨·, ·, ⟩ is symmetric, then g = so(V, ⟨·, ·, ⟩) is the special orthogonal Lie algebra.
If ⟨·, ·, ⟩ is alternating, then g = sp(V, ⟨·, ·, ⟩) is the symplectic Lie algebra.

Standard so and sp Now if ⟨·, ·, ⟩ is a bilinear form, so it is nondegenerate and symmetric, and we
choose a basis for V so that V ∼= Fn, then ⟨·, ·, ⟩ corresponds to a symmetric matrix A ∈ Matn(F )
such that ⟨v, w⟩ = (vT )Aw. Then

so(V, ⟨·, ·, ⟩) = {x ∈ gln(F ) | xT ·A+A · x = 0} (2.8)

We can choose ⟨·, ·, ⟩ conveniently to define a “standard so”. The matrix is given by

J =



[
0 Iℓ

Iℓ 0

]
n = 2ℓ1 0 0

0 0 Iℓ

0 Iℓ 0

 n = 2ℓ+ 1

(2.9)

which defines a bilinear form ⟨v, w⟩ = (vT )Jw as above, and the standard so is given by son(F ) =
so(Fn, J).

There is a similar story for the alternating case, we set

J =

[
0 Iℓ

−Iℓ 0

]
(2.10)

and we have the standard sp sp2ℓ(F ) = sp(F 2ℓ, J). Note that alternating forms only exist in even
dimensional vector spaces.

Remark 2.7. Over non-closed fields bilinear forms have a more interesting structure.

Remark 2.8. You will do many matrix calculations, these are important for learning.
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2.2 Representations of Lie Algebras
Let g be a Lie algebra.

Definition 2.9. A representation of g is a Lie algebra homomorphism

ρ : g → gl(V ) (2.11)

where V is a F -vector space.

Definition 2.10. A g-module (or g-action) is a vector space V and a bilinear pairing g× V → V
written as (x, v) 7→ x · v, such that

[x, y] · v = x · (yv)− y(x · v) (2.12)

for all x, y ∈ g and all v ∈ V .

If ρ : g → gl(V ) is a representation, then xv = ρ(x)(v) defines a g-module. Thus we have a
bijection between g-representations and g-modules.

Example 2.11. If V = F , then x · v = 0 for all x ∈ g, v ∈ V is a g-module, called the trivial
representation. This induces the map ρ : g → gl1 given by ρ(x) = 0 for all x ∈ g.

Example 2.12 (Defining representation). If g is defined as a subalgebra of gl(V ), then the inclusion
g → gl(V ) is called the defining representation.

Example 2.13. If x ∈ g, write adx : g → g such that adx(y) = [x, y]. This defines a linear map
ad : g → gl(g) given by x 7→ adx.

All the nice properties of representations and linear maps come from the Lie bracket [·, ·].

Lemma 2.14. ad is a Lie algebra homomorphism.

Proof. We need to check that ∀x, y ∈ g, [adx, ady] = ad[x,y]. This follows from routine calculation.

The representation ad is known as the adjoint representation, and is very important.

Example 2.15. Let g = sl2(C). Then

1. ρ1 : g → gl1 is the trivial representation given by ρ1(x) = 0.

2. g → gl2 is the defining rep given by mapping e, f, h to their associated matrices.

3. ad : g → gl(g) ∼= gl3 with basis {e, h, f}. We can calculate

ade =

0 −2 0
0 0 1
0 0 0

 , adh =

2 0 0
0 0 0
0 0 −2

 , adf =

 0 0 0
−1 0 0
0 2 0

 (2.13)
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2.3 Morphisms of representations
Definition 2.16. A linear map φ : V →W between g-representations is called a g-homomorphism
(or g-equivariant) if it respects the representation structure on V and W , so that φ(xv) = xφ(v)
for all v ∈ V, x ∈ g.

If it is bijective, then it is a g-isomorphism.

Lemma 2.17. If ρ, ρ′ : g → gln(F ) are representations, then ρ and ρ′ are isomorphic if and only
if there exists M ∈ GLn(F ) such that ρ′(x) =Mρ(x)M−1 for all x ∈ g.

Proof. An isomorphic Fn → Fn corresponds to M .

We now list some properties of g-representations.

Definition 2.18. Let V be a g-representation, corresponding to ρ : g → gl(V ). Then

1. dimV is the dimension of (or degree of) the representation.

2. V is faithful if ρ is injective.

3. A subspace W ⊆ V is a subrepresentation if it is g-stable, so that xw ∈ W for all x ∈ g,
w ∈W

4. V is irreducible if V ̸= 0 and there are no non-trivial proper subrepresentations.

Example 2.19. sl2 → gl2 the trivial representation is irreducible.
sl2 → gl2 the defining representation is faithful and irreducible.
sl2 → gl2 the adjoint representation is irreducible.

Lemma 2.20 (Schur’s Lemma). Let V,W be irreducible g-representations and φ : V → W a
g-homomorphism. Then

(i) Either φ = 0, or φ is bijective (so an isomorphism).

(ii) If F is algebraically closed, and V =W , then φ = λ idV for λ ∈ F×.

Proof. (i) Assume φ ̸= 0. Then kerφ is a subrepresentation, so kerφ = 0. imφ is also a subrepre-
sentation, so imφ =W .

(ii) Since F is algebraically closed, φ has an eigenvalue λ ∈ F . Then φ−λ idV has an eigenvector
in its kernel, so φ− λ idV is not bijective, so φ− λ idV = 0.

2.4 Representations of sl2

Our goal is to classify all irreducible representations of sl2(C). Let V be an irreducible representation
of sl2(C), with ρ : sl2(C) → gl(V ). For example, the trivial, defining, or adjoint representations.
For λ ∈ C, we can define the eigenspace

Vλ = {v ∈ V | hv = λv} (2.14)

We want to understand how e and f interact with Vλ.
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Lemma 2.21. We have that e(Vλ) ⊂ Vλ+2 and f(Vλ) ⊂ Vλ−2.

Proof. If v ∈ Vλ so that hv = λv, then direct calculation gives the result.

So applying e and f allows us to “hop” through the eigenspaces.
Since h (or really ρ(h)) has at least one eigenvalue, there exists λ ∈ C such that Vλ ̸= 0. Then

the lemma shows that ⊕
k∈Z

Vλ+2k (2.15)

is stable under the action of h, e, f , so it must equal the entire space V because ρ is an irreducible
representation. So ⊕

k∈Z
Vλ+2k (2.16)

where Vλ ̸= 0. At some point, we must have that Vλ+2k = 0.

Definition 2.22. If λ ∈ C is such that Vλ ̸= 0, then λ is a weight of V .
If Vλ ̸= 0 but Vλ+2 = 0, then λ is a highest weight, and v ∈ Vλ is a highest weight vector.

Lemma 2.23. If v ∈ Vλ is a highest weight vector, then W = ⟨v, fv, f2v, · · ·⟩ is a subrepresentation
of V .

Proof. We need to check that W is stable under the action of e, h, f . We can do this by direct
calculation. Importantly, we check that

e(fkv) = k(λ− k + 1)(fk−1v) (2.17)

So if v is a highest weight vector, then V = ⟨v, fv, f2v, . . .⟩ because W is a nonzero subrepre-
sentation and V is an irreducible representation.

Corollary 2.24. All the weight spaces are one-dimensional spanned by fkv, where v is a highest
weight vector and k ≥ 0.

Corollary 2.25. If V has dimension n+ 1, then V has highest weight n.

Proof. Let v ∈ Vλ be a highest weight vector. Then V = {v, fv, . . . , fnv} because dimV = n + 1
and fkv ̸= 0 for 0 ≤ k ≤ n. Now by (2.17) we have that e · (fn+1v) = (n+ 1)(λ− n)(fnv) = 0 so
λ = n.

So the weights of V are {−n,−n+ 1, . . . , n− 2, n}.

Theorem 2.26. For every n ∈ Z≥0, there is a unique isomorphism class of irreducible representa-
tions of sl2(C) of dimension n+ 1, denoted by V (n).

Proof. For uniqueness, if V is an irreducible representation of dimension n+1 and v ∈ V is a highest
weight vector, then we have a basis {v, fv, . . . , fnv} for V , and this determines all the matrices for
the representation ρ.

For existence, one can check that the matrices which are defined preserve the bracket. For
irreducibility, if W is a nonzero subrepresentation of V (n), and v0, . . . , vn is the standard basis of
V (n), then there exists v =

∑
civi ∈ W \ {0}. Since evi+1 = avi, we have that ekv = av0 with

a ̸= 0 for some k, so v0 ∈W . Then f jv0 = bvj , so vj ∈W for all j, so W = V .
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2.5 Complete reducibility
Let g be any Lie algebra over any field F .

Definition 2.27. If V,W are g-representations, then V ⊕W can be given the structure of a g-
representation via g(v, w) = (gv, gw). A g-representation is completely reducible if V ∼= V1⊕· · ·⊕Vn
where each Vi is irreducible.

Lemma 2.28. A representation V is completely reducible if and only if for every subrepresentation
W ⊂ V , there exists a subrepresentation W ′ ⊂ V such that W ⊕W ′ = V .

The above lemma says that a representation is completely reducible if and only if the complement
of every subrepresentation is a subrepresentation.

Proof. First suppose every complement is a subrepresentation. If we induct on dimension, then our
decomposition will eventually stop.

Now suppose V is completely reducible and W is a subrepresentation. Suppose W ′ is a subrep-
resentation such that W ∩W ′ = {0} and W ′ is maximal among all subrepresentations with this
property. Then V =W ⊕W ′ (exercise).

Example 2.29. Let g = b2 ⊂ gl2 the Lie algebra of upper triangular matrices. Then the defining
representation is not completely reducible. This is because b2 preserves the first basis vector e1, so
W = ⟨e1⟩ is a subrepresentation, but its complement W ′ = ⟨e2⟩ is not a subrepresentation.

2.6 More operations of representations
Definition 2.30. If W ⊂ V is a subrepresentation of a g-representation, then V/W = {v +W |
v ∈ V } is a g-representation because W is stable under the g-action. We have the obvious action

x(v +W ) = xv +W. (2.18)

Definition 2.31. If V is a g-representation, then the dual space V ∗ = Hom(V, F ) is a g-representation
with action given by

(xf)(v) = −f(xv) (2.19)

for x ∈ g, f ∈ V ∗, v ∈ V .

Definition 2.32. If V,W are g-representations, then HomF (V,W ) is a g-representation via

(xφ)(v) = xφ(v)− φ(xv) (2.20)

for φ ∈ HomF (V,W ), x ∈ g, v ∈ V .

Definition 2.33. If V,W are g-representations, then V ⊗F W is a g-representation by x(v⊗w) =
(xv)⊗ w + v ⊗ (xw).

Definition 2.34. We have that Symn V,
∧n

V are subrepresentations of V ⊗n.
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2.7 Complete reducibility for sl2(C)
If V is an sl2(C)-representation, then the set {λ ∈ V | Vλ ̸= 0} is called the set of weights. We
view this as a multiset where λ has multiplicity dimVλ, this is reflected in the multiple roots of the
characteristic polynomial.

As a consequence of complete reducibility and our description of V (n), we have the following.

Corollary 2.35. A representation of sl2(C) is determined up to isomorphism by its weights (with
multiplicities).

Proof. Trivial

Example 2.36. 1. Suppose an sl2 representation V has weights {5, 3, 3, 1, 1, 0,−1,−1,−3,−3,−5}.
Then V = V (0)⊕ V (3)⊕ V (5).

2. Suppose V has dimension 5 and has 3 as a weight. Then V = V (3)⊕ V (0).

3. The defining representation if V (1).

4. The adjoint representation is V (2).

Definition 2.37. Let ρ : sl2(C) → gl(V ) be a representation. The Casimir element is the map

Ωρ = ρ(e)ρ(f) + ρ(f)ρ(e) +
1

2
ρ(h)2 ∈ gl(V ) = End(V ) (2.21)

We consider End(V ) as a ring, but ρ is not a ring homomorphism. For instance, we do not necessarily
have ρ(e)ρ(f) = ρ(ef) because “ef ” is a meaningless concept in a Lie algebra.

Lemma 2.38. Ωρ : V → V is g-equivariant, so it gives a homomorphism of representations.

Proof. We need to show that Ωρ(xv) = xΩρ(v) for all x ∈ sl2(C) and v ∈ V . Equivalently, we want
to show that ρ(x)Ωρ = Ωρρ(x) for x = h, e, f . We can do this by direct calculation.

Lemma 2.39. If ρ ∼= V (n), then Ωρ = c id where c = (n2/2 + n)

Proof. By Schur’s lemma, Ωρ defines a subrepresentation (taking images) so Ωρ = c id. Let v ∈ V (n)
be a highest weight vector. Then hv = nv, and ev = 0. So Ωρv = (n2/2 + n)v which is nonzero
when n > 0, so when ρ is nontrivial.

Lemma 2.40. If h is an abelian Lie algebra, then every Lie algebra homomorphism φ : sl2(C) → h
is 0.

Proof. We have that φ([x, y]) = [φ(x), φ(y)] = 0. Since [x, y] spans sl2(C) so that [sl2(C), sl2(C)] =
sl2(C), we have that φ(x) = 0 for all x.

To show that an sl2(C) representation V is completely reducible, we’ll show that every subrepre-
sentation W ⊆ V has an invariant complement W ′ ⊆ V such that V =W ⊕W ′ (and W ∩W ′ = 0).

Proposition 2.41. If W ⊆ V has codimension 1, it has a complementary representation, so there
exists a trivial subrepresentation W ′ ⊆ V such that W ⊕W ′ = V .
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Proof. V/W ∼= C is an sl2(C) representation, and since gl(V/W ) ∼= gl1 is abelian, V/W is trivial.
Choose a basis e1, . . . , en for V such that e1, . . . , en−1 is a basis for W . In this basis, ρ : sl2 → gl(V )
looks like 

∗
∗
∗

0 0 0 0

ρ|W
 (2.22)

We will choose en so that ρ(x)(en) = 0 for all x ∈ sl2.

Case 1: If W ∼= V (0) is trivial, then im ρ is abelian, so ρ = 0.

Case 2: Assume W is irreducible and nontrivial. Consider Ωρ : V → V . We have that Ω(W ) ⊂W
because W is a subrepresentation. W is irreducible, so Ω|W = c idW for c ̸= 0 by Lemma 1. On the
other hand, Ω : V/W → V/W is zero by Lemma 2.39. Therefore W ′ = kerΩ has the property that
V = W ⊕W ′, and it is a subrepresentation because of equivariance (the kernel of a g-equivariant
homomorphism is a representation).

Case 3: Now let W be any subrepresentation. We proceed by induction on dimW . If dimW = 0
or W is irreducible, we are done by the previous cases. So we can assume that W is nonzero and
reducible. Let U ⊊ W be a proper, nonzero subrepresentation. Then W/U is a subrepresentation
of V/U of codimension 1, and W/U has dimension strictly smaller than W . By the induction
hypothesis, there exists a one-dimensional subrepresentation L ⊂ V/U such that V/U = (W/U)⊕L.
So L = W ′/U for some W ′ ⊂ V containing U . Then V = W +W ′ and W ∩W ′ = U . Since L is
one-dimensional, U ⊂ W ′ has codimension 1. By the induction hypothesis, there exists W ′′ ⊆ W ′

such that W ′ = U ⊕W ′′. Therefore V =W ⊕W ′′.

Theorem 2.42. Let V be a representation of sl2 and W a subrep. Then there exists W ′ such that
V =W ⊕W ′.

Proof. Recall Hom(V,W ) is an sl2 rep via (xφ)(v) = x(φ(v))− φ(xv). Let

V := {φ ∈ Hom(V,W ) | φ|W = c idW } ⊃ W := {φ ∈ Hom(V,W ) | φ|W = 0} (2.23)

We claim that W and V are subrepresentations of Hom(V,W ) and W ⊂ V has codimension 1.
Indeed, if φ ∈ V and x ∈ sl2(C), w ∈ W , then (xφ)(w) = xφ(w) − φ(xw) = 0 since φ|W = c idW .
and W is a subrepresentation of V . Thus xV ⊂ W , so V and W are subrepresentations. The map
F : V → C sending φ to c, where φ|W = c idW is linear and surjective. Thus kerF = W has
codimension 1.

By the proposition, there exists a trivial subrepresentation W ′ ⊂ V such that V = W⊕W ′. Let
φ ∈ W ′ be nonzero. Now, xφ = 0 for all x ∈ sl2(C) since W ′ is trivial. Thus φ is sl2(C) equivariant
as (xφ)(v) = xφ(v)− φ(xv) = 0 for all v ∈ V . Thus W ′ = kerφ satisfies V =W ⊕W ′.

2.8 Tensor products
Let F be a field. Recall the tensor product. Recall that not all tensors are pure.
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Lemma 2.43 (Universal property of tensor product). If V,W,U are vector spaces, then there is a
canonical isomorphism between Hom(V ⊗W,U) and the set of bilinear maps V ×W → U given by
(v ⊗ w 7→ u) 7→ ((v, w) 7→ u).

Example 2.44. In F 2 ⊗ F 3, the elements are the form
∑
cijei ⊗ fj , and we can represent this as

a matrix. In this way pure tensors are rank 1 matrices.

If g is a Lie algebra and V,W are g-representations, then V ⊗W is a representation via x(v⊗w) =
(xv) ⊗ w + v ⊗ (xw) for all x ∈ g, v ∈ V , w ∈ W . Notice the similarities between this and the
product rule.

Definition 2.45. If n ≥ 1 and V is a vector space, let V ⊗n = V ⊗· · ·⊗V be the nth tensor power.
Let

Symn V = V ⊗n/Span{v1 ⊗ · · · ⊗ vn − vσ(1) ⊗ · · · ⊗ vσ(n) | σ ∈ Sn} (2.24)

be the nth symmetric power, spanned by the symbols v1 · · · vn where we can change the order of
the vis as we wish. Also, let

n∧
V = V ⊗n/ Span{v1 ⊗ · · · ⊗ vn − sgn(σ)vσ(1) ⊗ · · · ⊗ vσ(n) | σ ∈ Sn} (2.25)

be the nth exterior power, spanned by the symbols v1 ∧ · · · ∧ vn with vi ̸= vj .

If V is a g-representation, then the tensor, symmetric, and exterior powers are also.

Example 2.46. If V has basis e1, . . . , en, then

1. V ⊗2 has basis {ei ⊗ ej | 1 ≤ i, j ≤ n}.

2. Sym2 V has basis {eiej | 1 ≤ i ≤ j ≤ n}.

3.
∧2

V has basis {ei ∧ ej | 1 ≤ i < j ≤ n}.

3 Solvability and Nilpotents
We define what it means for Lie algebras and elements of Lie algebras to be solvable, nilpotent.

3.1 Ideals of Lie Algebras
Let g be a Lie algebra over F .

Definition 3.1. An ideal of g is a subspace I ⊂ g such that for all x ∈ g, [x, I] ⊂ I. This is always
a subalgebra because [I, I] ⊂ [g, I] ⊂ I.

Remark 3.2. In analogy with Lie groups we have

Lie algebra ↔ Lie group
subalgebra ↔ subgroup

ideal ↔ normal subgroup

Remark 3.3. An alternative definition of an ideal is a subrepresentation of Ad g.
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Lemma 3.4. If φ : g → h is a Lie algebra homomorphism, then kerφ is always an ideal.

Proof. If x ∈ g, y ∈ kerφ, then φ([x, y]) = [φ(x), φ(y)] = 0 so [x, y] ∈ kerφ.

Lemma 3.5. If I ⊂ g is an ideal, then g/I has the structure of a Lie algebra via [x + I, y + I] =
[x, y] + I.

The projection g → g/I is a homomorphism with kernel I.

Proof. Trivial.

Definition 3.6. A Lie algebra g is simple if it has no nonzero proper ideals and g is not abelian.

Remark 3.7. g is simple if and only if g is not abelian and the adjoint representation is irreducible.

Example 3.8. sl2(C) is simple since the adjoint representation V (2) is irreducible.

Example 3.9. sln(C), sp2ℓ(C), son(C) are all simple.

We’ll classify all simple Lie algebras over C, and we’ll find that the the three listed above are
almost all the examples, except for 5 “exceptional” Lie algebras.

3.2 Solvable and Nilpotent Lie Algebras
If I, J ⊂ g are ideal, let [I, J ] = Span{[i, j] | i ∈ I, j ∈ J}. Note that we need to take the span as
simply taking [i, j] for all i ∈ I and j ∈ J might not give a subspace. Then [I, J ] is an ideal, which
follows from the Jacobi identity.

Definition 3.10. The derived subalgebra of g is [g, g].

Remark 3.11. [g, g] = 0 if and only if g is abelian.

Example 3.12. [gln, gln] = sln.

Example 3.13. If g is simple, then g = [g, g] because [g, g] is a nonzero ideal (recall that it is
nonzero because a simple Lie algebra must not be abelian).

Definition 3.14. Set g(0) = g0 = g, and g(n) = [g(n−1), g(n−1)] and gn = [g, gn−1]. We then have
filtrations of Lie algebras

g ⊃ g(1) ⊃ g(2) ⊃ · · · the derived series (3.1)

g ⊃ g1 ⊃ g2 ⊃ · · · the central series (3.2)

g is nilpotent if gn = 0 for some n ≥ 1. g is solvable if g(n) = 0 for some n ≥ 1.

Remark 3.15. We have that g(n) ⊂ gn, so nilpotent implies solvable.

Example 3.16. 1. nn the algebra of strictly upper triangular matrices is nilpotent.

2. bn the algebra of upper triangular matrices is solvable but not nilpotent for n ≥ 2.

Lemma 3.17. If g = nn(F ), then gn = 0, so g is nilpotent.
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Proof. An n×n matrix has level greater than k if the nonzero entries of A are supported on indices
with j − i ≥ k. Basically it measures how upper triangular the matrix is. Each term in the central
series of nn increases the level by 1.

Remark 3.18. A similar argument shows that (bn)(m) are the matrices with level m. But bmn = nn,
so bn is not nilpotent.

Lemma 3.19. If g is nilpotent (or solvable), then so is any (i) subalgebra or (ii) quotient.

Proof. (i) If h ⊂ g is a subalgebra, then h(n) ⊂ g(n) and hn ⊂ gn.
(ii) If I ⊂ g is an ideal, then (g/I)(n) = g(n) + I and (g/I)n = gn + I.

3.3 Engel’s Theorem
Our arguments still work over general fields.

Recall that an endomorphism φ ∈ gl(V ) is nilpotent if φn = 0 for some n ≥ 1. Equivalently, all
the eigenvalues of φ over an algebraic closure are 0.

Lemma 3.20. If g is nilpotent, then for all x ∈ g, ad(x) : g → g is nilpotent.

Proof. g is nilpotent if and only if there exists n ≥ 1 such that adx1 ◦ · · ·◦adxn = 0 for all x1, . . . , xn.
In particular, taking x = x1 = · · · = xn, we have that adn x = 0.

Theorem 3.21 (Engel). g is nilpotent if and only if adx is nilpotent for all x ∈ g.

One direction of this equivalence follows from Lemma 3.20.

Remark 3.22. It is not true that g ⊂ gln is nilpotent if and only if x is a nilpotent matrix for all
x ∈ g.

Lemma 3.23. If V is a vector space and x ∈ gl(V ) is nilpotent, then adx ∈ gl(gl(V )) is nilpotent.

Proof. We have that adx(y) = xy− yx = Lx(y)−Rx(y) where Lx and Rx are multiplication on the
left and right. Since x is nilpotent, Lx and Rx are nilpotent operators. Also, Lx ◦ Rx = Rx ◦ Lx,
so adx is nilpotent (iterated applications of adx are sums of iterated applications of Lx, Rx, which
will be zero of large n).

Proposition 3.24. If g ∈ gl(V ) is a subalgebra such that x is nilpotent for all x ∈ g, then there is
a nonzero v ∈ V such that xv = 0 for all x ∈ g.

Proof. We proceed by induction of dim g. If dim g = 1, then g = Span{x} with x nilpotent, so
xn = 0 for some minimal n, so there exists v such that x(xn−1v) = 0 and xn−1v ̸= 0.

For the inductive step, let p ⊂ g be a maximal proper subalgebra. If x ∈ p, then ad(x) is
nilpotent by Lemma 3.23. So ad(x) : g/p → g/p is a nilpotent element of gl(g/p), and in this way
we can consider p as a subalgebra of gl(g/p) with each element nilpotent. Then by the inductive
hypothesis, there exists an element y ∈ g/p such that ad(x)(y) = 0 for all x ∈ p. Lifting y to some
y ∈ g, we have that y /∈ p and [x, y] ∈ p for all x ∈ p. Therefore p + F · y is a subalgebra, so
g = p+ F · y since we chose p to be maximal and y /∈ p.

Moreover, p is an ideal of g, since [p, p] ⊂ p and [p, y] ⊂ p. Consider

W = {v ∈ V | pv = 0∀p ∈ p} (3.3)
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By the induction hypothesis applied to (p, V ), W ̸= 0. We claim that W is stable under y, so that
y ·W ⊂W . Indeed, if v ∈W and p ∈ p, then we need to check that yv ∈W :

p(yv) = [p, y]v + y(pv) = 0 (3.4)

because [p, y] ∈ p. Now, by the dimension 1 case applied to Span{y} ⊂ gl(W ), there exists
w ∈W \ {0} such that yw = 0. Then w satisfies the statement of the theorem.

Corollary 3.25. If g ∈ gl(V ) is a subalgebra such that x is nilpotent for all x ∈ g, then there exists
a basis of V such that g ⊂ nn, so g is a nilpotent Lie algebra.

Proof. By Proposition 3.24, there exists v1 ∈ V \ {0} such that g · v1 = 0. Choosing a basis
v1, . . . , vn, we have that the first column of the matrix for each element of g is all zeros. Applying
the proposition to V/ Span{v1} and iterating, we find that g ⊂ nn is upper triangular.

Proof of Theorem 3.21. We need to show that if adx is nilpotent for all x ∈ g, then g is nilpotent.
The other direction is done by Lemma 3.20.

Consider ad : g → gl(g) and h = imad. By the Corollary, h is nilpotent. Since ker ad = Z(g) =
{x ∈ g | [x, y] = 0∀y ∈ g}, we have that h = g/Z(g), so g/Z(g) is nilpotent. So (g/Z(g))n = 0 for
some n ≥ 1. So gn + Z(g) = Z(g), so gn ∈ Z(g), so gn+1 = [g, gn] ⊂ [g, Z(g)] = 0.

From now on, we will assume that F = C.
3.4 The big three theorems
The first big theorem is Engel’s Theorem 3.21, which we have already proved. We proved it by
showing if a subalgebra g ⊂ gl(V ) consists of nilpotent elements, there is a basis of V such that
g ⊂ nn.

The second big theorem is Lie’s theorem, which is an analogue of Engel’s theorem for solvable
subalgebras. We do not prove it, but you can see Humphreys.

Theorem 3.26 (Lie). If g ⊂ gl(V ) is a solvable subalgebra, then there exists a basis of V such that
g ⊂ bn.

The third big theorem gives a trace criterion for solvability. We also omit the proof.

Theorem 3.27 (Cartan). A subalgebra g ⊂ gl(V ) is solvable if and only if for all x ∈ g, and for
all y ∈ [g, g], Tr(xy) = 0.

Proof. If g ⊂ gl(V ) is solvable, by Lie’s theorem we can pick a basis of V such that g ⊂ bn. If
x ∈ bn and y ∈ [bn, bn] = nn, then xy ∈ nn, so Tr(xy) = 0.

For the other direction, see Humphreys, §4.3.

4 Semisimpleness is very nice!
We define semisimpleness.

We also define the trace form, and use it to show representations of semisimple Lie algebras are
completely reducible.

Also we do Jordan decomposition for elements of semisimple Lie algebras.
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4.1 Semisimple Lie Algebras
Definition 4.1. A Lite algebra g is semisimple if g = I1 ⊕ I2 ⊕ · · · ⊕ Ik where each Ii is a simple
Lie algebra.

Example 4.2. 1. Every simple Lie algebra is semisimple.

2. We have that so4(C) ∼= sl2(C)⊕ sl2(C) is simple but not semisimple.

Lemma 4.3. A Lie algebra g is semisimple if and only if ad : g → gl(g) is faithful and completely
reducible.

Proof. g has no abelian ideals if and only if Z(g) is trivial if and only if ad is faithful.
g has a decomposition into irreducible ideals if and only if ad is completely reducible.

4.2 The Killing form
Definition 4.4. If ρ : g → gl(V ) is a representation of g, the trace form is the bilinear form

(·, ·)V : g× g → C
(x, y)V = TrV (ρ(x)ρ(y)) (4.1)

Recall that trace is basis independent.

Definition 4.5. The Killing form is the trace form of the adjoint representation:

κ(x, y) := Trg(ad(x) ad(y)). (4.2)

This is clearly symmetric and bilinear.

Lemma 4.6. If ρ : g → gl(V ) is a representation, then ([x, y], z)V = (x, [y, z])V for all x, y, z ∈ g.

Proof. Direct calculation: use trace commutativity.

Warning! Tr(ABC) ̸= Tr(BAC) in general.

Example 4.7. Let g = sl2. In the basis {e, h, f} we can calculate κ(e, e) = 0, κ(h, h) = 8, and
κ(f, f) = 0. The Gram matrix of κ is 0 0 4

0 8 0
4 0 0

 (4.3)

The determinant of this matrix is nonzero, so κ is nondegenerate. In fact, this characterizes semisim-
ple Lie algebras.

4.3 The Cartan-Killing criterion
Lemma 4.8. (i) If I ⊂ g is an ideal such that I and g/I are solvable, then g is solvable.

(ii) If I, J are two solvable ideals, then so is I + J .
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Proof. (i) If I and g/I are solvable, then there exists n ≥ 1 such that (g/I)(n) = g(n) + I = 0 + I
so g(n) ⊂ I. But there exists m ≥ 1 such that I(m) = 0, so g(nm) ⊂ I(m) = 0.

(ii) I + J is isomorphic to (I ⊕ J)/(I ∩ J). Since I and J are solvable, so is I ⊕ J and hence
I + J .

Definition 4.9. By the previous lemma, any two solvable ideals are contained in their sum, so we
can take the sum of all of them to get a unique maximal ideal solvable ideal. This is called the
radical of g, and is denoted by Rad(g).

Theorem 4.10 (Cartan-Killing criterion). Let g be a nonzero Lie algebra over C. The following
are equivalent:

(i) g is semisimple.

(ii) Rad(g) = 0.

(iii) The Killing form is nondegenerate.

Before we prove this, we need a little lemma.

Lemma 4.11. If I ⊂ g is an ideal and κI is the Killing form of I, then κ(x, y) = κI(x, y) for all
x, y ∈ I.

Proof. Consider two adjoint representations: adg : g → gl(g) and adI : I → gl(I). If x ∈ I, then
adg(x) sends g to I, so the matrix looks like

adg(x) =

(
adI(x) ∗

0 0

)
(4.4)

so Tr(adg(x) adg(y)) = Tr(adI(x) adI(y)).

Proof of Theorem 4.10.
(i) → (ii):
Write g = I1 ⊕ · · · ⊕ Ik with Ii simple. Let Rj be the projection of Rad(g) onto g/Ij . Since Rj

is the quotient of a solvable Lie algebra Rad(g), Rj is solvable. Also, Rj is an ideal of Ij because
projection is surjective.

Since Ij is simple, every ideal of Ij is 0 or Ij . Also, since [Ij , Ij ] = Ij because Ij is simple, Ij is
not solvable,so Rj = 0 for all j. So Rad(g) = 0.

(ii) → (iii):
Set

g⊥ = {x ∈ g | κ(x, y) = 0∀y ∈ g}. (4.5)

We want to show that g⊥ is solvable, so if Rad(g) = 0, then κ is nondegenerate.
First, g⊥ is a subspace because it is the kernel of a bilinear form. It is an ideal because

κ([x, y], z) = κ(x, [y, z]), so if x ∈ g⊥ and y ∈ g, then for all z ∈ g,

κ([y, x], z) = −κ(x, [y, z]) = 0 (4.6)

so [y, z] ∈ g⊥. So [g, g⊥] ⊂ g⊥ so it is an ideal.
To show that g⊥ is solvable, we use Cartan’s trace Theorem 3.27. So apply this, consider

ad : g → gl(g) and consider the subalgebra h = ad(g⊥). By Cartan’s theorem, this is solvable
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because Tr(xy) = 0 for all x, y ∈ h. Moreover, h ∼= g⊥/Z(g), so g⊥/Z(g) and Z(g) are solvable, so
g⊥ is solvable by Lemma 4.8.

Thus g⊥ ⊂ Rad(g) = 0, so g⊥ = 0, so κ is nondegenerate.
(iii) → (i):
Suppose the Killing form is nondegenerate.

Claim 1: g has no nonzero abelian ideals.
If I ⊂ g is such an ideal, and x ∈ I, y ∈ g, then

ad(x) =

(
0 ∗
0 0

)
, , ad(y) =

(
∗ ∗
0 ∗

)
(4.7)

so Tr(ad(x) ad(y)) = 0, so x = 0 because κ is nondegenerate. This proves the claim.
To show that g is semisimple, we use induction on dim g. If g is simple, we are done. By Claim

1, it is not abelian. So let I be any proper, nonzero ideal and

J = {x ∈ g | κ(x, y) = 0∀y ∈ I} (4.8)

be the orthogonal complement of I.

Claim 2: g = I ⊕ J .
It suffices to show that I ∩ J = 0. We have that K = I ∩ J is an ideal of g, and it is solvable by

Cartan’s theorem 3.27. Then K(n) = 0 for some minimal n, so that K(n−1) ̸= 0. But then K(n−1)

is abelian, which is a contradiction to claim 1. So K = 0.
Thus g = I ⊕ J , and by inductive hypothesis, I and J are semisimple.

Lemma 4.12. Every ideal and quotient of a semisimple Lie algebra is semisimple.

Proof. Sheet 2.

Note that this Lemma is not true for subalgebras.

4.4 Complete Reducibility
Let g be a semisimple Lie algebra.

Theorem 4.13 (Weyl). Every representation of g is completely reducible.

Proof. The proof generalizes the sl2 case. See Sheet 2.

Lemma 4.14. If ρ : g → gl(V ) is faithful, then the trace form (·, ·)V is nondegenerate.

Proof. Cartan’s trace criterion Theorem 3.27 shows that

{x ∈ g | (x, y)V = 0∀y ∈ g} (4.9)

is solvable.
Since Rad(g) = 0, this shows that (·, ·)V is nondegenerate.
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Definition 4.15. Let ρ : g → gl(V ) be a faithful representation. Pick a basis x1, . . . , xm of g and
let y1, . . . , ym be the dual basis with respect to the trace form, so that (xi, yj)V = δij . Then the
Casimir element of ρ is

Ωρ =

m∑
i=1

ρ(xi)ρ(yi) ∈ End(V ) (4.10)

Remark 4.16. The Casimir element is independent of the choice of basis of g, but we won’t need
this fact.

Example 4.17. If g = sl2 and ρ : g → gl2 is the defining representation, then the Casimir element
is defined as in (2.21):

Ωρ = ρ(e)ρ(f) + ρ(f)ρ(e) +
1

2
ρ(h)2 ∈ gl(V ) = End(V ) (4.11)

Proposition 4.18. The Casimir element Ωρ : V → V is g-equivariant, and Tr(Ωρ) = dim g.

Proof. Trace follows from direct calculation.
To show Ωρ is g-equivariant, let x ∈ g and write

[x, xi] =
∑
j

aijxj , [x, yi] =
∑
j

bijyj . (4.12)

Since ([x, xi], yj)V = −(xi, [x, yj ])V by Lemma 4.6, we have that aij = −bji. Using that [A,BC] =
[A,B]C +B[A,C] for all A,B,C ∈ End(V ), we have that [ρ(x),Ωρ] = 0.

4.5 Jordan Decomposition
Let V be a vector space. Then an element x ∈ gl(V ) = End(V ) is semisimple if it is diagonalizable,
so x has a basis of eigenvectors. x is nilpotent if xn = 0 for some n ≥ 1. Equivalently, x has all
eigenvalues 0. So if x is both semisimple and nilpotent, then x = 0.

Proposition 4.19 (Concrete Jordan decomposition). Let x ∈ gl(V ). Then

(i) There are unique xs, xn ∈ gl(V ) such that xs is semisimple xn is nilpotent, x = xs + xn, and
[xs, xn] = 0. This is the Jordan decomposition of x.

(ii) Moreover, there exist polynomials ps, pn ∈ C[t] with zero constant term such that xs = ps(x),
and xn = pn(x). These are not unique, and depend on x.

(iii) If y ∈ gl(V ) commutes with x, then it also commutes with xs, xn.

If U,W ⊂ V are subspaces such that x(U) ⊂W , then xs(U) ⊂W and xn(U) ⊂W .

Proof. (ii) → (iii): If y commutes with x, it commutes with p(x).
The other parts follows from routine Linear Algebra, see Humphreys §4.2

Example 4.20. If V = C2, x =

[
λ 1
0 λ

]
then x =

[
λ 0
0 λ

]
and x =

[
0 1
0 0

]
.

If λ ̸= 0, then ps(t) = 2t− λ−1t2 and pn(t) = λ−1t2 − t works.
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The Jordan decomposition interacts nicely with semisimple subalgebras, as the next theorem
shows.

Theorem 4.21. Let g ⊂ gl(V ) be a semisimple subalgebra and x ∈ g with Jordan decomposition
x = xs + xn in gl(V ). Then xs, xn ∈ g.

Proof. This is just linear algebra, see Humphreys §6.4.

Remark 4.22. This is not true for an arbitrary subalgebra of gl(V ). For instance, take the span
of x ∈ gl(V ) such that x ̸= xs, xn.

Now, if g is a semisimple Lie algebra, then ad : g → gl(g) is injective (the adjoint representation
is faithful) because the center is trivial. So by the above theorem, ad(x) = ad(xs) + ad(xn) is the
Jordan decomposition of ad(x) ∈ gl(g) for some unique (because of faithfulness) elements xs, xn ∈ g.

In other words, there exists a unique xs, xn ∈ g such that ad(x) = ad(xs)+ad(xn) is the Jordan
decomposition of ad(x). Since ad is a representation, we have that x = xs + xn, this is the abstract
Jordan decomposition of x.

If g is a semisimple subalgebra of gl(V ), there are two possible Jordan decompositions of x ∈ g:
the concrete one from gl(V ), and the abstract one from the adjoint representation in gl(g).

Lemma 4.23. If x ∈ gl(V ) has concrete Jordan decomposition x = xs + xn. Then ad(x) =
ad(xs) + ad(xn) is the abstract Jordan decomposition of ad(x) in gl(gl(V )).

Proof. We need to check that

(i) ad(xs) is semisimple.

(ii) ad(xn) is nilpotent.

(iii) [ad(xs), ad(xn)] = 0.

Since the abstract Jordan decomposition is unique, this shows that the concrete Jordan decompo-
sition aligns with the abstract one.

(i) In a basis of eigenvectors for xs, the elementary matrices in gl(V ) form a basis of eigenvectors
for ad(xs), so ad(xs) is semisimple.

(ii) By Lemma 3.23, if xn ∈ gl(V ) is nilpotent then ad(xn) ∈ gl(gl(V )) is nilpotent.
(iii) Since ad is a representation, we have that [ad(xs), ad(xn)] = ad([xs, xn]) = 0.

Corollary 4.24. If g ⊂ gl(V ) is a semisimple subalgebra and x ∈ g, then the concrete and abstract
Jordan decompositions coincide.

Proof. There’s a proof of this in my notes but this appears to be immediate from the uniqueness
of the abstract Jordan decomposition?

From now on, we will simply refer to the Jordan decomposition of an element of a semisimple
Lie algebra, since we have shown that the abstract and the concrete Jordan decompositions are the
same. In the same way we can show the following.

Proposition 4.25. If ρ : g → gl(V ) is a representation of a semisimple Lie algebra g and x ∈ g,
then ρ(x) = ρ(xs) + ρ(xn) is the Jordan decomposition of ρ(x), where x = xs + xn is the Jordan
decomposition of x.
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Proof. Exercise. This should follows from the exact same argument as above.

If g is semisimple, an element x ∈ g is semisimple if x = xs, so that ad(x) is a semisimple
endomorphism, and it is nilpotent if x = xn, so that ad(x) is nilpotent. So if x ∈ g is diagonalizable,
then ρ(x) is diagonalizable for all representations ρ.

Example 4.26. h ∈ sl2(C) is diagonalizable, so ρ(h) is diagonalizable for any representation ρ.

5 Root spaces: a new decomposition
In this section we introduce the notion of a root of a semisimple Lie algebra g. These are essential to
the study of Lie algebras, and arise from the simultaneous diagonalization of a Cartan subalgebra,
as described below.

5.1 The Cartan subalgebra
Let g be a semisimple Lie algebra.

Definition 5.1. A subalgebra t ⊂ g is toral if t is abelian and for all x ∈ t, x is semisimple in g.
A toral subalgebra not contained in a bigger one is called a maximal toral subalgebra, or Cartan

subalgebra (CSA).
We will sometimes refer to a toral subalgebra as a torus, and a CSA as a maximal torus.

Example 5.2. The set of diagonal matrices in sln(C), sp2ℓ(C), son(C) are CSAs (Sheet 2).

Remark 5.3. We chose the particular matrix J when defining son(C) and sp2ℓ(C) so that the
diagonal matrices are CSAs.

Remark 5.4. Later, we will see that CSAs are essentially unique, up to automorphism of g (all
maximal tori are conjugate).

Remark 5.5. The key to the classification of semisimple Lie algebras is to study the action of t
on g via the adjoint representation, because t is diagonalizable.

Lemma 5.6. If h is an abelian Lie algebra and ρ : h → gl(V ) is a representation such that ρ(x) is
semisimple for all x ∈ h, then there exists λ1, . . . , λh ∈ h∗ = Hom(h,C) such that

V =

m⊕
i=1

Vλi
(5.1)

where
Vλi = {v ∈ V | xv = λi(x)v∀x ∈ h (5.2)

Proof. Choose a basis t1, . . . , tm of h. Then ρ(t1), . . . , ρ(tm) are commuting semisimple elements
of gl(V ). Any λ ∈ h∗ is determined by λ(t1), . . . , λ(tn) ∈ C. So the lemma follows from the fact
that {ρ(t1), . . . , ρ(tn)} can be simultaneously diagonalized because the elements are commuting and
semisimple. See here.
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5.2 The root space decomposition
Let g be a semisimple Lie algebra and t ⊂ g a CSA, so a maximal abelian subalgebra of semisimple
elements.

Consider the restriction of the adjoint representation ad : g → gl(g) to t. This is a represen-
tation of t. Since t is made up of semisimple elements, the image of this representation consists
of semisimple elements. By Lemma 5.6, we can simultaneously diagonalize, so there exists S ⊂ t∗

such that
g =

⊕
λ∈S

gλ, (5.3)

where
gλ = {x ∈ g | [t, x] = λ(t)x ∀t ∈ t} (5.4)

We partition S as S = {0} ⊔ Φ, so that

g = g0 ⊕
⊕
α∈Φ

gα. (5.5)

This is called the root space decomposition of g, and the elements of Φ are called roots.

Example 5.7. Let g = sl2 with basis {e, h, f}. Then t = Span{h} is a CSA (Sheet 2), so t∗ =
Span{h∗}, where h∗ : h 7→ 1. Then [h, e] = 2e and [h, f ] = −2f , so Φ = {±2h∗} and

sl2 = g0 ⊕ g2h∗ ⊕ g−2h∗ (5.6)

where g0 is the span of h, g2h∗ is the span of e, and g−2h∗ is the span of f .

Example 5.8. Let g = sl3. Then the space diagonal matrices with zero trace is a CSA, which we
denote by t. Letting e∗i ∈ t∗ be given by

ei

t1 0 0
0 t2 0
0 0 t3

 = ti, (5.7)

then t∗ is spanned by {e∗i } with relations e∗1 + e∗2 + e∗3 = 0. We can compute thatt1 0 0
0 t2 0
0 0 t3

 , Eij

 = (ti − tj)Eij (5.8)

so that
Φ = {e∗i − e∗j | 1 ≤ i ̸= j ≤ 3} (5.9)

so
g = g0 + ge1−e2 + ge1−e3 + ge2−e3 + ge2−e1 + ge3−e1 + ge3−e2 (5.10)

with the root space gei−ej spanned by the matrix Eij . Note that we are somewhat “lucky” that our
simultaneous diagonalization of sl3 gives a basis of elementary matrices.

It is not a coincidence that all the nonzero root spaces are one-dimensional, however, as this is
always the case, as we shall see.
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5.3 First properties of roots
Lemma 5.9. If α, β ∈ t∗, then [gα, gβ ] ⊂ gα+β.

Proof. Direct calculation. Use Jacobi identity.

The next lemma is very important! Using the next lemma and the its nondegeneracy, we are
able to get a handle on the Killing form, which has been a bit mysterious up to this point.

Lemma 5.10. If α, β ∈ t∗ are such that α+ β ̸= 0, then gα ⊥ gβ under the Killing form.

Proof. There exists t ∈ t such that (α+ β)(t) ̸= 0. If x ∈ gα, y ∈ gβ , then

κ([x, t], y) = α(t)κ(x, y)

= −κ(x, [t, y])
= −β(t)κ(x, y) (5.11)

so (α+ β)(t)κ(x, y) = 0 so κ(x, y) = 0.

Corollary 5.11. The restriction of κ to g0 is nondegenerate.

Proof. We have that g0 ⊥ gα for all α ∈ Φ since α ̸= 0, so if x ∈ g0 satisfies κ(x, y) = 0 for all
y ∈ g0, then κ(x, y) = 0 for all y ∈ g0⊕

⊕
α∈Φ gα = g, so then x = 0 because κ is nondegenerate.

5.4 The zero weight space
We have that the zero weight space

g0 = {x ∈ g | [t, x] = 0∀t ∈ t} (5.12)

is the centralizer of t in g. Since t is abelian, we have that t ⊂ g0.

Proposition 5.12. We have that t = g0.

Proof. Omitted, see Humphreys §8.2.

Combining this with Corollary 5.11, we find that κ|t×t : t× t → C is nondegenerate. Therefore
the map t → t∗ given by x 7→ κ(x, ·) is an isomorphism.

Definition 5.13. If λ ∈ t∗, let tλ be the unique element of t such that κ(tλ, x) = λ(x) for all x ∈ t.

5.5 Finding sl2s in g

We will show that for every α ∈ Φ, we can find a subalgebra mα ⊂ g isomorphic to sl2 such that
gα ⊂ mα.

Lemma 5.14. We have that

(i) Φ spans t∗.

(ii) If α ∈ Φ, then −α ∈ Φ.
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Proof. (i) If Φ spans t∗, then there is no nonzero t ∈ t vanishing at all α ∈ Φ. Let t ∈ t be an element
such that α(t) = 0 for all α ∈ Φ. It suffices to show that t = 0. We know that [t, x] = α(t)x = 0 for
all x ∈ gα, α ∈ Φ. Since [t, x] = 0 for all x ∈ g, we have that t ∈ Z(g) = 0 since g is semisimple.

(ii) Since gα ⊥ gβ if α + β ̸= 0, we have that gα is perpendicular to all the root spaces with
α+ λ ̸= 0. But since the Killing form is nondegenerate, we must have that −α ∈ Φ.

Proposition 5.15. We have that

(i) If x ∈ gα and y ∈ g−α, then [x, y] = tακ(x, y).

(ii) [gα, g−α] is one-dimensional.

(iii) α(tα) = κ(tα, tα) ̸= 0.

Proof. (i)The identity is equivalent to κ([x, y], t) = α(t)κ(x, y) for all t ∈ t, as then [x, y]/κ(x, y) is
the unique tα ∈ t such that κ(tα, t) = α(t).

We have that
κ([x, y], t) = κ(x, [y, t]) = κ(x, α(t)y) = α(t)κ(x, y) (5.13)

as desired.
(ii) By (i), it suffices to show that κ(x, y) ̸= 0 for some x ∈ gα, y ∈ g−α, as then we have that

[gα, g−α] is spanned by tακ(x, y) ̸= 0.
For every x ∈ gα \ {0}, there exists y ∈ g−α such that κ(x, y) ̸= 0 as otherwise κ would be

degenerate.
(iii) Let x ∈ gα, y ∈ gα be elements such that κ(x, y) ̸= 0 (these exist by (ii)). After scaling, we

may assume that κ(x, y) = 1, so then [x, y] = tα, and [tα, x] = α(tα)x and [tα, y] = −α(tα)y. So

h = Span{x, tα, y} (5.14)

is a subalgebra. Suppose for the sake of contradiction that α(tα) = 0. Then h is solvable as g(2) = 0.
By Lie’s theorem, there is basis of g such that ad : h → gl(g) lands in the space of upper

triangular matrices. So then tα ∈ [h, h] has the property that ad(tα) ∈ gl(g) is strictly upper
triangular, so it is nilpotent. Since it is also semisimple, we have that ad(tα) = 0, so tα = 0, which
is a contradiction.

We are ready to construct our sl2 triple mα. For every α ∈ Φ, define

hα :=
2tα

κ(tα, tα)
∈ t. (5.15)

This will serve the roll of h ∈ sl2 in our sl2 triple.

Proposition 5.16. If α ∈ Φ and eα ∈ gα is any nonzero element, then there exists fα ∈ g−α such
that (eα, hα, fα) is a triple satisfying the sl2 relations:

[hα, eα] = 2eα, [hα, fα] = −2fα, [eα, fα] = hα. (5.16)

Proof. Since the Killing form is nondegenerate and gα ⊥ gβ for α + β ̸= 0, there exists fα ∈ g−α

such that κ(eα, fα) = 2/κ(tα, tα) after rescaling. By Proposition 5.15 (i), we have that [eα, fα] =
κ(eα, fα)tα = hα. We also have that

[hα, eα] = α(hα)eα = 2eα (5.17)
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since
α(hα) = α

(
2tα

κ(tα, tα)

)
=

2α(tα)

κ(tα, tα)
= 2 (5.18)

since α(tα) = κ(tα, tα) by Proposition 5.15 (iii). Similarly, [hα, fα] = −2fα.

Thus if (eα, hα, fα) satisfies the conclusions of the Proposition, letting mα = Span(eα, hα, fα),
we have that mα is a subalgebra of g isomorphic to sl2. We call (eα, hα, fα) a sl2 triple. Thus g is
made up of a bunch of sl2s glued together in a nice way.

5.6 Root strings
Proposition 5.17. If α ∈ Φ, then dim gα = 1. Moreover, if c ∈ C, then cα ∈ Φ if and only if
c = ±1.

Proof. Choose an sl2 triple (eα, hα, fα) giving rise to mα ⊂ g. Let

V = t⊕
⊕
c∈C

gcα (5.19)

which is a subspace of g. In fact, V is stable under the adjoint action of mα, so that [mα, V ] ⊂ V .
This follows from [gα, gβ ] ⊂ gα+β . So V is a representation of mα

∼= sl2 under the adjoint action.
The weights of V (recall how we defined the weights of a sl2 representation in Section 2.4 are the
eigenvalues of hα. But since hα ∈ t, these are easy to describe. On t, the weights are 0 with
multiplicity dim t.

On gcα, the weights are (cα)(hα) = cα(hα) = 2c with multiplicity dim gcα. Thus 2c ∈ Z if
cα ∈ Φ, as all the weights are integers. Moreover, U = t + mα ⊂ V is an mα-subrepresentation,
because [t,mα] ⊂ mα, and mα is a subalgebra.

By complete reducibility, there exists W ⊂ V such that V = U ⊕W . What are the weights of
W? 0 is not a weight of W , since the 0 weight space of V is contained in U . So by the representation
theory of sl2, W has no even weights. So 2α /∈ Φ, because then 4 would be a weight of W (2 is a V
associated with gα). So 2α /∈ Φ for all α ∈ Φ. Then α/2 /∈ Φ for all α ∈ Φ, because then we would
have 2(α/2) = α /∈ Φ. Since gα/2 has weight 1 W has no weight 1, so it has no odd weights. Thus
W = 0. So then V = t⊕ gα ⊕ g−α = t⊕ Span(eα, fα).

Corollary 5.18. If α ∈ Φ, then mα = gα ⊕ g−α ⊕ [gα,−gα].

Proof. We have that gα = Span eα, g−α = Span fα, and [gα, g−α] = Spanhα.

Let α, β ∈ Φ, and assume β ̸= ±α. Let

V =
⊕
k∈Z

gβ+kα (5.20)

This is preserved under the adjoint action of mα since [gα, gβ ] ⊂ gα+β .
Thus V is a representation of mα

∼= sl2. What are the weights of V ? If x ∈ gβ+kα, then

[hα, x] = (β + kα)(hα)x (5.21)

On gβ+kα, hα has weight

(β + kα)(hα) = β(hα) + kαh(α) = β(hα) + 2k (5.22)
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with multiplicity 1, since gβ+kα has dimension 1 as β + kα ̸= 0.
So V has roots of the same parity and multiplicity 1, so V is irreducible. Then V ∼= V (n) for

some n ∈ Z≥0, so it has weights {n, n − 2, . . . ,−n}. The set {β + kα | k ∈ Z} ∩ Φ is called the
α-root string of β.

Proposition 5.19. (i) If α, β are roots with α ̸= ±β. Let r ≥ 0 be the largest integers such that
β − rα ∈ Φ and let q ≥ 0 be the largest integer such that β + qα ∈ Φ. Then

{β + kα | k ∈ Z} ∩ Φ = {β + kα | −r ≤ k ≤ q} (5.23)

and β(hα) = r − q ∈ Z.

(ii) β − β(hα)α ∈ Φ.

(iii) If α+ β ∈ Φ, then [gα, gβ ] = gα+β.

Proof. We use that V ∼= V (n) where V is defined as in (5.20). Using this fact and sl2-theory gives
the result.

(i) We have that n = (β + qα)(hα) and −n = (β − rα)(hα) so β(hα) = r − q.
Also, since the weights of V include n, −n, they must include the weights “in between”.
(ii) Note that −r ≤ −β(hα) ≤ q, so we can conclude this by part (i).
(iii) This follows from the fact that if λ, λ+2 are weights of an sl2-representation, then e : Vλ →

Vλ+2 is surjective. So gα acting on gβ gives gα+β .

5.7 Φ is a root system
The above results show that if α, β ∈ Φ, then β(hα) ∈ Z, and β−β(hα)α ∈ Φ, and if β = ±α, then
β(hα) = ±2. These conditions are enough to show that Φ is a root system, which is essentially a
very nice collection of real vectors.

Recall that κ : t× t → C is nondegenerate. So t → t∗, x→ κ(x, ·) is an isomorphism with inverse
λ 7→ tλ. We can use this to define a dual pairing on t∗ by

(·, ·) : t∗ × t∗ → C
(λ, µ) 7→ κ(tλ, tµ) (5.24)

Because κ is nondegenerate, this is a nondegenerate pairing.
Now, since Φ spans t∗, there is a basis of roots α1, . . . , αℓ.

Lemma 5.20. If β ∈ Φ, then β =
∑ℓ

i=1 ciαi with ci ∈ Q for all i.

Proof. We have that β =
∑ℓ

i=1 ciαi with ci ∈ C. For each j, calculating (αj , β) and scaling gives

2(αj , β)

(αj , αj)
=

ℓ∑
i=1

ci
2(αi, αj)

(αj , αj)
(5.25)

This is a system of linear equations in c1, . . . , cℓ. Since the form is nondegenerate, ((αi, αj))ij is
invertible, so

(
2(αi,αj)
(αj ,αj)

)
ij

is also invertible.
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Moreover, if α, β ∈ Φ, then

2(β, α)

(α, α)
=

2κ(tβ , tα)

κ(tα, tα)
= κ(tβ , hα) = β(hα) ∈ Z (5.26)

so the coefficients of the matrix are in Q, so the solution (ci) is also in Q.

Now, let E = RΦ ⊂ t∗ be the R-span of Φ in t∗. By the lemma, dimRE = dimCt∗ since E has
an R-basis {α1, . . . , αℓ}. The next theorem shows that the collection Φ ⊂ E satisfies the axioms of
a root system.

Theorem 5.21. (i) The restriction of (·, ·) to E × E is real valued and positive definite.

(ii) If α ∈ Φ and c ∈ R, then cα ∈ Φ if and only if c = ±1.

(iii) If α, β ∈ Φ, then β − 2(β,α)
(α,α) α ∈ Φ.

(iv) If α, β ∈ Φ, then 2(β,α)
(α,α) ∈ Z.

Proof. (ii), (iii), (iv) are done by Propositions 5.17 and 5.19 since 2(β,α)
(α,α) = β(hα).

(i): We show that (α, β) ∈ Q for all α, β ∈ Φ. If λ, µ ∈ t∗, then (λ, µ) = κ(tλ, tµ) =
Tr(ad(tλ) ad(tµ)) which is the sum of the eigenvalues of ad(tλ) ad(tµ). Now, ad(tλ) has eigenvalue
0 on t, and α(tλ) on gα. So

(λ, µ) =
∑
α∈Φ

α(tλ)α(tµ) =
∑
α∈Φ

(λ, α)(µ, α) (5.27)

since (λ, α) = κ(tλ, tα) = α(tλ). We plug in λ = µ = β ∈ Φ \ {0} to get (β, β) =
∑

α∈Φ(α, β)
2 so

1

(β, β)
=

1

(β, β)2

∑
α∈Φ

1

4
α(hβ)

2(β, β)2 =
∑
α∈Φ

1

4
α(hβ)

2 ∈ Q>0 (5.28)

by (iv) and the non degeneracy of the form, which gives positive definiteness
Also, (α, β) = (β, β) · (α,β)

(β,β) = (β, β) = (β, β) 12α(hβ) ∈ Q.

6 Root spaces: the abstract strikes back
We have shown that Φ is a root system. Root systems can be classified, and the root system of a
semisimple Lie algebra determines it. Thus to classify semisimple Lie algebras, we can classify root
systems in the abstract, which we now do.

Definition 6.1. A Euclidean space (E, (·, ·)) is a real vector space E and a positive definite bilinear
form (an inner product).

If λ, α ∈ E and α ̸= 0, define

⟨λ, α∨⟩ = 2(λ, α)

(α, α)
(6.1)

27



and the reflection map

wα : E → E

λ 7→ λ− ⟨λ, α∨⟩α (6.2)

This is the reflection along the hyperplane

Hα := {x ∈ E | (x, α) = 0} (6.3)

It sends α 7→ −α, and is the identity on Hα, so it is a reflection. We have that w2
α = 1.

Definition 6.2. A root system is a finite subset Φ of a Euclidean space E such that

(R1) Φ spans E and 0 /∈ Φ.

(R2) If α ∈ Φ and c ∈ R, then cα ∈ Φ if and only if cα = ±1.

(R3) For all α ∈ Φ, wα(Φ) = Φ (reflection preserves roots).

(R4) For all α, β ∈ Φ, ⟨β, α∨⟩ = 2⟨β,α⟩
⟨α,α⟩ ∈ Z. So the reflection of β onto the line spanned by α is an

integer of half-integer multiple of α.

The rank of Φ is dimRE.

An isomorphism of root systems Φ,Φ′ is an isomorphism of vector spaces f : E → E′ such that
f(Φ) = Φ′ and ⟨f(β), f(α)∨⟩ = ⟨β, α∨⟩ for all α, β ∈ Φ.

6.1 Examples of root systems
If t is a CSA of a semisimple root system g, then Φ = Φ(g, t) ⊂ E = RΦ is a root system, as we
have shown in the previous section.

Example 6.3. Let E = R with the standard inner product, and Φ = {±1} ⊂ E. If α = ±1 ∈ E,
then ⟨α, α∨⟩ = 2 and ⟨−α, α∨⟩ = −2. This is the A1 root system.

Example 6.4. The root systems of rank 2 are given in Figure 1. It is easy to verify that they
satisfy the root system axioms.

Definition 6.5. The Weyl group, denoted by W (Φ) or just W , is the subgroup of GL(E) generated
by {wα | α ∈ Φ}.

Lemma 6.6. W (Φ) is finite.

Proof. Since Φ spans E and wα preserves Φ, W (Φ) acts faithfully on Φ, so it permutes the finite
number of roots, so it is finite.

Example 6.7. 1. If Φ = A1, then W (Φ) = {1, wα} ∼= C2, because wα = w−α.

2. We have that W (A1 ×A1) ∼= C2 × C2.

3. W (A2) contains r = WαWβ . r sends α → β and β → −(α + β) so r is rotation by 120◦, so
r3 = 1. So W (A2) is generated by s = wα and r = wαwβ so W (A2) ∼= D3 is the dihedral
group.
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Figure 1: The root systems of rank 2.

4. W (B2) ∼= D4, W (G2) ∼= D6.

5. Let n ≥ 1 and
E = {(xi) ⊆ Rn+1 |

∑
xi

= 0} (6.4)

with the standard inner product. Let

Φ = {ei − ej | 1 ≤ i ̸= j ≤ n+ 1} (6.5)

where ei is the standard basis for Rn+1. This is a root system, called the root system of type
An. If α = ei − ej , then wα swaps the i and j coordinates. Moreover, (α, α) = 2 for all
α ∈ Φ, so ⟨β, α∨⟩ = 2(β,α)

(α,α) = (β, α) ∈ Z. Since transpositions generate Sn+1, we have that
W (An) ∼= Sn+1.

6.2 Irreducible root systems
Definition 6.8. A root system (Φ, E) is reducible if there is a partition Φ = Φ1 ⊔ Φ2 such that
Φ1,Φ2 ̸= ∅ and Φ1 ⊥ Φ2.

If Φ is not reducible, it is irreducible.

Example 6.9. A1 ×A1 is reducible, A2, B2, G2 are irreducible.

If Φ is reducible, so that Φ = Φ1 ⊔ Φ2 with Φ1 ⊥ Φ2, let Ei = SpanR Φi. Then E = E1 ⊕ E2

with E1 ⊥ E2 and Φi is a root system in Ei.
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6.3 Angles
Let (Φ, E) be a root system. The integrality condition R4 turns out to be very restrictive.

Lemma 6.10. If α, β ∈ Φ with β ̸= ±α, then ⟨β, α∨⟩ · ⟨α, β∨⟩ ∈ {0, 1, 2, 3}l

Proof. If v ∈ E then ||v|| = (v, v)1/2. If θ is the angle between α, β, then (α, β) = (cos θ)||α||||β||.
So

⟨β, α∨⟩ · ⟨α, β∨⟩ = 4⟨α, β⟩2

⟨α, α⟩⟨β, β⟩
= 4 cos2 θ ∈ Z (6.6)

But 0 ≤ | cos θ| < 1, so 4 cos2 θ = {0, 1, 2, 3}.

Now, let α, β ∈ Φ be roots such that (β, β) ≥ (α, α) and β ̸= ±α. Then we can list all the
options for (β, α∨):

(β, α∨) (α, β∨) (β,β)
(α,α) θ

0 0 ? π/2
1 1 1 π/3
-1 -1 1 2π/3
2 1 2 π/4
-2 -1 2 3π/4
3 1 3 π/6
-3 -1 3 5π/6

Using this, we can classify all rank 2 root systems (exercise), and see that they are the ones given
in Figure 1.

Corollary 6.11. If α, β ∈ Φ with β ̸= ±α, and (α, β) < 0, then α+ β ∈ Φ.

Proof. WLOG assume (β, β) ≥ (α, α). Then (α, β∨) = −1 by the table above so wβ(α) = α+ β ∈
Φ.

Corollary 6.12. If Φ is irreducible, then {(α, α) | α ∈ Φ} has size at most 2.

Proof. Exercise.

Corollary 6.13. Root strings have size at most 4.

Proof. The root string has length (β, α∨) + 1, which we know is at most 4 by the table.

6.4 Root bases
We want to express roots as positive integer linear combinations of a set of “basis roots”.

Definition 6.14. ∆ ⊂ Φ is a root basis if

(i) ∆ is an R-basis of E.

(ii) Writing ∆ = {α1, . . . , αℓ}, then for every α ∈ Φ we can write

α =

ℓ∑
i=1

ciαi (6.7)

where ci ∈ Z and either ci ≥ 0 for all i for ci ≤ 0 for all i.
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We call the elements of ∆ simple roots and the elements α ∈ Φ with ci ≥ 0 are called positive roots,
denoted by Φ+ ⊂ Φ.

Example 6.15. In A2, {α, β} is a root basis, and Φ+ = {α, β, α+ β}.
More generally, in An, we have a root basis ∆ = {e1 − e2, . . . , en − en+1} with positive roots

{ei − ej | i < j}.

If α ∈ Φ, let Hα = {x ∈ E | (x, α) = 0} be the hyperplane perpendicular to α. By dimensional-
ity, E \

⋃
α∈ΦHα ̸= ∅. Take γ ∈ E \

⋃
α∈ΦHα and define

Φ+
γ := {α ∈ Φ | (α, γ) > 0}, Φ−

γ := {α ∈ Φ | (α, γ) < 0}. (6.8)

Then Φ = Φ+
γ ⊔Φ−

γ . We say that an element α ∈ Φ+
γ is decomposable if α = β1+β2 with β1, β2 ∈ Φ+

γ

and it is indecomposable otherwise.
Let ∆γ be the set of indecomposable elements of Φ+

γ .

Theorem 6.16. ∆γ is a root basis with positive roots Φ+
γ . Moreover, every root basis is of the

form ∆γ for some γ ∈ E \
⋃

α∈ΦHα.

Proof. We prove 3 claims:

Claim 1. If ∆γ = {α1, . . . , αℓ} then every element of Φ+
γ is of the form

∑
ciαi with ci ∈ Z≥0.

We show this by contradiction. Let α ∈ Φ+
γ be a counter example with (α, γ) minimal. Then α is

decomposable, so α = β1+β2. But (α, γ) = (β1, γ)+(β2, γ) so (β1, γ) < (α, γ) and (β2, γ) < (α, γ),
so β1 =

∑
ciαi and β2 =

∑
diαi with ci, di ≥ 0 so α =

∑
(ci + di)αi, which is a contradiction as

ci + di ≥ 0

Claim 2. If α, β ∈ ∆γ and α ̸= β, then (α, β) ≤ 0.
Indeed, recall that if (α, β) ∈ Φ with α ̸= ±β and (α, β) < 0, then α + β ∈ Φ. Therefore if

(α, β) > 0, then α − β ∈ Φ, so α = β + (α − β) is decomposable after possibly switching α and β
so that (α− β, γ) > 0. Thus (α, β) ≤ 0.

Claim 3. Elements of ∆γ are linearly independent.
We’ll show that if S = {λ1, . . . , λn} ⊂ E has (λi, γ) > 0, and (λi, λj) ≤ 0 for all i ̸= j, then S

consists of linearly independent elements. If
∑
ciλi = 0, we can write

e =
∑
i≤m

ciλi =
∑
i>m

ciλi (6.9)

with ci ≥ 0 (split the negative and postive cis and relabel). Then

(e, e) =
∑
i≤m

∑
j>m

cicj(λi, λj) ≤ 0 (6.10)

so e = 0.
Then (e, γ) =

∑
i≤m ci(λi, γ) =

∑
i>m ci(λi, γ) ≥ 0 so ci = 0 for all i so S is a linearly

independent set.
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Proof of main claim. Now we are ready to prove the theorem and show that ∆γ is a root basis.
Since Φ spans E, Φ+

γ spans E, and by Claim 1, ∆γ spans E. By Claim 3, ∆γ is a basis.
By Claim 1, and the fact that Φ = Φ+

γ ⊔ Φ−
γ , ∆γ is a root basis.

Now, if ∆ ⊂ Φ is any root basis, we want to choose a vector γ ∈ E such that (γ, α) > 0 for all
α ∈ ∆. Let v1, . . . , vn be the dual basis with respect to (·, ·) and take γ = v1 + · · · vn. Then for
α =

∑
ciαi ∈ Φ+, we have that (γ, α) =

∑
ci > 0, so Φ+ ⊆ Φ+

γ . Since both sets have the same
cardinality, we have that Φ+ = Φ+

γ .
So we just need to show that every element of ∆ is indecomposable as an element of Φ+

γ . If α ∈ ∆
is of the form α = β1+β2 with β1, β2 ∈ Φ+, then βi =

∑
cijαj with cij ≥ 0. So α =

∑
j(c1j+c2j)αj .

But since α ∈ ∆ and ∆ is a root basis, we must have that βi = 0 for some i, so ∆ ⊂ ∆γ . Since
they have the same cardinality, we have that ∆ = ∆γ .

The connected components of E \
⋃

α∈PhiHα are called Weyl chambers.

Lemma 6.17. If γ, γ′ ∈ E \
⋃

α∈PhiHα then ∆γ = ∆γ′ if and only if γ, γ′ lie in the same Weyl
chamber.

Proof. γ, γ′ lie in the same Weyl chamber if and only if (α, γ) and (α, γ′) have the same sign for all
α ∈ Φ, if and only if Φ+

γ = Φ+
γ′ , if and only if ∆γ = ∆γ′ .

Thus the map γ → ∆γ defines a bijection between Weyl chambers and root bases, and its inverse
is denoted by

∆ → φ(∆) = {x ∈ E | (x, α) > 0∀α ∈ ∆}. (6.11)

φ(∆) is called the fundamental Weyl chamber attached to ∆.

Definition 6.18. If ∆ = {α1, . . . , αℓ} is a root basis α =
∑
ciαi ∈ Φ, the root height of α is defined

as
∑
ci.

Height can be large, An has max height n.

Lemma 6.19. If ∆ = {α1, . . . , αℓ} is a root basis and α ∈ Φ is positive but not simple, then
α− αi ∈ Φ for some αi ∈ ∆.

Proof. If (α, αi) > 0 for some i, then α− αi ∈ Φ so we are done.
If (α, αi) ≤ 0 for all i, then by Claim 2, ∆∪{α} would consist of linearly independent elements,

and this is a contradiction because ∆ is a basis and α /∈ ∆ because α is not simple.

By induction on the root height, we obtain the following corollary, which says that for any root
α, we can go from 0 to α via a “path through simple roots in Φ”.

Corollary 6.20. If α ∈ Φ+, there’s a sequence β1, . . . , βn of simple roots (not necessarily distinct)
such that β1 + · · ·+ βn = α and β1 + · · ·+ βk ∈ Φ for all k.

6.5 Weyl group and root bases
Let (Φ, E) be a root system with Weyl group W . If ∆ ⊂ Φ is a root basis, then so is w(∆) for all
w ∈W . Moreover, W preserves the set of root hyperplanes {Hα}α∈Φso W acts on the set of Weyl
chambers. These actions are compatible, so that w(φ(∆)) = φ(w(∆)).
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Theorem 6.21. (i) W acts simply on the set of root bases, so that if ∆,∆′ are root bases, then
there exists a unique w ∈W such that w(∆) = ∆′.

(ii) If ∆ ⊂ Φ is a fixed root basis and α ∈ Φ, then there exists w ∈W such that w(α) ⊂ ∆.

(iii) W is generated by simple reflections {wαi
| αi ∈ ∆} for any fixed ∆.

We will prove some lemmas before we prove this. In what follows, fix a root basis ∆ =
{α1, . . . , αℓ} ⊂ Φ.

Lemma 6.22. If αi ∈ ∆, then wαi
preserves Φ+ \ {αi}.

Proof. See Sheet 3.

So wαi maps αi → −αi, and maps all the other elements of Φ+ to some other element of Φ+.

Lemma 6.23. Set
ρ =

1

2

∑
α∈Φ+

α ∈ E. (6.12)

Then wαi(ρ) = ρ− αi for all αi ∈ ∆.

Proof. This follows from Lemma 6.22.

Proof of Theorem 6.21. Let W ′ ⊂ W be the subgroup generated by simple reflections wα for all
α ∈ ∆.

Claim 1. W ′ acts transitively on root bases.
Indeed, it suffices to show W ′ acts transitively on Weyl chambers. Let γ ∈ E \

⋃
α∈PhiHα.

Choose w ∈ W ′ such that (w(γ), ρ) is maximal among the elements of W ′. By considering
(wαi

w(γ), ρ) < (w(γ), ρ) we get that (w(γ), αi) ≥ 0. Since γ /∈ Hα, (w(γ), αi) > 0 so w(γ) ∈ ∆.
Details on the example sheet.

Claim 2. For all α ∈ Φ, there exists a w ∈W ′ such that w(α) ∈ ∆.
By Claim 1, it suffices to show α lies in some root basis of Φ. Take γ ∈ E \

⋃
α∈PhiHα such

that (γ, α) > 0 and |(γ, β)| > (γ, α) for all β ∈ Φ \ {±α} (we need to show why such a γ exists).
Then α ∈ ∆γ . We can choose γ just off the perpendicular to α.

Claim 3. W ′ = W . Indeed, let α ∈ Φ and let w ∈ W ′ be such that w(α) ∈ ∆. Then ww(α) =
w · · ·wα · w−1 by basic geometry, so wα = w−1 · ww(α) · w ∈W ′.

It remains to show that the stabilizer of ∆ in W is trivial, this is done in Sheet 3.

6.6 The Cartan matrix
Let Φ be a root system with root basis ∆ = {α1, . . . , αℓ}.

Definition 6.24. The integers (αi, α
∨
j ) are called Cartan integers and C = ((αi, α

∨
j ))ij is the

Cartan matrix.

Example 6.25. 1. For A1, C = (2).
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2. For A2, C =

(
2 −1
−1 2

)

3. For A1 ×A1, C =

(
2 0
0 2

)

4. For B2, C =

(
2 −1
−2 2

)

5. For G2, C =

(
2 −1
−3 2

)
Proposition 6.26. If (Φ′, E′) is another root system with root basis {α′

1, . . . , α
′
ℓ} and (α′

i, α
′∨
j ) =

(αi, α
∨
j ) for all i, j, then there exists a unique isomorphism f : (Φ, E) → (Φ′, E′) such that f(αi) =

α′
i.

Proof. There exists a unique R-linear isomorphism f : E → E′ sending α 7→ α′
i for all i as

∆,∆′ are bases. We need to show that f(Φ) = Φ′, and (f(α), f(β)∨) = (α, β∨). By assumption,
(f(αi), f(αj)

∨) = (αi, α
∨
j ). By linearity, (f(λ), f(αj)

∨) = (λ, α∨
j ) for every λ ∈ E. Therefore

wf(αj)(f(λ)) = f(wαj
(λ)), (6.13)

so wαj
= f ◦ wαj

◦ f−1. Consider the isomorphism

G : GL(E) → GL(E′)

g 7→ f ◦ g ◦ f−1 (6.14)

We showed that G(wαj) = wα′
j
. Since W is generated by simple reflections, G maps W ↠ W ′,

the Weyl group of Φ′. If α ∈ Φ, let w ∈ W be such that w(α) = αi ∈ ∆. Let w′ = G(w) =
f ◦ w ◦ f−1 ∈ W ′. Then w′(f(α)) = f(w(α)) = f(αi) = α′

i. Then f(α) = (w′)−1(α′
i) ∈ Φ′, so

f(Φ) = Φ′. Similarly, we get that (α, β∨) = (f(α), f(β)∨) for all α, β ∈ Φ.

Corollary 6.27. Cartan matrices determine root systems.

Proof. See Humphreys for a concrete construction of Φ from the Cartan matrices.

Remark 6.28. SinceW acts transitively on root bases, the Cartan matrix is unique up to reordering
rows and columns.

6.7 Dynkin Diagrams
Let (Φ, E) be a root system, and let ∆ = {α1, . . . , αℓ} ⊂ Φ be a root basis, and C the Cartan
matrix.

Definition 6.29. The Dynkin diagram D(Φ) determines C, which determines Φ by the work in
the previous section. It is the graph where

1. Vertices are simple roots α1, . . . , αℓ.

2. If α, β ∈ ∆, draw (α, β∨)(β, α∨) edges between α and β recall that (α, β∨)(β, α∨) ∈ {0, 1, 2, 3}.
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Figure 2: Dynkin diagrams

3. If α, β ∈ ∆ have at least one edge between them and (α, α) < (β, β), so (β, α∨) ∈ {−2,−3},
then draw a < pointing to α.

4. Don’t draw self edges from α to α.

We show some Dynkin diagrams in Figure 2. Using Euclidean geometry and combinatorics, one
can show the following.

Theorem 6.30. The association Φ 7→ D(Φ) induces a bijection between irreducible root systems
and the Dynkin diagrams in Figure 2.

Proof. Φ is irreducible if and only if D(Φ) is connected (Sheet 3). The rest is in Humphreys,
§11.4.

7 Root spaces: return of the Lie algebras
Summarizing our work so far, we have constructed a map from (g, t) a semisimple Lie algebra with
Cartan subalgebra t to a root system, but we don’t yet know that this map is bijective. We have
also constructed a bijection between root systems and disjoint unions of Dynkin diagrams. We also
want to be able to “forget t” by showing that all CSAs are isomorphic in g.

7.1 Independence of t

Theorem 7.1 (Conjugacy of CSAs). If g is a semisimple Lie algebra, and t, t′ ⊂ g are CSAs, then
there exists a Lie algebra automorphism f : g → g such that f(t) = t′.

Proof. Humphreys, §16.4.

Thus is we choose t and t′ and build root systems, they are the same.
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Corollary 7.2. Let Φ,Φ′ be the root systems of g in t∗ and (t′)∗. Then Φ and Φ′ are isomorphic
as root systems.

Proof. If f : g → g is an automorphism with f(t) = t′, then

f∗ : (t′)∗ → (t)∗ (7.1)

is an isomorphism and preserves the pairings induced by the Killings forms, so it sends Φ′ to Φ.

Corollary 7.3. If g is semisimple with CSA t giving rise to Φ = Φ(g, t), then g is simple if and
only if Φ is irreducible if and only if D(Φ) is connected.

Proof. Exercise. Sketch: If g is not simple, then g = g1 ⊕ g2. Take CSAs ti ⊂ g. Then t1 ⊕ t2 is a
CSA in g. By the conjugacy theorem, we may assume that t = t1 ⊕ t2, so Φ = Φ1 ⊔ Φ2.

7.2 Existence and uniqueness theorems
Theorem 7.4 (Existence). For each irreducible root system Φ, there exists a simple Lie algebra
with CSA t ⊂ g such that the root system of (g, t) is isomorphic to Φ.

Theorem 7.5 (Uniqueness). Let g, g′ be semisimple Lie algebras with CSAs t ⊂ g, t′ ⊂ g′, giving
root systems Φ,Φ′. Choose root bases ∆ ⊂ Φ, ∆′ ⊂ Φ′. Choose, for each α ∈ ∆, a generator
φα ∈ gα and similarly φ′

α′ ∈ g′α′ .
Let f : Φ → Φ′ be an isomorphism of root systems with f(∆) = ∆′. Then there exists a unique

isomorphism f : g → g′ such that f̃(t) ⊂ t′ and f̃(eα) = ẽf(α) for all α ∈ ∆.

Proof. Sketch: Recall the root space decomposition

g = t⊕
⊕
α∈Φ

gα. (7.2)

For each α ∈ Φ, choose a generator eα ∈ gα. Then we can choose eα compatibly with eα so that

[eα, e−α] = hα =
2tα

κ(tα, tα)
∈ t (7.3)

and (eα, hα, fα) form an sl2-triple. So g has a basis

{hα | α ∈ ∆} ⊔ {eα | α ∈ Φ} (7.4)

What is the Lie bracket?

• If t ∈ t, α ∈ Φ, then [t, eα] = α(t)eα.

• If t, t′ ∈ t then [t, t′] = 0.

• If α ∈ Φ, then [eα, e−α] = hα.

• If α, β ∈ Φ with α+ β /∈ Φ and β ̸= ±α, then [eα, eβ ] = 0.

• If α, β ∈ Φ and β ̸= ±α and α + β ∈ Φ, then [gα, gβ ] = gα+β so [eα, eβ ] = cαβeα+β where
cαβ ̸= 0.
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The theory of “structure constants”: choose a nice basis of g such that cαβ = ±1 and the basis is
“compatibly”. This leads (after a lot of work) to both of these theorems. See Humphreys §18.4.

Remark 7.6. There’s a slightly different approach due to Serre using generators and relations.

To conclude, we have bijections between simple Lie algebras, irreducible root systems, and the
Dynkin diagrams in Figure 2.

7.3 Classical Lie algebras
Simple Lie algebras or irreducible root systems of type An, Bn, Cn, Dn are called classical. What
are the classical Lie algebras?

Let g = sln+1, =t be the diagonal CSA, and ei : t → C sending a diagonal matrix to its ith
entry. Then

t∗ = (Ce1 ⊕ · · · ⊕ Cen+1)/(e1 + · · ·+ en) (7.5)

and
Φ = {ei − ej | 1 ≤ i ̸= j ≤ n+ 1} (7.6)

and a root basis is
∆ = {e1 − e2, . . . , en − en+1} (7.7)

By calculating root strings or otherwise, we find that

(αi, α
∨
j ) =


2 i = j

−1 |i− j| < 1

0 otherwise
(7.8)

You don’t need to compute any Killing forms for this. Thus by looking at the Dynkin diagram we
see that the root system is of type An.

The Weyl group W ⊂ GL(t∗) is generated by wα with α = ei − ej . We see that wα swaps
ei and ej . Since transpositions generate the symmetric group, we have that W ∼= Sn+1. Similar
computations with sp2n and son show that they are of the following types:

Type g Φ ⊂ Rn ∆ W dim g

Bn so2n+1 {ei} ∪ {±ei ± ej | i ̸= j} {e1 − e2, . . . , en−1 − en, en} Sn ⋉ Cn
2 2n2 + n

Cn sp2n {2ei} ∪ {±ei ± ej | i ̸= j} {e1 − e2, . . . , en−1 − en, 2en} Sn ⋉ Cn
2 2n2 + n

Dn so2n {±ei ± ej | i ̸= j} {e1 − e2, . . . , en−1 − en, en−1 + en} Sn ⋉ Cn−1
2 2n2 − n

An essential exercise is to verify the claims about Φ and ∆.

Non-examinable. How does W act on Φ in each case? Sn acts on Rn by permuting the basis
vectors. In the Bn and Cn case, Cn

2 = {(δi) | δi = ±1} acts via ei → δiei. In the Dn case,
Cn−1

2 ⊂ Cn
2 with

∏
δi = 1.

Since B2
∼= C2, we have that so5 ∼= sp4. Similarly, D3

∼= A3 so so6 ∼= sl4. These are the
“accidental isomorphisms”.
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7.4 Exceptional Lie algebras for culture

If g (or Φ) has type E,F,G, we call it exceptional. We denote these Lie algebras by g2, f4, e6, e7, e8.
Some facts:

Type #Φ+ #W dim g Dim of smallest faithful rep g → gln

G2

Will fill in later.

7.5 The root and weight lattice
Let (Φ, E) be a root system. A lattice in E is the Z-span of an R-basis.

Definition 7.7. The root lattice of Φ is

ZΦ = {
∑
α∈Φ

cαα | cα ∈ Z}. (7.9)

The weight lattice of Φ is
X = {α ∈ E | (λ, α∨) ∈ Z∀α ∈ Φ} (7.10)

These are indeed lattices: fix a root basis ∆ = {α1, . . . , αℓ} of Φ. Then ZΦ is the Z-span of ∆,
which is an R-basis. On example sheet 3, we showed that

X = {λ ∈ E | (λ, α∨
i ) ∈ Z∀αi ∈ ∆} (7.11)

Let ω1, . . . , ωℓ ∈ E be the unique elements such that (ωi, α
∨
j ) = δij . These are called the

fundamental weights of Φ with respect to ∆. Clearly X is the Z-span of ω1, . . . , ωℓ.

Example 7.8. If Φ = {±α} ∼= A1, ZΦ = Zα, and (α, α∨) = 2, so X = Z(α/2).

Example 7.9. We can do some careful calculations with A2, B2, G2 and determine there weight
and root lattices.

Since (α, β∨) ∈ Z for all α, β ∈ Φ, we have that ZΦ ⊂ X. Then X/ZΦ is a finite group, called
the fundamental group of Φ. This is the fundamental group of a Lie group. Moreover,

#(X/ZΦ) = |det(C)| (7.12)

where C is the Cartan matrix. This is somewhat intuitive.
In the previous examples, we have that the size of the fundamental group is 2 if Φ = A1, 3 if

Φ = A2, 2 if Φ = B2, and 1 if Φ = G2.

Definition 7.10. An element λ ∈ X is dominant if (λ, α∨) ∈ Z≥0 for all α ∈ Φ+. We have that
λ ∈ X is dominant if and only if (λ, α∨

i ) ≥ 0 for all αi ∈ ∆, if and only if λ =
∑ℓ

i=1 ciwi with
ci ≥ 0, if and only if λ lies in the closure of the fundamental Weyl chamber.
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8 Representations of semisimple Lie algebras
Let g be a semisimple Lie algebra, t ⊂ g a CSA, and Φ ⊂ t∗ the root system. Fix a root basis
∆ ⊂ Φ. We have that ZΦ ⊂ X ⊂ t∗.

Lemma 8.1. An element λ ∈ t∗ lies in X if and only if λ(hα) ∈ Z for all α ∈ Φ.

Proof. Recall that hα = 2tα
κ(tα,tα

and λ(hα) = (λ, α∨) for all α ∈ Φ.

Now, let V be a representation of g. Since t is abelian and every element of t is semisimple as
an element of g, we can diagonalize V under the t-action, so that

V =
⊕
λ∈t∗

Vλ, Vλ = {v ∈ V | tv = λ(t)v ∀t ∈ t} (8.1)

Note that the Weyl group W acts on X ⊂ E.

Proposition 8.2. (i) If α ∈ Φ and eα ∈ gα \ {0}, then eα · Vλ ⊂ Vλ+α (hopping to the left).

(ii) If Vλ ̸= 0, then λ ∈ X (weights are integers).

(iii) dimVλ = dimVw(λ) for all w ∈W (symmetry under Weyl group).

Proof. (i): This follows from direct computation: if t ∈ t and v ∈ Vλ, then

t(eα · v) = eα(t · v) + [t, eα]v

= λ(t)(eα · v) + α(t)(eαv). (8.2)

(ii): Fix a root α ∈ Φ and choose eα ∈ gα and fα ∈ g−α such that {eα, hα, fα} satisfy the sl2
relations, so they span mα

∼= sl2.
View V as a representation of mα. Then the hα weights are in Z, and these are exactly the set

(compare with the definition of an sl2 weight)

{λ(hα) | λ ∈ t∗, Vλ ̸= 0}. (8.3)

So λ(hα) ∈ Z for all α ∈ Φ and all λ with Vλ ̸= 0. So if Vλ ̸= 0, then λ ∈ X.
(iii): We will show the result for w = wα, and the full result will follows because the wαs

generate W . Note that

(wα(λ))(hα) = λ(hα)− (λ, α∨)α(hα) = λ(hα)− λ(hα) · 2 = −λ(hα). (8.4)

Decompose V as a direct sum of irreducible mα representations:

V =

k⊕
i=1

V (i). (8.5)

Since V (i) is a direct sum of distinct weight spaces for hα, Vλ has a basis v1, . . . , vn with the property
that vi ∈ V (i) (after reordering the summands V (i)). This is a completely trivial fact: each V (i)

contributes at most 1 dimension to Vλ by sl2 theory.
The −λ(hα) wieght space of V (i) is generated by an element of the form fmα ·vi or emα vi for some

m ≥ 0. Therefore this element lies in Vwα(λ) by (i).
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Definition 8.3. An element v ∈ V \ {0} is called a highest weight vector if v ∈ Vλ for some λ, and
eα · v = 0 for all α ∈ ∆, where eα ∈ gα \ {0}. In that case λ is called a highest weight.

Lemma 8.4. (i) V has a highest weight vector.

(ii) Every highest weight vector is dominant.

Proof. (i): This follows from Proposition 8.2 (i) and the fact that dimV < ∞. Take a nonzero
v ∈ Vλ, and apply eα repeatedly for each α ∈ ∆. Eventually eαv = 0.

(ii): View V as an mα representation for some α ∈ ∆. Then a highest weight vector must be
one for V , viewed as an mα representation. By sl2 theory, λ(hα) = (λ, α∨) ∈ Z≥0.

8.1 The universal enveloping algebra
In this section vector spaces may be infinite dimensional, and in fact the universal enveloping algebra
is always infinite dimensional for a Lie algebra g.

Definition 8.5. An algebra is a vector space A with a bilinear map A×A→ A (x, y) 7→ xy. It is
unital if it has a unit, and associative if x(yz) = (xy)z for all x, y, z ∈ A.

Associative algebras are the mostly general structure for which it makes sense to do representa-
tion theory. If A is an associative algebra, we can define the bracket [x, y] = xy − yx. This defines
a Lie algebra on A, we call this Lie(A).

Example 8.6. If V is a vector space, then A = End(V ) is a unital associative algebra with
Lie(A) = gl(V ).

Definition 8.7. A representation of A is an algebra homomorphism

A→ End(V ). (8.6)

If G is a finite group, we can define the group algebra C[G] such that representations of the
finite group G correspond to C[G] representations.

Definition 8.8. For any Lie algebra g, we will construct a unital associative algebra U(g), called
the universal enveloping algebra with a similar property to the group algebra C[G] described above.

This algebra will satisfy the following universal property: if A is a unital associative algebra
and f : g → Lie(A) is a Lie algebra map, there is a unique f̃ : U(g) → A such that f̃ ◦ i = f . In
diagram form we have

g U(g)

Lie(A)

i

f
∃!f̃

Definition 8.9. If V is a C-vector space, let

T (V ) =
⊕
n≥0

V ⊗n (8.7)
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where V ⊗0 = C and we have the graded algebra structure

V ⊗n × V ⊗m → V ⊗(n+m) (8.8)

by composition. This is a unital algebra called the tensor algebra.

Definition 8.10. A two sided ideal I of an algebra is a subspace I satisfying xI ⊂ I, Ix ⊂ I for
all x ∈ A.

If I is a two sided ideal, then A/I inherits the structre of an algebra.

Definition 8.11. If V is vector space, then define the symmetric algebra Sym(V ) := T (V )/I,
where

I = (x⊗ y − y ⊗ x | x, y ∈ V ) (8.9)

Definition 8.12. Let g be a Lie algebra. Then the universal enveloping algebra is U(g) = T (g)/J ,
where J is the two sided ideal generated by

{x⊗ y − y ⊗ x− [x, y] | x, y ∈ g} (8.10)

Note that this messes up the grading of our algebra, since x⊗ y, y⊗x ∈ g⊗2 and [x, y] ∈ g. We will
write x1 ⊗ · · · ⊗ xn ∈ U(g) as x1 · · ·xn.

Lemma 8.13. U(g) satisfies the universal property of the universal enveloping algebra.

Proof. Given a Lie algebra map f : g → Lie(A), we have that f is a linear map g → A. We can
extend this map to T (g) by

f ′ : T (g) → A

x1 ⊗ · · · ⊗ xn 7→ f(x1) · · · f(xn) (8.11)

Since f preserves the Lie bracket, we have that f(x⊗ y − y ⊗ x− [x, y]) = 0, so J ⊂ ker(f ′). So f ′
factors through an algebra map f̃ : U(g) → A. Let i : g → U(g) be the canonical inclusion. Then
f̃ ◦ i = f . Since U(g) is generated by g as an algebra, f̃ must be unique.

Applying this to A = End(V ), we get a bijection between Lie algebra homomorphism g → gl(V )
and algebra homomorphisms U(g) → End(V ). So if ρ : g → gl(V ) is a representation and x ∈ U(g),
then ρ(x) = ρ̃(x) “makes sense”. In other words, the action of g on V extends to U(g) action on V
via xv = ρ̃(x)(v) for all x ∈ U(g).

Example 8.14. If g is abelian, then U(g) = Sym(g) so U(g) is infinite dimensional.

Example 8.15. If g = sl2(C) and Ω = ef + fe + 1/2h2 ∈ U(g), then ρ(Ω) = Ωρ is the Kasimir
element. In fact, Ω lies in the center of U(g), so by Schur’s lemma it acts by scalars.

Example 8.16. If g = sl2(C), then e(fv) = f(ev) + hv for any g-module V and any v ∈ V .
This comes from the fact that ef = fe+ h in U(g), so it carries to any representation.
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8.2 Poitcare-Birkhoff-Witt Theorem (PBW)
This theorem describes bases of U(g). U(g) is not nicely graded because the ideal J is not homoge-
neous. But it is filtered: if Fn is the image of

⊕
k≤n V

⊗k under the projection T (g) → U(g), then
Fn is a subspace of U(g) and we have a filtration

0 ⊂ F0 ⊂ F1 ⊂ · · · ⊂ U(g), (8.12)

and
⋃

n≥0 Fn = U(g) and Fi · Fj ⊂ Fi+j . We can make a graded algebra by setting

gr(U(g)) =
⊕
n≥0

Fn/Fn−1 (8.13)

where F−1 = 0. The multiplication maps Fi × Fj → Fi+j induce maps

(Fi/Fi−1)× (Fj/Fj−1) → Fi+j/Fi+j−1, (8.14)

which defines an algebra structure on gr(U(g)).

Lemma 8.17. gr(U(g)) is commutative.

Proof. Concretely, this means that the Lie bracket on gr(U(g)) is zero. If x, y ∈ g, then xy − yx =
[x, y] in U(g), so [F1, F1] ⊂ F1. Set grn := Fn/Fn−1 ⊂ gr(U(g)). Then this shows that xy = yx for
all x, y ∈ gr1. Since gr(U(g)) is generated by gr1, [x, y] = 0 for all x, y ∈ gr(U(g)).

We have algebra homomorphisms

T (g) U(g)

Sym(g) gr(U(g))

f

∃φ

Since gr(U(g)) is commutative, f(x⊗ y− y⊗ x) = 0 for all x, y ∈ g, so f factors through φ (so the
diagram above commutes).

Theorem 8.18 (PBW). φ is an isomorphism of algebras.

Proof. We’ve already shown φ is surjective. To show injectivity is a bit harder, see Humphreys
§17.4.

Corollary 8.19. If x1, . . . , xn is a basis of g, then {xk1
1 · · ·xkn

n | kj ∈ Z≥0} is a basis of U(g).

Proof. This follows from the PBW theorem and the isomorphism of vector spaces

U(g) ∼= gr(U(g)). (8.15)

Lemma 8.20. If V is a g-representation and v ∈ V , then

U(g) · v = {xv | x ∈ U(g)} (8.16)

is the smallest g subrepresentation of V containing v.

Proof. If A is a unital associative algebra with representation V and v ∈ V , then Av ⊂ V is
the smallest A-subrepresentation of V containing v. We apply this to A = U(g) and note that
g-subrepresentations are the same as U(g)-subrepresentations.
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8.3 Highest weight modules
To study irreducible finite-dimensional representations, we study a larger class of representations
with similar properties. Let g be a semisimple Lie algebra, t ⊂ g, Φ ⊂ t∗ the root, and ∆ =
{α1, . . . , αℓ} ⊂ Φ a root basis.

Let V be a (possibly infinite dimensional) representation of g. Then we can still diagonalize so
that the following notion makes sense:

λ ∈ t∗, Vλ = {v ∈ V | tv = λ(t)v ∀t ∈ t} (8.17)

A highest weight vector is an element v ∈ Vλ \{0} for some λ ∈ t∗ such that eα ·v = 0 for all α ∈ Φ+

and for all eα ∈ gα \ {0} (equivalently for all α ∈ ∆).

Definition 8.21. V is a highest weight module if V contains a highest weight vector v ∈ Vλ and is
generated by v, so that V = U(g) · v.

Lemma 8.22. If V is finite dimensional and irreducible, then V is a highest weight module.

Proof. Since V is finite dimensional, we showed that it has a highest weight vector v. By irre-
ducibility and Lemma 8.20, we have that V = U(g) · v.

Thus we have shown that highest weight modules are generalizations of finite dimensional irre-
ducible representations.

Example 8.23. If g = sl2, there are infinite dimensional highest weight modules. Let V be the
vector space with infinite basis v0, v1, . . . , and g action defined by

e · v0 = 0

h · v0 = 0

f · vi = vi+1

(8.18)

and extend using linearity and the Lie bracket. This is a highest weight module generated by highest
weight vector v0. But v1 is also a highest weight vector, as we can calculate that h · vn = −2nvn
and e · vn = n(1− n)vn−1. So U(g) · v1 = Span{v1, v2, . . .} ⊂ V is a subrepresentation, so V is not
irreducible.

Definition 8.24. Define
n+ =

⊕
α∈Φ+

gα, n− =
⊕

α∈Φ−

gα. (8.19)

These are subalgebras and as vector spaces we have that

g = n+ ⊕ t⊕ n−. (8.20)

Lemma 8.25. If V is a highest weight module generated by highest weight vector v, then V =
U(n−) · v.

Proof. Choose for each β ∈ Φ a nonzero element eβ ∈ gβ . Let t1, . . . tℓ ∈ t be a basis of t. By PBW,
U(g) · v is spanned by elements of the form

ea1

−β1
· · · ean

−βn
tb11 · · · tbℓℓ e

c1
β1

· · · ecnβn
· v (8.21)

where {β1, . . . , βn} ∈ Φ+ and ai, bi, ci ∈ Z≥0. Since v is a highest weight vector, eβi
· v = 0 and

tiv = λ(ti)v, so we can assume that bi = ci = 0.
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If λ, µ ∈ t∗, we say that µ ≤ λ if λ− µ =
∑
kiαi with ki ∈ Z≥0. This defines a partial order on

t∗.

Proposition 8.26. Let V be a highest weight module generated by highest weight vector vλ ∈ Vλ.
Then

(i)
V =

⊕
µ≤λ

Vµ. (8.22)

(ii) If W ⊂ V is a subrepresentation, then

W =
⊕
µ≤λ

Wµ. (8.23)

(iii) dim(Vµ) <∞ and dim(Vλ) = 1.

(iv) V is irreducible if and only if every highest weight vector lies in Vλ.

(v) V has a unique maximal proper subrepresentation, so there exists a unique irreducible quotient
representation.

Proof. (i) By Lemma 8.25, V = U(n−) · vλ and is spanned by elements of the form

ek1

−β1
· · · ekn

−βn
· vλ (8.24)

with ki ∈ Z≥0. By Proposition 8.2 (i), we have that eα · Vλ ⊂ Vλ+α (even if dimV = ∞), so (8.24)
lies in Vµ with µ = λ−

∑
kiβi, so µ ≤ λ.

(ii) Let W ⊂ V be a subrepresentation. We need to show that if w ∈ W has w = v1 + · · ·+ vk
with vi ∈ Vλi , then vi ∈ W for all i. Suppose for the sake of contradiction that w is an element
violating this condition, with k minimal. Then k ≥ 2, and vi /∈ W for all 1 ≤ i ≤ k by minimality.
Let t ∈ t be such that λ1(t) ̸= λ2(t). Then

tw − λ1(t)w = (λ2(t)− λ1(t))v2 + · · ·+ (λk(t)− λ1(t))vk ∈W (8.25)

because W is a subrepresentation. By minimality, we have that (λ2(t)− λ1(t))v2 ∈W , so v2 ∈W ,
contradicting the fact that v2 /∈W .

(iii) By Lemma 8.25, the dimension of Vµ is at most the number of tuples k1, . . . , kn such that
µ = λ−

∑
kiβi. This is a finite set (exercise), and is 1 if µ = λ.

(iv) If vµ ⊂ Vµ is a highest weight vector with µ ̸= λ, then µ ̸≤ λ, and U(g)vµ = U(n−)vµ is a
proper subrepresentation. If W is a subrepresentation and W ̸= V , let µ be an element such that
Wµ ̸= 0 and such that µ is maximal with respect to ≤. Then wµ ∈ Wµ \ {0} is a highest weight
vector and µ ̸= λ.

(v): By (iv), a subrepresentation W ⊂ V is proper if and only if Wλ = 0. So the sum of all
proper subrepresentations still satisfies Wλ = 0, so it is a proper subrepresentation. Thus taking
the sum of all proper subrepresentations gives a maximal proper subrepresentation. Thus V has a
unique irreducible quotient.

Remark 8.27. Part (ii) is a special case of the general fact that the subspace of a vector space
which is stable under a linear operator is the direct sum of the eigenspaces.???
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8.4 Verma modules
Why do highest weight modules exist? It turns out we can construct the “biggest” highest weight
module, called the Verma module.

Generally, if I is a left ideal of an associated algebra, then A/I has the structure of an A-
representation, via x(y + I) = xy + I. Using this, we can construct the “biggest” highest weight
module for λ ∈ t∗.

Definition 8.28. Let λ ∈ t∗, and let J(λ) be the left ideal of U(g) generated by: (i) eβ for all
β ∈ Φ+, where eβ ∈ gβ\{0} is some generator, and (ii) t−λ(t)·1 for all t ∈ t. The first condition gives
that acting by eβ gives 0, and the second gives that acting by t gives λ(t). Then M(λ) = U(g)/J(λ)
is the Verma module for λ: it is a U(g) representation, so also a g-representation.

Let mλ := 1 + J(λ) ∈M(λ). Then eβ ·mλ = 0 for all β ∈ Φ+ and t ·mλ = λ(t)mλ for all t ∈ t.

Lemma 8.29. Mλ is a highest weight module generated by mλ = 1 + J(λ). If V is another
highest weight module generated by highest weight vector v ∈ Vλ, then there is a unique surjection
of g-representations φ :M(λ) ↠ V which is surjective, and maps mλ 7→ v (universal property).

Proof. We have that eβ ·mλ = 0 for all β ∈ Φ+ and t ·mλ = λ(t)mλ for all t ∈ t. Since 1 generates
U(g) as a U(g)-module, in order to show that Mλ is generated by mλ, it suffices to show that
mλ ̸= 0, so 1 /∈ J(λ). This follows from the PBW Theorem 8.18 (exercise).

If V is another highest weight module with highest weight vector v ∈ Vλ, then we can define a
map

ψ : U(g) → V

x 7→ x · v (8.26)

This is a map of g-representations and J(λ) ⊂ kerψ, since ψ(eβ) = eβ · v = 0 and ψ(t− λ(t) · 1) =
tv − λ(t)v = 0. So ψ factors through some φ : U(g)/J(λ) → V .

Example 8.30. If g = sl2, then M(0) is the highest weight module given in Example 8.23. Then
Span{v1, v2 . . .} is a subrepresentation, with quotient congruent to V (0).

By Proposition 8.26, M(λ) has a unique maximal proper subrepresentation, so a unique irre-
ducible quotient. Call this quotient V (λ).

8.5 Classification of irreducible representations
It turns out that we have already classified irreducible highest weight modules.

Proposition 8.31. The assignment λ 7→ V (λ) induces a bijection between t∗ and the isomorphism
classes of highest weight modules.

Proof. This is a straightforward application of Lemma 8.29 and Proposition 8.26.
If V is an irreducible highest weight module generated by highest weight vector v ∈ Vλ for

some λ ∈ t∗. Then V is a quotient of M(λ) by Lemma 8.29. Since M(λ) has a unique irreducible
quotient, we have that V ∼= V (λ). Why is λ unique? Since V is irreducible, every highest weight
vector lies in Vλ, hence is a multiple of v since dimVλ = 1. So if V ∼= V (µ), then µ is a highest
weight vector, so λ = cµ, and the isomorphism is given by rescaling.
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Thus we have a bijection between t∗ and irreducible highest weight modules. We know that the
finite dimensional irreducible representations are a subset of the irreducible highest weight modules,
but what is the corresponding subset of t∗? It turns out that they have a very nice description as
the intersection of the dominant weights (a cone) and the weight lattice (a lattice).

Theorem 8.32. If λ ∈ t∗, then V (λ) is finite dimensional if and only if λ ∈ X and λ is dominant.

Using this theorem, we can prove the following

Corollary 8.33. Every finite dimensional irreducible representation V of a semisimple Lie algebra
g has a unique highest weight vector λ, and the assignment of V to its highest weight vector induces
a bijection between finite dimensional irreducible representations of g and dominant elements of the
weight lattice λ ∈ X.

Before we prove the theorem, we need the following lemma.

Lemma 8.34. For each αi ∈ ∆, let ei ∈ gαi
, fi ∈ g−αi

and hi ∈ t such that (ei, hi, fi) is a sl2-triple.
Then in U(g) we have for all k ∈ Z≥0 that

[ei, f
k+1
j ] = 0, i ̸= j (8.27)

[ei, f
k+1
i ] = −(k + 1)fki (k · 1− hi) (8.28)

Proof. Use induction on k. If k = 0, then [ei, fj ] ∈ gαi−αj = {0} if i ̸= j because αi, αj ∈ ∆ and
[ei, fi] = hi by the sl2-triple action.

The claim follows by induction and the identity [A,BC] = [A,B]C +B[A,C].

We are now ready to prove our big theorem. For λ ∈ X dominant, the key idea is to let

Π(λ) := {µ | V (λ)µ ̸= 0}. (8.29)

Since dim(V (λ)µ) <∞ by Proposition 8.26, it suffices to prove that #Π(λ) is finite. We will show
that Π(λ) is Weyl group invariant, and that it has finitely many orbits under the action of W , so
it is finite.

Proof of Theorem 8.32. If V (λ) is finite dimensional, then we proved that λ ∈ X in Proposition 8.2
(ii) and we proved that λ is dominant in Lemma 8.4 (ii).

Now let λ ∈ X be dominant. We want to show that V (λ) is finite dimensional.

Claim 1. For each i, let n = λ(hi) = (λ, α∨
i ). Then fn+1

i · v = 0.
Proof: Let u = fn+1 · v. We know that ej · v = 0 for all j. Moreover, for all j, we have that

ej · u = (fn+1
i · ej) · v + [ej , f

n+1
i ]v

= [ej , f
n+1
i ] · v

=

{
0 j ̸= i

−(n+ 1)fni (nv − hiv) j = i.
(8.30)

But since hi = nv, we have that ej · u = 0 always. So if u ̸= 0, then u would be a highest weight
vector. But u ∈ Vλ−(n+1)αi

, so it lies in a different weight space from v, so u = 0.
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Claim 2: W = Span{v, fiv, . . . , fni v} is an mαi -subrepresentation, where mαi = Span{ei, hi, fi}.
Proof: We need to show that W is stable under the action of ei, hi, fi:

• Stable under fi: follows from Claim 1.

• Stable under hi: fki v ∈ Vλ−kαi
so hi(fki v) = (λ− kαi)(hi) · fki v.

• Stable under ei: follows from (8.28).

Claim 3: For each i, V is a direct sum of finite-dimensional mαi-subrepresentations of V . So
every v ∈ V lies in a finite-dimensional mαi-subrepresentation.

Proof: Let V ′ be the sum of all finite dimensional mαi
-subrepresentations of V . By Claim 2,

V ′ ̸= 0. We need to show that V ′ is g-stable, as then V = V ′ by irreducibility. So let w ∈ V ′ be
arbitrary, so that w ∈W ⊂ V for W a finite-dimensional mαi

-subrepresentation. Let

W ′ =

ℓ∑
i=1

ti ·W +
∑
β∈Φ

eβ ·W (8.31)

where t1, . . . , tℓ ∈ t is a basis for t and eβ ∈ gβ \ {0} is a generator. We have that x ·W ⊂ W ′ for
all x ∈ g. Moreover, dimW ′ < ∞ since dimW < ∞. W ′ is also stable under mαi : it suffices to
check stability under ei, hi, fi. This is an exercise, check that

ei · eβW ⊂ eβ · ei ·W + [ei, eβ ] ·W
⊂ eβW + eβ+αi

·W
⊂W ′. (8.32)

therefore W ′ ⊂ V ′, so xV ′ ⊂ V ′ for all x ∈ g.
Start with arbitrary mαi

stable W , let W ′ be image of W under the g-action, show that W ′ is
also mαi-stable, so W ′ ⊂ V , so that if w ∈ V ′, then x · w ∈W ′ ⊂ V ′, so xV ′ ⊂ V ′.

Claim 4: The Weyl group W preserves Π(λ), so that dim(V (λ)µ) = dim(V (λ)w(µ) for all µ ≤ λ,
and all w ∈W .

Proof: We showed that this claim holds for finite dimensional representations in Proposition 8.2
(iii). The same proof works here as well.

Claim 5: The number of W orbits in Π(λ) is finite.
Proof: Let µ ∈ Π(λ). Then µ is in the closure of some Weyl chamber. Since W acts transitively

on the Weyl chambers, we may assume (after replacing µ by a W -conjugate) that µ ∈ X and is
dominant. So each orbit has a representative in

S = {µ ∈ X | µ ≤ λ}. (8.33)

Since X ⊂ t∗ is discrete, S is a discrete subset of t∗. If µ ∈ S, then λ + µ is dominant and
λ− µ ∈ Z≥0 ·∆. Therefore (λ+ µ, λ− µ) ≥ 0, so (λ, λ) ≥ (µ, µ), so S is bounded and discrete, so
S is finite.

We’ve shown that W acts on Π(λ) with finitely many orbits. Since W is finite, Π(λ) is finite,
so dimV is finite.
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8.6 The character of V (λ)

For λ ∈ X dominant, let
Π(λ) = {µ ∈ X | dimV (λ)µ ̸= 0} (8.34)

viewed as a multiset of weights with multiplicity dimV (λ)µ. What is Π(λ)? We know that

• Π(λ) ⊂ {µ | µ ≤ λ} (Proposition 8.26 (i)).

• W preserves Π(λ) and the multiplicities (Claim 4 in the proof of Theorem 8.32).

• The multiplicity of µ is at most the number of ways to write λ− µ as a sum of positive roots
(as V (λ)) is generated by highest weight vector v ∈ Vλ).

Proposition 8.35. If µ, λ ∈ X are dominant, then µ ∈ Π(λ) if and only if µ ≤ λ.

Proof. If µ ∈ Π(λ), then the claim follows from Proposition 8.26 (i).
Let µ ≤ λ be dominant. Say that µ′ ∈ X is good if µ ∈ Π(λ) and µ′ = µ+

∑
kiαi with ki ∈ Z≥0.

We claim that if µ′ is good and ki > 0 for some i, then there is a simple αj such that µ′ −αj . This
proves the proposition by starting with λ, which is good.

To prove the claim, since ki > 0 for some i, we have that (
∑
kiαi,

∑
kiαi) > 0. So there exists

j with kj > 0 such that (
∑
kiαi, αj) > 0 and we have that (µ, αj) ≥ 0 since µ is dominant, so

(µ′, αj) > 0. Therefore ⊕
n ∈ ZVµ′+nαj

(8.35)

is an mαj
-representation since (µ′, αj) > 0, so Vµ′−αj

̸= 0, so µ− αj is good.

Note that the above Proposition does not hold if µ is not dominant.

Corollary 8.36. µ ∈ X lies in Π(λ) if and only if for all w ∈W , w(µ) ≤ λ.

Proof. Exercise.

Example 8.37. In G2 with λ = 2ω1, we have that Π(2ω1) = {0, ω1, ω2, 2ω1} and the conjugates.

What about the multiplicities? If µ ∈ Π(λ), then multλ(µ) = dim(V (λ)µ). We know that
multλ(w(λ)) = 1 for all w ∈W . In general multiplicities can be greater than 1.

Example 8.38. Suppose g is simple and suppose that V = ad g the adjoint representation. Then
V ∼= V (α0) where α0 is the highest root, because all the roots of the adjoint representation are roots
of Φ. The weights of V are Φ∪{0}, and mult(α) = 1 if α ∈ Φ, but mult(0) = dimC t = rankΦ = #∆.

The Weyl character formula contains information about all the multiplicities of a representation.

Definition 8.39. Let Z[X] be the free abelian group with generators {eλ | λ ∈ X}. So

Z[X] = {
∑
λ∈X

cλe
λ | cλ = 0for all but finitely many cλ ∈ Z} (8.36)

The assignment eλ · eµ = eλ+µ makes Z[X] a ring, called the character ring.
If V is a finite dimensional g-representation, then the character of V is

ch(V ) =
∑
λ∈X

dim(Vλ)e
λ ∈ Z[X]. (8.37)
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Example 8.40. If g = sl2, then X = Z · (α/2). If t = eα/2, then Z[X] = Z[t, t−1], and

ch(V (n)) = tn + tn− 2 + · · ·+ t−n. (8.38)

In general, choosing an isomorphismX ∼= Zℓ determines an isomorphism Z[X] ∼= Z[t1, t−1
1 , . . . , tℓ, t

−1
ℓ ].

The following facts are using the the Weyl character formula.

1. Set
ρ =

1

2

∑
α∈Φ+

α. (8.39)

We showed that if wαi
is a simple reflection, then since wαi

permutes Φ+ \ {αi}, wαi
(ρ) =

ρ− αi = ρ− (ρ, α∨
i )αi. So then because (wi, α

∨
j ) = δij , we have that

ρ = w1 + · · ·+ wℓ, (8.40)

where w1, . . . , wℓ are the fundamental weights.

2. Recall that Sn has a sign homomorphism Sn → {±1}. This generalizes to W , where w ∈ W
is interpreted as an element of the permutation group of Φ. In particular, let w ∈ W and
write w = w1 · · ·wn, where the wis are simple reflections, and set sgn(w) = (−1)n. This is a
well-defined (Sheet 4) group homomorphism W → {±1}.

Theorem 8.41 (Weyl character formula). If λ ∈ X is dominant, then in Frac(Z[X]) we have that

ch(V (λ)) =

∑
w∈W sgn(w)ew(λ+ρ)

eρ
∏

α∈Φ+(1− e−α)
(8.41)

Proof. Humphreys §24.3.

We have some easy corollaries of the Weyl character formula.

Corollary 8.42 (Weyl denominator formula). In Z[X], we have∑
w∈W

sgn(w)ew(ρ) = eρ
∏

α∈Φ+

(1− e−α) (8.42)

Proof. Take λ = 0 in the Weyl character formula.

Corollary 8.43 (Weyl dimension formula). If λ ∈ X is dominant, then

dimV (λ) =
∏

α∈Φ+

(λ+ ρ, α∨)

(ρ, α∨)
=

∏
α∈Φ+

(λ+ ρ, α)

(ρ, α)
(8.43)

Proof. We want to set eλ = 1 for all λ ∈ X, as then

ch(V )(1) =
∑
µ

dimVµ = dimV (λ) (8.44)

But the RHS of the character formula is “0/0”. But we can get the identity with L’Hopistal and
differentiating in a clever direction (see notes).
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Example 8.44. Let g = sl2. Then Φ = {±α}, ρ = α/2, and W = {±1}. So the Weyl character
formula is

ch(V (nα/2)) =
tn+1 − t−(n+1)

t+ t−1
= tn + tn−2 + · · ·+ t−n (8.45)

Example 8.45. Let g = sl3, Φ = {±α,±β,±(α + β)}, ∆ = {α, β}, and ρ = ω1 + ω2. We can
calculate

dimV (n1ω1 + n2ω2) =
(n1 + 1)(n2 + 1)(n1 + n2 + 2)

2
(8.46)

Example 8.46. Let g = sp4
∼= C2

∼= B2, and ∆ = {α, β} with α short. Then we can do some
more calculations.
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