Lie Algebras and their Representations

October 13, 2025

These notes are based on a course of the same title given by Dr. Jef Laga at Cambridge during
Michaelmas Term 2024. They have been written up by Alexander Shashkov. There are likely plenty

of errors, which are my own.
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1 Motivation

We begin with some motivation. Let G be a finite group. A representation of G is a group
homomorphism.

p: G — GL,(C) (1.1)
We have that
1. Every representation is a direct sum of irreducible representations.
2. The number of irreducible representations equals the number of conjugacy classes.
3. The representation p is uniquely determined by its character x, = Trop.

We want to generalize this to infinite groups. The issue is most infinite groups are messy. But
there are nice ones, in particular infinite groups with extra structure are often nice.

For example, putting a smooth manifold structure on a group gives you a Lie group. Some
examples of Lie groups are GL, (R), SL,,(R), SO, (R), and so on. A representation of a Lie group is
a smooth homomorphism G — GL, (C). Representations of Lie groups have applications in many
areas such as physics, differential geometry, harmonic analysis (automorphic forms), number theory,
algebraic geometry, etc.

Classifying these things seems hard, but the key insight is as follows. Let g = T.G be the
tangent space of G at the origin. This is an R-vector space, and the group structure on G induces
a Lie bracket on g:

[,]:gxg—g (1.2)

which satisfies the axioms of a Lie algebra.

Miracle! We have that (g, [, ]) remembers almost everything about G! So in many cases instead
of studying G we can study the Lie algebra g. Precisely, we have that there is a bijection between
connected, simply connected Lie groups and Lie algebras over R given by taking the tangent space
over the origin.

Upshot We can study Lie groups using just the linear algebra of (g, [, -]).

Goal To classify the semisimple Lie algebras and their representations. The map G +— Lie(G)®rC
induces a bijection between compact connected, simply connected Lie groups and complex semisim-
ple Lie algebras. Other motivation is given by the theory of algebraic groups, and the “ADE
classification”.

2 Introduction

We do some definitions, and do some basic stuff with representations, including classifying repre-
sentations of sly(C).



2.1 Definitions

Fix a field F, we will almost always work over F' = C in this course. All vector space are assumed
to be finite dimensional.

Definition 2.1. A Lie algebra is a vector space g together with a bilinearing pairing known as the
Lie bracket
[]:gxg—g (2.1)

such that [-,-] is alternating, so [z,z] = 0 for all € g, and the Lie bracket satisfies the Jacobi
identity, so that for all x,y, z € g, we have that

[z, [y, 2]l + [z, [z, 9]l + [y, [2,2]] = O (2:2)

The requirement that the Lie bracket satisfies the Jacobi identity is motivated by the adjoint
representation, as we will see later.

Definition 2.2. A Lie algebra homomorphism is a linear map ¢ : g — b such that

o[z, y]) = [p(z), p(y)] (2.3)

for al z,y € g, and ¢ is an isomorphism if it is a bijection.

Definition 2.3. A Lie subalgebra of a Lie algebra g is a subspace ) C g which is stable under [-, -],
so that [z,y] € b for all z,y € b, so that b is also a Lie algebra.

Example 2.4. 1. If n > 1 is an integer, let gl,(F) be the Lie algebra with underlying vector
space Mat,, (F) the space of n x n matrices. The Lie bracket is given by [A, B] = AB — BA,
we can check that this works.

2. If V is any vector space, then gl(V') :== End V with [f,g9] = fog—go f. If V is n-dimensional
then choosing a basis gives an isomorphism gl(V) — gl ,(F). If F = R, then the tangent
space of GL,(R) at 0 is g[,,(R).

3. We have the Lie subalgebra
s, (F) ={x € gl,(F) | Tr(z) = 0} (2.4)
This is a subalgebra as Tr[z, y] = Tr(zy) — Tr(yx) = 0.

4. If n = 2, then
sly(F) = H‘c‘ _ba} la,b,ce F} (2.5)

0 1 0 0 1 0
SR B @
We can calculate that [k, e] = 2e, [h, f] = —2f, and [e, f] = h. This is the most important Lie

algebra, as pretty much everything we do in this course boils down to showing that things “behave
like sl5”.

b,, is the set of upper triangular matrices in gl,,.

has basis



n, is the set of strictly upper triangular matrices (0 in diagonal).

0, is the algebra of diagonal matrices. Note that we have [z,y] = 0 for all z,y € 0,,.

Definition 2.5. A Lie algebra g is abelian when [z,y] = 0 for all z,y € g.
There’s a unique abelian Lie algebra in each dimension, which is a completely trivial fact as we
just take the unique n-dimensional vector space and give it the zero Lie bracket.

Remark 2.6. Since [z, z] = 0 we have that [z,y] = —[y, ], and the converse holds when char F' # 2.
Given a non-degenerate bilinear form (-,-,) : V x V — F, the subset
g={f €gh,(V) [ (f(v),w) + (v, f(w)) = 0 Vv,w € V} (2.7)
is a Lie subalgebra of gl(V') (exercise).

If {-,-,) is symmetric, then g = so(V, (-, -,)) is the special orthogonal Lie algebra.
If (-,-,) is alternating, then g = sp(V, (-, -,)) is the symplectic Lie algebra.

Standard so and sp Now if (-, -, ) is a bilinear form, so it is nondegenerate and symmetric, and we
choose a basis for V' so that V' = F™, then (-,-,) corresponds to a symmetric matrix A € Mat,, (F')
such that (v,w) = (v7)Aw. Then

so(V, () ={zcgl (F)|2zT -A+A-z=0} (2.8)

We can choose (-, -,) conveniently to define a “standard so”. The matrix is given by

[0 1
¢ n=2¢
I, O
J=<X[1 0 o (2.9)
00 I| n=20+1
0 I, 0
which defines a bilinear form (v,w) = (v?)Jw as above, and the standard so is given by so,(F) =
so(F™, J).
There is a similar story for the alternating case, we set
o 1,
J = [—Ie 0] (2.10)

and we have the standard sp sp,,(F) = sp(F?‘,.J). Note that alternating forms only exist in even
dimensional vector spaces.

Remark 2.7. Over non-closed fields bilinear forms have a more interesting structure.

Remark 2.8. You will do many matrix calculations, these are important for learning.



2.2 Representations of Lie Algebras
Let g be a Lie algebra.

Definition 2.9. A representation of g is a Lie algebra homomorphism

p:g—gl(V) (2.11)
where V is a F-vector space.

Definition 2.10. A g-module (or g-action) is a vector space V and a bilinear pairing g x V — V
written as (z,v) — x - v, such that

[z,y] v =2 (yv) —y(z - v) (2.12)
forall z,y e gand all v € V.

If p: g — gl(V) is a representation, then zv = p(x)(v) defines a g-module. Thus we have a
bijection between g-representations and g-modules.

Example 2.11. If V = F, then x -v = 0 for all z € g,v € V is a g-module, called the trivial
representation. This induces the map p : g — gl; given by p(x) =0 for all z € g.

Example 2.12 (Defining representation). If g is defined as a subalgebra of gl(V'), then the inclusion
g — gl(V) is called the defining representation.

Example 2.13. If z € g, write ad, : g — g such that ad,(y) = [z,y]. This defines a linear map
ad : g — gl(g) given by = — ad,.

All the nice properties of representations and linear maps come from the Lie bracket [, ].
Lemma 2.14. ad is a Lie algebra homomorphism.

Proof. We need to check that Vz,y € g, [ads,ad,] = ad[, .. This follows from routine calculation.

O
The representation ad is known as the adjoint representation, and is very important.
Example 2.15. Let g = sl(C). Then
1. p1: g — gl; is the trivial representation given by p;(z) = 0.
2. g — gl is the defining rep given by mapping e, f, h to their associated matrices.
3. ad : g — gl(g) = gl; with basis {e, h, f}. We can calculate
0 -2 0 2 0 O 0 0 0
ade= (0 0 1|, adp,=|0 0 0], adfg=|-1 0 0 (2.13)
0 0 O 0 0 -2 0 2 0



2.3 Morphisms of representations

Definition 2.16. A linear map ¢ : V — W between g-representations is called a g-homomorphism
(or g-equivariant) if it respects the representation structure on V' and W, so that ¢(zv) = zp(v)
forallve V,x €g.

If it is bijective, then it is a g-isomorphism.

Lemma 2.17. If p,p' : g — gl,,(F) are representations, then p and p' are isomorphic if and only
if there exists M € GL,,(F) such that p'(z) = Mp(z)M =" for all x € g.

Proof. An isomorphic F'™ — F"™ corresponds to M. O
We now list some properties of g-representations.

Definition 2.18. Let V be a g-representation, corresponding to p : g — gl(V). Then

1. dimV is the dimension of (or degree of) the representation.
2. V is faithful if p is injective.

3. A subspace W C V is a subrepresentation if it is g-stable, so that zw € W for all z € g,
wewWw

4. V is irreducible if V' # 0 and there are no non-trivial proper subrepresentations.

Example 2.19. sl; — gl, the trivial representation is irreducible.
sly — gl, the defining representation is faithful and irreducible.
sly — gl, the adjoint representation is irreducible.

Lemma 2.20 (Schur’s Lemma). Let V,W be irreducible g-representations and ¢ : V. — W a
g-homomorphism. Then

(i) Either ¢ =0, or ¢ is bijective (so an isomorphism).
(i) If F is algebraically closed, and V-=W, then ¢ = Aidy for A € F*.

Proof. (i) Assume ¢ # 0. Then ker ¢ is a subrepresentation, so ker ¢ = 0. im ¢ is also a subrepre-
sentation, so imp = W.
(ii) Since F' is algebraically closed, ¢ has an eigenvalue A € F. Then ¢ —Aidy has an eigenvector
in its kernel, so ¢ — Aidy is not bijective, so p — Aidy = 0.
O

2.4 Representations of sl,

Our goal is to classify all irreducible representations of sl3(C). Let V' be an irreducible representation
of sl3(C), with p : slo(C) — gl(V). For example, the trivial, defining, or adjoint representations.
For A € C, we can define the eigenspace

Vi={veV|hw= X} (2.14)

We want to understand how e and f interact with Vj.



Lemma 2.21. We have that e(Vy) C Vaye and f(Vy) C Vy_a.
Proof. If v € V) so that hv = Av, then direct calculation gives the result. O

So applying e and f allows us to “hop” through the eigenspaces.
Since h (or really p(h)) has at least one eigenvalue, there exists A € C such that V), # 0. Then

the lemma shows that
P Vasar (2.15)
keZ
is stable under the action of h, e, f, so it must equal the entire space V because p is an irreducible
representation. So

@ Vat2k (2.16)

kEZ
where V) # 0. At some point, we must have that V) o, = 0.

Definition 2.22. If A € C is such that V) # 0, then X is a weight of V.
If V) # 0 but V42 = 0, then A is a highest weight, and v € V) is a highest weight vector.

Lemma 2.23. Ifv € V), is a highest weight vector, then W = (v, fv, f?v,---) is a subrepresentation
of V.

Proof. We need to check that W is stable under the action of e, h, f. We can do this by direct
calculation. Importantly, we check that

e(ffv) = k(A =k + 1)(fF o) (2.17)
O

So if v is a highest weight vector, then V = (v, fv, f?v,...) because W is a nonzero subrepre-
sentation and V is an irreducible representation.

Corollary 2.24. All the weight spaces are one-dimensional spanned by f*v, where v is o highest
weight vector and k > 0.

Corollary 2.25. If V' has dimension n+ 1, then V has highest weight n.

Proof. Let v € V) be a highest weight vector. Then V' = {v, fv,..., f*v} because dimV =n +1
and fFv # 0 for 0 < k < n. Now by (2.17) we have that e - (f"T1v) = (n + 1)(A — n)(f"v) = 0 so
A=n. O

So the weights of V are {—n,—n+1,...,n—2,n}.

Theorem 2.26. For every n € Zx>g, there is a unique isomorphism class of irreducible representa-
tions of sla(C) of dimension n+ 1, denoted by V(n).

Proof. For uniqueness, if V' is an irreducible representation of dimension n+1 and v € V is a highest
weight vector, then we have a basis {v, fv,..., f®v} for V, and this determines all the matrices for
the representation p.

For existence, one can check that the matrices which are defined preserve the bracket. For

irreducibility, if W is a nonzero subrepresentation of V'(n), and v, ..., v, is the standard basis of
V(n), then there exists v = > ¢;u; € W\ {0}. Since ev;1; = av;, we have that e*v = avy with
a # 0 for some k, so vg € W. Then f/vy = bv;, so v; € W for all j, so W =V. 0



2.5 Complete reducibility
Let g be any Lie algebra over any field F'.

Definition 2.27. If VW are g-representations, then V' & W can be given the structure of a g-
representation via g(v,w) = (gv, gw). A g-representation is completely reducible if V= Vi @®---dV,
where each V; is irreducible.

Lemma 2.28. A representation V is completely reducible if and only if for every subrepresentation
W C V, there exists a subrepresentation W' C V such that W @ W' = V.

The above lemma says that a representation is completely reducible if and only if the complement
of every subrepresentation is a subrepresentation.

Proof. First suppose every complement is a subrepresentation. If we induct on dimension, then our
decomposition will eventually stop.

Now suppose V is completely reducible and W is a subrepresentation. Suppose W’ is a subrep-
resentation such that W N W’ = {0} and W’ is maximal among all subrepresentations with this
property. Then V=W @& W' (exercise). O

Example 2.29. Let g = by C gl, the Lie algebra of upper triangular matrices. Then the defining
representation is not completely reducible. This is because by preserves the first basis vector eg, so
W = (ey) is a subrepresentation, but its complement W’ = (es) is not a subrepresentation.

2.6  More operations of representations

Definition 2.30. If W C V is a subrepresentation of a g-representation, then V/W = {v 4+ W |
v € V'} is a g-representation because W is stable under the g-action. We have the obvious action

z(v+W)=xv+W. (2.18)

Definition 2.31. If V is a g-representation, then the dual space V* = Hom(V, F') is a g-representation
with action given by

(£F)() = —f(0) (2.19)
forzxeg, feV,veV.

Definition 2.32. If V, W are g-representations, then Homg(V, W) is a g-representation via

(zp)(v) = 2p(v) — p(zv) (2.20)
for ¢ € Homp(V, W),z € g, ve V.

Definition 2.33. If VW are g-representations, then V ® p W is a g-representation by z(v ® w) =
(2v) @ w+ v ® (zw).

Definition 2.34. We have that Sym”™ V, A" V are subrepresentations of V®".



2.7 Complete reducibility for sly(C)

If V is an sly(C)-representation, then the set {\ € V' | V) # 0} is called the set of weights. We
view this as a multiset where A has multiplicity dim V}, this is reflected in the multiple roots of the
characteristic polynomial.

As a consequence of complete reducibility and our description of V(n), we have the following.

Corollary 2.35. A representation of slo(C) is determined up to isomorphism by its weights (with
multiplicities).

Proof. Trivial O

Example 2.36. 1. Suppose an sl, representation V has weights {5, 3,3,1,1,0, -1, -1, —3, —3, —5}.
Then V=V (0) & V(3) ® V(5).

2. Suppose V has dimension 5 and has 3 as a weight. Then V =V (3) @ V(0).
3. The defining representation if V(1).
4. The adjoint representation is V'(2).

Definition 2.37. Let p : slo(C) — gl(V) be a representation. The Casimir element is the map

Q, = ple)p(f) + p(f)ple) + %p(h)2 € gl(V) = End(V) (2.21)

We consider End(V) as a ring, but p is not a ring homomorphism. For instance, we do not necessarily
have p(e)p(f) = p(ef) because “ef” is a meaningless concept in a Lie algebra.

Lemma 2.38. Q,:V — V is g-equivariant, so it gives a homomorphism of representations.

Proof. We need to show that Q,(zv) = 2Q,(v) for all z € sl5(C) and v € V. Equivalently, we want
to show that p(z)Q, = Q,p(x) for = h,e, f. We can do this by direct calculation. O

Lemma 2.39. If p =2 V(n), then Q, = cid where ¢ = (n?/2 4 n)

Proof. By Schur’s lemma, €, defines a subrepresentation (taking images) so Q, = cid. Let v € V(n)
be a highest weight vector. Then hv = nv, and ev = 0. So Q,v = (n?/2 + n)v which is nonzero
when n > 0, so when p is nontrivial. O

Lemma 2.40. If b is an abelian Lie algebra, then every Lie algebra homomorphism ¢ : sl3(C) — b
15 0.

Proof. We have that o([z,y]) = [p(x), p(y)] = 0. Since [z, y] spans sl2(C) so that [sl3(C),sl(C)] =
sl5(C), we have that ¢(z) =0 for all . O

To show that an sl3(C) representation V' is completely reducible, we’ll show that every subrepre-
sentation W C V has an invariant complement W’ C V such that V=W & W’ (and WNW’' = 0).

Proposition 2.41. If W CV has codimension 1, it has a complementary representation, so there
exists a trivial subrepresentation W' C 'V such that W @ W' =V,

10



Proof. V/W = C is an sly(C) representation, and since gl(V/W) = gl is abelian, V/W is trivial.
Choose a basis ey, ..., e, for V such that ej, ..., e,_1 is a basis for W. In this basis, p : slo — gl(V)
looks like

plw
0 0 0

(2.22)

*
*

*

0

We will choose e, so that p(x)(e,) = 0 for all x € sls.

Case 1: If W = V(0) is trivial, then im p is abelian, so p = 0.

Case 2: Assume W is irreducible and nontrivial. Consider 2, : V' — V. We have that Q(W) Cc W
because W is a subrepresentation. W is irreducible, so Q|w = cidw for ¢ # 0 by Lemma 1. On the
other hand, Q : V/W — V/W is zero by Lemma Therefore W’ = ker  has the property that
V =W @ W/, and it is a subrepresentation because of equivariance (the kernel of a g-equivariant
homomorphism is a representation).

Case 3: Now let W be any subrepresentation. We proceed by induction on dim W. If dimW =0
or W is irreducible, we are done by the previous cases. So we can assume that W is nonzero and
reducible. Let U C W be a proper, nonzero subrepresentation. Then W/U is a subrepresentation
of V/U of codimension 1, and W/U has dimension strictly smaller than W. By the induction
hypothesis, there exists a one-dimensional subrepresentation L C V/U such that V/U = (W/U)@® L.
So L = W'/U for some W' C V containing U. Then V. =W + W’ and WN W’ = U. Since L is
one-dimensional, U € W' has codimension 1. By the induction hypothesis, there exists W/ C W’
such that W/ = U @ W". Therefore V=W & W".

O

Theorem 2.42. Let V be a representation of slo and W a subrep. Then there exists W' such that
V=weWw.

Proof. Recall Hom(V, W) is an sl rep via (z¢)(v) = z(¢(v)) — p(zv). Let
V= {p € Hom(V,W) | ¢lw = cidw} D W = {¢ € Hom(V, W) | p|w = 0} (2.23)

We claim that W and V are subrepresentations of Hom(V, W) and W C V has codimension 1.
Indeed, if ¢ € V and z € sl5(C), w € W, then (z¢)(w) = zp(w) — @(xw) = 0 since |y = cidwy .
and W is a subrepresentation of V. Thus £V C W, so V and W are subrepresentations. The map
F : ¥V — C sending ¢ to ¢, where |y = cidy is linear and surjective. Thus ker 7/ = W has
codimension 1.

By the proposition, there exists a trivial subrepresentation W C V such that ¥V = W& W', Let
© € W be nonzero. Now, zp = 0 for all x € sl3(C) since W' is trivial. Thus ¢ is sl (C) equivariant
as (zp)(v) = zp(v) — p(zv) =0 for all v € V. Thus W' = ker ¢ satisfies V=W ¢ W'. O

2.8 Tensor products
Let F be a field. Recall the tensor product. Recall that not all tensors are pure.

11



Lemma 2.43 (Universal property of tensor product). If V,W,U are vector spaces, then there is a
canonical isomorphism between Hom(V @ W, U) and the set of bilinear maps V. x W — U given by
(v@w—u) = ((v,w) = u).

Example 2.44. In F?> ® 3, the elements are the form cije; @ fj, and we can represent this as
a matrix. In this way pure tensors are rank 1 matrices.

If g is a Lie algebra and V, W are g-representations, then V ®W is a representation via x(vQw) =
(2v) @w +v @ (zw) for all x € g, v € V, w € W. Notice the similarities between this and the
product rule.

Definition 2.45. If n > 1 and V is a vector space, let V€"? =V ®---®@V be the nth tensor power.
Let
Sym”™V = V®"/Span{v; @ -+ @ vy, — Vp(1) @+ @ Vp(n) | 0 € Sp} (2.24)

be the nth symmetric power, spanned by the symbols vy - - - v, where we can change the order of
the v;s as we wish. Also, let

/\ V =V®"/Span{v; @ - @ v, — SEN(0)Vp(1) @ -+ @ Vg(n) | 0 € Sp} (2.25)
be the nth exterior power, spanned by the symbols vi A -+ A v, with v; # v;.
If V is a g-representation, then the tensor, symmetric, and exterior powers are also.
Example 2.46. If V has basis ey, ...,e,, then
1. V®? has basis {e; @ e; | 1 < 4,5 <n}.
2. Sym? V has basis {e;ej |1 <i<j<n}

3. A’V has basis {eine; |1 <i<j<n}

3 Solvability and Nilpotents

We define what it means for Lie algebras and elements of Lie algebras to be solvable, nilpotent.

3.1 Ideals of Lie Algebras
Let g be a Lie algebra over F.

Definition 3.1. An ideal of g is a subspace I C g such that for all € g, [z, I] C I. This is always
a subalgebra because [I,I] C [g,I] C I.

Remark 3.2. In analogy with Lie groups we have

Lie algebra <+ Lie group
subalgebra <+ subgroup

ideal <» normal subgroup

Remark 3.3. An alternative definition of an ideal is a subrepresentation of Ad g.

12



Lemma 3.4. If o : g — § is a Lie algebra homomorphism, then ker ¢ is always an ideal.
Proof. If x € g, y € ker ¢, then ¢([z,y]) = [p(x), p(y)] =0 so [z,y] € ker p. O

Lemma 3.5. If I C g is an ideal, then g/I has the structure of a Lie algebra via [x + I,y + I] =
[z,y] + 1.
The projection g — g/I is a homomorphism with kernel I.

Proof. Trivial. O
Definition 3.6. A Lie algebra g is simple if it has no nonzero proper ideals and g is not abelian.
Remark 3.7. g is simple if and only if g is not abelian and the adjoint representation is irreducible.
Example 3.8. sl3(C) is simple since the adjoint representation V'(2) is irreducible.

Example 3.9. sl,(C),sp,,(C),s0,(C) are all simple.

We'll classify all simple Lie algebras over C, and we’ll find that the the three listed above are
almost all the examples, except for 5 “exceptional” Lie algebras.

3.2 Solvable and Nilpotent Lie Algebras

If I,J C g are ideal, let [I,J] = Span{[i,j] | i € I,j € J}. Note that we need to take the span as
simply taking [¢, j] for all ¢ € I and j € J might not give a subspace. Then [I, J] is an ideal, which
follows from the Jacobi identity.

Definition 3.10. The derived subalgebra of g is [g, g].
Remark 3.11. [g,g] = 0 if and only if g is abelian.
Example 3.12. [gl,,,gl,] = sl,.

Example 3.13. If g is simple, then g = [g, g] because [g, g] is a nonzero ideal (recall that it is
nonzero because a simple Lie algebra must not be abelian).

Definition 3.14. Set g(® = g° = g, and g™ = [g(*=D g(»~D] and g" = [g,g"']. We then have
filtrations of Lie algebras

gogMog? ... the derived series (3.1)
gDg'Dg*D - the central series
g is nilpotent if g" = 0 for some n > 1. g is solvable if g™ = 0 for some n > 1.
Remark 3.15. We have that (") C g”, so nilpotent implies solvable.
Example 3.16. 1. n,, the algebra of strictly upper triangular matrices is nilpotent.
2. b, the algebra of upper triangular matrices is solvable but not nilpotent for n > 2.

Lemma 3.17. If g = n,(F), then g™ =0, so g is nilpotent.
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Proof. An n x n matrix has level greater than k if the nonzero entries of A are supported on indices
with 7 — i > k. Basically it measures how upper triangular the matrix is. Each term in the central
series of n,, increases the level by 1. O

Remark 3.18. A similar argument shows that (b,,)(™) are the matrices with level m. But b™ = n,,,
so b, is not nilpotent.

Lemma 3.19. If g is nilpotent (or solvable), then so is any (i) subalgebra or (ii) quotient.

Proof. (i) If h C g is a subalgebra, then h(™ < g(™ and h” C g".
(ii) If I C g is an ideal, then (g/1)™ = g™ 4 I and (g/I)" = g" + I. O

3.3 Engel’s Theorem

Our arguments still work over general fields.
Recall that an endomorphism ¢ € gl(V) is nilpotent if ™ = 0 for some n > 1. Equivalently, all
the eigenvalues of ¢ over an algebraic closure are 0.

Lemma 3.20. If g is nilpotent, then for all x € g, ad(x) : g — g is nilpotent.

Proof. g is nilpotent if and only if there exists n > 1 such that ad,, o---oad,, =0forall zy,...,z,.
In particular, taking x = z; = - -+ = x,,, we have that ad" z = 0. O

Theorem 3.21 (Engel). g is nilpotent if and only if ad, is nilpotent for all x € g.
One direction of this equivalence follows from Lemma [3.20}

Remark 3.22. It is not true that g C gl,, is nilpotent if and only if x is a nilpotent matrix for all
T Eg.

Lemma 3.23. If V is a vector space and x € gl(V') is nilpotent, then ad, € gl(gl(V')) is nilpotent.

Proof. We have that ad,(y) = 2y —yz = L, (y) — R.(y) where L, and R, are multiplication on the
left and right. Since x is nilpotent, L, and R, are nilpotent operators. Also, L, o R, = R, o L,
so ad, is nilpotent (iterated applications of ad, are sums of iterated applications of L,, R;, which
will be zero of large n). O

Proposition 3.24. If g € gl(V) is a subalgebra such that x is nilpotent for all x € g, then there is
a nonzero v € V such that xv =0 for all x € g.

Proof. We proceed by induction of dimg. If dimg = 1, then g = Span{x} with z nilpotent, so
z"™ = 0 for some minimal n, so there exists v such that (2" 'v) = 0 and 2" v # 0.

For the inductive step, let p C g be a maximal proper subalgebra. If € p, then ad(x) is
nilpotent by Lemma @L So ad(x) : g/p — g/p is a nilpotent element of gl(g/p), and in this way
we can consider p as a subalgebra of gl(g/p) with each element nilpotent. Then by the inductive
hypothesis, there exists an element 7 € g/p such that ad(x)(g) = 0 for all x € p. Lifting § to some
y € g, we have that y ¢ p and [z,y] € p for all z € p. Therefore p + F - y is a subalgebra, so
g=p+ F -y since we chose p to be maximal and y ¢ p.

Moreover, p is an ideal of g, since [p,p] C p and [p, y] C p. Consider

W={veV |pv=0Vpe p} (3.3)
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By the induction hypothesis applied to (p, V), W # 0. We claim that W is stable under y, so that
y-W C W. Indeed, if v € W and p € p, then we need to check that yv € W:

p(yv) = [p,ylv +y(pv) = 0 (34)
because [p,y] € p. Now, by the dimension 1 case applied to Span{y} C gl(W), there exists

w € W\ {0} such that yw = 0. Then w satisfies the statement of the theorem.
O

Corollary 3.25. If g € gl(V) is a subalgebra such that x is nilpotent for all x € g, then there exists
a basis of V' such that g C n,, so g is a nilpotent Lie algebra.

Proof. By Proposition [3.24] there exists v; € V \ {0} such that g - v; = 0. Choosing a basis
V1,-...,Vn, we have that the first column of the matrix for each element of g is all zeros. Applying
the proposition to V/Span{v;} and iterating, we find that g C n,, is upper triangular. O

Proof of Theorem[3.21. We need to show that if ad, is nilpotent for all z € g, then g is nilpotent.
The other direction is done by Lemma [3.20]

Consider ad : g — gl(g) and h = imad. By the Corollary, b is nilpotent. Since kerad = Z(g) =
{z € g|[x,y] = 0Vy € g}, we have that h = g/Z(g), so g/Z(g) is nilpotent. So (g/Z(g))" = 0 for
some n > 1. So g" + Z(g) = Z(g), so g" € Z(g), so g"*! = [g,9"] C [g, Z(g)] = 0. O

From now on, we will assume that F' = C.

3.4 The big three theorems

The first big theorem is Engel’s Theorem which we have already proved. We proved it by
showing if a subalgebra g C gl(V') consists of nilpotent elements, there is a basis of V' such that
gCn,.

The second big theorem is Lie’s theorem, which is an analogue of Engel’s theorem for solvable
subalgebras. We do not prove it, but you can see Humphreys.

Theorem 3.26 (Lie). If g C gl(V) is a solvable subalgebra, then there exists a basis of V' such that
gCb,.

The third big theorem gives a trace criterion for solvability. We also omit the proof.
Theorem 3.27 (Cartan). A subalgebra g C gl(V') is solvable if and only if for all x € g, and for
all y € [g, 9], Tr(zy) = 0.

Proof. If g C gl(V) is solvable, by Lie’s theorem we can pick a basis of V' such that g C b,. If
x € b, and y € [b,, b,] = n,, then 2y € n,, so Tr(zy) = 0.
For the other direction, see Humphreys, §4.3. O

4 Semisimpleness is very nice!
We define semisimpleness.
We also define the trace form, and use it to show representations of semisimple Lie algebras are

completely reducible.
Also we do Jordan decomposition for elements of semisimple Lie algebras.
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4.1 Semisimple Lie Algebras

Definition 4.1. A Lite algebra g is semisimple if g = 1; @ Io @ - - - & I}, where each I; is a simple
Lie algebra.

Example 4.2. 1. Every simple Lie algebra is semisimple.
2. We have that 504(C) = sl5(C) @ sl5(C) is simple but not semisimple.

Lemma 4.3. A Lie algebra g is semisimple if and only if ad : g — gl(g) is faithful and completely
reducible.

Proof. g has no abelian ideals if and only if Z(g) is trivial if and only if ad is faithful.
g has a decomposition into irreducible ideals if and only if ad is completely reducible. O

4.2 The Killing form

Definition 4.4. If p: g — gl(V) is a representation of g, the ¢race form is the bilinear form

(b )v:gxg—=C
(z,y)v = Try (p(z)p(y)) (4.1)

Recall that trace is basis independent.

Definition 4.5. The Killing form is the trace form of the adjoint representation:

k(z,y) = Trg(ad(z) ad(y)). (4.2)
This is clearly symmetric and bilinear.
Lemma 4.6. If p: g — gl(V) is a representation, then ([x,y],z)v = (z,[y, 2])v for all z,y,z € g.

Proof. Direct calculation: use trace commutativity. O

Warning! Tr(ABC) # Tr(BAC) in general.

Example 4.7. Let g = sly. In the basis {e, h, f} we can calculate k(e,e) = 0, k(h,h) = 8, and
k(f, f) = 0. The Gram matrix of « is

o O

0 4
080 (4.3)
400

The determinant of this matrix is nonzero, so x is nondegenerate. In fact, this characterizes semisim-
ple Lie algebras.

4.3 The Cartan-Killing criterion
Lemma 4.8. (i) If I C g is an ideal such that I and g/I are solvable, then g is solvable.
(i) If I,J are two solvable ideals, then so is I + J.
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Proof. (i) If I and g/I are solvable, then there exists n > 1 such that (g/I)™ = g™ + T =0+1
so g™ C I. But there exists m > 1 such that 1™ =0, so g(»™) c 1™ =0.

(ii) I + J is isomorphic to (I & J)/(I NJ). Since I and J are solvable, so is I @ J and hence
I+J. 0

Definition 4.9. By the previous lemma, any two solvable ideals are contained in their sum, so we
can take the sum of all of them to get a unique maximal ideal solvable ideal. This is called the
radical of g, and is denoted by Rad(g).

Theorem 4.10 (Cartan-Killing criterion). Let g be a nonzero Lie algebra over C. The following
are equivalent:

(i) g is semisimple.
(i) Rad(g) = 0.
(i) The Killing form is nondegenerate.

Before we prove this, we need a little lemma.

Lemma 4.11. If I C g is an ideal and kg is the Killing form of I, then k(x,y) = kr(z,y) for all
z,y € 1.

Proof. Consider two adjoint representations: adg : g — gl(g) and ad; : I — gl(I). If x € I, then
adg(z) sends g to I, so the matrix looks like

ady (x) = (adfo(f”) 3) (4.4)

so Tr(adg(z) ady(y)) = Tr(ads(z) ads(y)). O

Proof of Theorem [{.10

(i) — (ii):

Write g =11 @ - - - @ I}, with I; simple. Let R; be the projection of Rad(g) onto g/I;. Since R;
is the quotient of a solvable Lie algebra Rad(g), R; is solvable. Also, R; is an ideal of I; because
projection is surjective.

Since I; is simple, every ideal of I; is 0 or I;. Also, since [I}, I;] = I; because I; is simple, I; is
not solvable,so R; = 0 for all j. So Rad(g) = 0.

(il) — (iii):

Set

gt ={z cg|n(z,y) =0vyc g} (4.5)

We want to show that gt is solvable, so if Rad(g) = 0, then & is nondegenerate.
First, g+ is a subspace because it is the kernel of a bilinear form. It is an ideal because
k([x,y],2) = k(z, [y, 2]), so if z € g+ and y € g, then for all z € g,

H([y,ﬂ?], Z) = —K(l‘, [y7 Z]) =0 (46)
so [y,2] € g*. So [g,g1] C gt so it is an ideal.

To show that g’ is solvable, we use Cartan’s trace Theorem So apply this, consider
ad : g — gl(g) and consider the subalgebra h = ad(gt). By Cartan’s theorem, this is solvable
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because Tr(xy) = 0 for all z,y € h. Moreover, h = g+ /Z(g), so g /Z(g) and Z(g) are solvable, so
g is solvable by Lemma

Thus gt € Rad(g) = 0, so g* = 0, so  is nondegenerate.

(iii) — (i):

Suppose the Killing form is nondegenerate.

Claim 1: g has no nonzero abelian ideals.
If I C gissuch an ideal, and z € I, y € g, then

0 = * ok
i) = (3 5). = 7) (47)
so Tr(ad(z)ad(y)) = 0, so x = 0 because & is nondegenerate. This proves the claim.

To show that g is semisimple, we use induction on dim g. If g is simple, we are done. By Claim
1, it is not abelian. So let I be any proper, nonzero ideal and

J={zeg|r(z,y) =0vy eI} (4.8)

be the orthogonal complement of I.

Claim 2: g=1®J.

It suffices to show that INJ = 0. We have that K = I'NJ is an ideal of g, and it is solvable by
Cartan’s theorem Then K™ = 0 for some minimal n, so that K(*~1) £ 0. But then K"~
is abelian, which is a contradiction to claim 1. So K = 0.

Thus g = I @& J, and by inductive hypothesis, I and J are semisimple.

O
Lemma 4.12. Every ideal and quotient of a semisimple Lie algebra is semisimple.
Proof. Sheet 2. O
Note that this Lemma is not true for subalgebras.
4.4 Complete Reducibility
Let g be a semisimple Lie algebra.
Theorem 4.13 (Weyl). Every representation of g is completely reducible.
Proof. The proof generalizes the sl, case. See Sheet 2. O
Lemma 4.14. If p: g — gl(V) is faithful, then the trace form (-,-)v is nondegenerate.
Proof. Cartan’s trace criterion Theorem [3.27] shows that
{zeg|(z,y)v =0Vy € g} (4.9)
is solvable.
Since Rad(g) = 0, this shows that (-,-)y is nondegenerate. O
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Definition 4.15. Let p: g — gl(V) be a faithful representation. Pick a basis z1,..., 2, of g and
let y1,...,ym be the dual basis with respect to the trace form, so that (z;,y;)v = d;;. Then the
Casimir element of p is

0, = pla)p(y:) € End(V) (4.10)
i=1
Remark 4.16. The Casimir element is independent of the choice of basis of g, but we won’t need
this fact.

Example 4.17. If g = sly and p : g — gl is the defining representation, then the Casimir element

is defined as in :
Q, = ple)p(f) + p(f)p(e) + %p(h)2 € gl(V) = End(V) (4.11)

Proposition 4.18. The Casimir element Q,:V — V is g-equivariant, and Tr(2,) = dim g.

Proof. Trace follows from direct calculation.
To show €, is g-equivariant, let x € g and write

[z, ;] Zawxj, [z, yi] Zbljy] (4.12)

Since ([z, z;],y;)v = — (x4, [z, y;])v by Lemma we have that a;; = —b;;. Using that [A, BC] =
[A, B]C + B[A,C] for all A, B,C € End(V'), we have that [p(z),2,] = 0.
O

4.5 Jordan Decomposition

Let V be a vector space. Then an element x € gl(V)) = End(V) is semisimple if it is diagonalizable,
so x has a basis of eigenvectors. x is nilpotent if ™ = 0 for some n > 1. Equivalently, = has all
eigenvalues 0. So if = is both semisimple and nilpotent, then z = 0.

Proposition 4.19 (Concrete Jordan decomposition). Let x € gl(V'). Then

(i) There are unique s, x, € gl(V) such that x4 is semisimple x,, is nilpotent, v = x5 + x,, and
[s,2,]) = 0. This is the Jordan decomposition of x.

(ii) Moreover, there exist polynomials ps,p, € C[t] with zero constant term such that x5 = ps(z),
and x, = pp(z). These are not unique, and depend on x.

(i1i) If y € gl(V) commutes with x, then it also commutes with x5, X,.
IfU,W CV are subspaces such that x(U) C W, then x5(U) C W and z,(U) C W.

Proof. (ii) — (iii): If y commutes with z, it commutes with p(z).
The other parts follows from routine Linear Algebra, see Humphreys §4.2 U

Al A0 0 1
02 . _ _
Example 4.20. If V =C=, z = [O /\} then x = [O /\} and x = {0 0].

If A # 0, then py(t) = 2t — A71¢% and p,,(t) = A\~1? — t works.
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The Jordan decomposition interacts nicely with semisimple subalgebras, as the next theorem
shows.

Theorem 4.21. Let g C gl(V) be a semisimple subalgebra and x € g with Jordan decomposition
x=xs+x, ngl(V). Then xs, 2, € g.

Proof. This is just linear algebra, see Humphreys §6.4. O

Remark 4.22. This is not true for an arbitrary subalgebra of gl(V'). For instance, take the span
of x € gl(V) such that x # xg, .

Now, if g is a semisimple Lie algebra, then ad : g — gl(g) is injective (the adjoint representation
is faithful) because the center is trivial. So by the above theorem, ad(z) = ad(xs) + ad(x,,) is the
Jordan decomposition of ad(x) € gl(g) for some unique (because of faithfulness) elements zs, z,, € g.

In other words, there exists a unique x5, z,, € g such that ad(z) = ad(z,)+ad(z,) is the Jordan
decomposition of ad(x). Since ad is a representation, we have that © = x4 + ,, this is the abstract
Jordan decomposition of x.

If g is a semisimple subalgebra of gl(V'), there are two possible Jordan decompositions of = € g:
the concrete one from gl(V'), and the abstract one from the adjoint representation in gl(g).

Lemma 4.23. If v € gl(V) has concrete Jordan decomposition © = x5 + x,. Then ad(z) =
ad(zs) + ad(x,,) is the abstract Jordan decomposition of ad(zx) in gl(gl(V)).

Proof. We need to check that
(i) ad(zs) is semisimple.
(ii) ad(z,,) is nilpotent.

(iii) [ad(zs),ad(zy)] = 0.

Since the abstract Jordan decomposition is unique, this shows that the concrete Jordan decompo-
sition aligns with the abstract one.

(i) In a basis of eigenvectors for x4, the elementary matrices in gl(V') form a basis of eigenvectors
for ad(xs), so ad(xs) is semisimple.

(ii) By Lemma[3.23] if z,, € gl(V') is nilpotent then ad(z,) € gl(gl(V')) is nilpotent.

(iii) Since ad is a representation, we have that [ad(x;), ad(zy,)] = ad([zs, z,]) = 0. O

Corollary 4.24. If g C gl(V) is a semisimple subalgebra and x € g, then the concrete and abstract
Jordan decompositions coincide.

Proof. There’s a proof of this in my notes but this appears to be immediate from the uniqueness
of the abstract Jordan decomposition? O

From now on, we will simply refer to the Jordan decomposition of an element of a semisimple
Lie algebra, since we have shown that the abstract and the concrete Jordan decompositions are the
same. In the same way we can show the following.

Proposition 4.25. If p: g — gl(V) is a representation of a semisimple Lie algebra g and x € g,
then p(x) = p(xzs) + p(xy,) is the Jordan decomposition of p(z), where x = x5 + x,, is the Jordan
decomposition of x.
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Proof. Exercise. This should follows from the exact same argument as above. O

If g is semisimple, an element x € g is semisimple if x = x4, so that ad(x) is a semisimple
endomorphism, and it is nilpotent if = x,,, so that ad(z) is nilpotent. So if x € g is diagonalizable,
then p(z) is diagonalizable for all representations p.

Example 4.26. h € sl5(C) is diagonalizable, so p(h) is diagonalizable for any representation p.

5 Root spaces: a new decomposition

In this section we introduce the notion of a root of a semisimple Lie algebra g. These are essential to
the study of Lie algebras, and arise from the simultaneous diagonalization of a Cartan subalgebra,
as described below.

5.1 The Cartan subalgebra
Let g be a semisimple Lie algebra.

Definition 5.1. A subalgebra t C g is toral if t is abelian and for all z € t, z is semisimple in g.
A toral subalgebra not contained in a bigger one is called a mazimal toral subalgebra, or Cartan

subalgebra (CSA).
We will sometimes refer to a toral subalgebra as a torus, and a CSA as a maximal torus.

Example 5.2. The set of diagonal matrices in sl,,(C), sp,,(C), s0,,(C) are CSAs (Sheet 2).

Remark 5.3. We chose the particular matrix J when defining so0,(C) and sp5,(C) so that the
diagonal matrices are CSAs.

Remark 5.4. Later, we will see that CSAs are essentially unique, up to automorphism of g (all
maximal tori are conjugate).

Remark 5.5. The key to the classification of semisimple Lie algebras is to study the action of t
on g via the adjoint representation, because t is diagonalizable.

Lemma 5.6. If b is an abelian Lie algebra and p: b — gl(V) is a representation such that p(x) is
semisimple for all x € b, then there exists \1,..., A\, € b* = Hom(h, C) such that

m
V=W, (5.1)

i=1

where

Vi, ={veV|zv=N\(@)vveeh (5.2)
Proof. Choose a basis t1,...,t, of h. Then p(t1),...,p(ty) are commuting semisimple elements
of gl(V). Any X € b* is determined by A(¢1),...,A(t,) € C. So the lemma follows from the fact
that {p(t1), ..., p(t,)} can be simultaneously diagonalized because the elements are commuting and
semisimple. See |here. O
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5.2 The root space decomposition

Let g be a semisimple Lie algebra and t C g a CSA, so a maximal abelian subalgebra of semisimple
elements.

Consider the restriction of the adjoint representation ad : g — gl(g) to t. This is a represen-
tation of t. Since t is made up of semisimple elements, the image of this representation consists
of semisimple elements. By Lemma [5.6] we can simultaneously diagonalize, so there exists S C t*

such that
g=Pan (5.3)
AES
where
go={zxeg]|[t,z] =A\t)z Vt € t} (5.4)

We partition S as S = {0} U ®, so that

9=200% P ga- (5.5)
acd

This is called the root space decomposition of g, and the elements of ® are called roots.

Example 5.7. Let g = sly with basis {e, h, f}. Then t = Span{h} is a CSA (Sheet 2), so t* =
Span{h*}, where h* : h +— 1. Then [h,e] = 2e and [h, f] = —2f, so ® = {£2h*} and

sly = go @ gon~ B g—2n- (5.6)
where g is the span of h, gop+ is the span of e, and g_op« is the span of f.

Example 5.8. Let g = sl3. Then the space diagonal matrices with zero trace is a CSA, which we
denote by t. Letting e] € t* be given by

ty 0 O
€; 0 to 0 = ti, (57)
0 0 t3

then t* is spanned by {e}} with relations ej + e + e5 = 0. We can compute that

t7 0 0
0 0 t3
so that
<I>={ef—e;|1§i75j§3} (5.9)
SO
9=0010ci—co T Jei—es T Bes—es T Jea—er T Jeg—er T Bez—e (5.10)

with the root space ge, ., spanned by the matrix £;;. Note that we are somewhat “lucky” that our
simultaneous diagonalization of sl3 gives a basis of elementary matrices.

It is not a coincidence that all the nonzero root spaces are one-dimensional, however, as this is
always the case, as we shall see.
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5.3 First properties of roots
Lemma 5.9. If o, 8 € t*, then [ga, 98] C Ga+s-
Proof. Direct calculation. Use Jacobi identity. O

The next lemma is very important! Using the next lemma and the its nondegeneracy, we are
able to get a handle on the Killing form, which has been a bit mysterious up to this point.

Lemma 5.10. If o, 8 € t* are such that oo+ 5 # 0, then go L g under the Killing form.
Proof. There exists t € t such that (o + 5)(t) #0. If € ga, y € gg, then
w([z,t],y) = a(t)k(z,y)

_’i(xv [tv yD
— —B(t)r(z,y) (5.11)

so (a+ B)(t)k(x,y) =0 so k(x,y) = 0. O

Corollary 5.11. The restriction of k to gg is nondegenerate.
Proof. We have that go L g, for all & € ® since a # 0, so if x € go satisfies k(z,y) = 0 for all
Y € go, then r(x,y) = 0 for ally € go®P,cp 9o = @ 50 then 2 = 0 because  is nondegenerate. [

5.4 The zero weight space
We have that the zero weight space
go={z€g|[tz] =0Vt et} (5.12)
is the centralizer of t in g. Since t is abelian, we have that t C gq.
Proposition 5.12. We have that t = gg.
Proof. Omitted, see Humphreys §8.2. O

Combining this with Corollary we find that k|¢x¢ : t X t = C is nondegenerate. Therefore
the map t — t* given by = — k(x,-) is an isomorphism.

Definition 5.13. If A € t*, let ¢ be the unique element of t such that k(ty,z) = A(z) for all z € t.

5.5 Finding slys in g

We will show that for every a € ®, we can find a subalgebra m, C g isomorphic to sl such that
go C My,

Lemma 5.14. We have that
(i) @ spans t*.

(i) If « € @, then —a € P.
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Proof. (i) If ® spans t*, then there is no nonzero ¢ € t vanishing at all « € ®. Let ¢ € t be an element
such that a(t) = 0 for all & € ®. Tt suffices to show that ¢ = 0. We know that [t, 2] = a(t)z = 0 for
all z € go,a € . Since [t,z] = 0 for all z € g, we have that ¢t € Z(g) = 0 since g is semisimple.
(ii) Since go L gg if @ + 5 # 0, we have that g, is perpendicular to all the root spaces with
a+ A # 0. But since the Killing form is nondegenerate, we must have that —« € ®. O

Proposition 5.15. We have that

(i) If x € go and y € g_a, then [z,y] = tor(z,y).

(77) [Bas 9—a] s one-dimensional.
(111) a(te) = K(ta,ta) # 0.

Proof. (i)The identity is equivalent to x([z,y],t) = a(t)k(z,y) for all ¢t € t, as then [z, y]/k(z,y) is
the unique ¢, € t such that k(ta,t) = a(t).
We have that
w([z, ) 1) = w(z, [y, 1]) = w(z, a(t)y) = a(t)s(z,y) (5.13)

as desired.

(ii) By (i), it suffices to show that k(z,y) # 0 for some x € go,y € g_q, as then we have that
[60:9_a] is spanned by tur(z, y) # 0.

For every x € g, \ {0}, there exists y € g_, such that x(z,y) # 0 as otherwise x would be
degenerate.

(iii) Let € ga, ¥ € go be elements such that x(x,y) # 0 (these exist by (ii)). After scaling, we
may assume that x(x,y) = 1, so then [z,y] = tq, and [ta,x] = a(te)r and [ta,y] = —a(te)y. So

b = Span{z,ta, y} (5.14)

is a subalgebra. Suppose for the sake of contradiction that a(t,) = 0. Then b is solvable as g(?) = 0.

By Lie’s theorem, there is basis of g such that ad : h — gl(g) lands in the space of upper
triangular matrices. So then t, € [h,h] has the property that ad(t,) € gl(g) is strictly upper
triangular, so it is nilpotent. Since it is also semisimple, we have that ad(t,) = 0, so t, = 0, which
is a contradiction. O

We are ready to construct our sly triple m,. For every a € ®, define

2,
" K(tasta)

This will serve the roll of A € sly in our sly triple.

et (5.15)

(03

Proposition 5.16. If a € ® and e, € g, is any nonzero element, then there exists fo € g_o such
that (ew, ha, fa) is a triple satisfying the sly relations:

[hasea] = 2€0,  [has fal = —2fa,  [€as fa] = Pa. (5.16)

Proof. Since the Killing form is nondegenerate and g, L gg for a + 8 # 0, there exists f, € g_qo
such that k(eq, fo) = 2/K(ta, o) after rescaling. By Proposition (i), we have that [e,, fo] =
k(e fa)ta = ha. We also have that

[havea] = a(ha)ea = 2eq4 (5.17)
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since

2, 2a(ty)
ha) = = =2 1
Sise (n(ta,ta)> (s o) (515
since a(ty) = K(ta,ts) by Proposition (iii). Similarly, [hq, fo] = —2fa- O

Thus if (4, ha, fo) satisfies the conclusions of the Proposition, letting m, = Span(eq, ha, fa),
we have that m,, is a subalgebra of g isomorphic to sly. We call (eq, ha, fo) @ slo triple. Thus g is
made up of a bunch of slys glued together in a nice way.

5.6 Root strings

Proposition 5.17. If a € @, then dimg, = 1. Moreover, if ¢ € C, then ca € ® if and only if
c==1.

Proof. Choose an sly triple (eq, ha, fo) giving rise to m, C g. Let

V=t0gca (5.19)
ceC

which is a subspace of g. In fact, V' is stable under the adjoint action of m,, so that [m,, V] C V.
This follows from [ga, 93] C ga+s. So V is a representation of m, = sly under the adjoint action.
The weights of V' (recall how we defined the weights of a sly representation in Section are the
eigenvalues of h,. But since h, € t, these are easy to describe. On t, the weights are 0 with
multiplicity dim t.

On gea, the weights are (ca)(ha) = ca(hy) = 2¢ with multiplicity dim geo. Thus 2¢ € Z if
ca € ®, as all the weights are integers. Moreover, U = t + m, C V is an m-subrepresentation,
because [t,m,] C m,, and m,, is a subalgebra.

By complete reducibility, there exists W C V such that V = U & W. What are the weights of
W? 01is not a weight of W, since the 0 weight space of V' is contained in U. So by the representation
theory of slo, W has no even weights. So 2a ¢ ®, because then 4 would be a weight of W (2isa V'
associated with g,). So 2a ¢ ® for all @ € ®. Then «/2 ¢  for all a € ®, because then we would
have 2(a/2) = o ¢ ®. Since g, /2 has weight 1 T has no weight 1, so it has no odd weights. Thus
W =0. Sothen V =t® g, ®g_o = t® Span(eq, fo)- O

Corollary 5.18. If a € @, then My, = g0 D 90 D [Fas —Fa-
Proof. We have that g, = Spane,, g_o = Span f,, and [ga, §—a] = Span hq. O
Let o, 8 € @, and assume 5 # +a. Let

V =D gs+ha (5.20)
kEZ

This is preserved under the adjoint action of m,, since [gq, 93] C Ga+3-
Thus V is a representation of m, = sly. What are the weights of V7 If € ggya, then

[ha, ] = (B8 + ka)(ho)x (5.21)
On gg4kas ha has weight
(B + ka)(ha) = B(ha) + kah(a) = B(ha) + 2k (5.22)
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with multiplicity 1, since gg4 o has dimension 1 as 3 + ka # 0.

So V has roots of the same parity and multiplicity 1, so V is irreducible. Then V 2 V(n) for
some n € Zxq, so it has weights {n,n —2,...,—n}. The set {8+ ka | k € Z} N ® is called the
a-root string of (.

Proposition 5.19. (i) If o, 8 are roots with « # +5. Let r > 0 be the largest integers such that
B —ra € ® and let ¢ > 0 be the largest integer such that §+ qa € ®. Then

{B+ka|keZin®={B+ka|-r<k<gqg} (5.23)
and B(he) =1 —q € L.
(ii) B — B(ha)a € D.
(iii) If a+ B € @, then [ga,95] = Gats-

Proof. We use that V = V(n) where V is defined as in . Using this fact and sly-theory gives
the result.

(i) We have that n = (8 + qa)(he) and —n = (8 — ra)(ha) so B(he) =7 —q.

Also, since the weights of V' include n, —n, they must include the weights “in between”.

(ii) Note that —r < —f(ha) < ¢, so we can conclude this by part (i).

(iii) This follows from the fact that if A\, A4 2 are weights of an sly-representation, then e : V) —
Va2 is surjective. So g, acting on gg gives gq3- O

5.7 & is a root system
The above results show that if a, 8 € @, then S(h,) € Z, and 8 — B(h)a € @, and if 8 = +a, then

B(ha) = £2. These conditions are enough to show that ® is a root system, which is essentially a
very nice collection of real vectors.
Recall that k : t xt — C is nondegenerate. Sot — t*, x — k(z,-) is an isomorphism with inverse
A — tx. We can use this to define a dual pairing on t* by
() t"xt" = C
(A1) = KlErs 1) (5.24)

Because k is nondegenerate, this is a nondegenerate pairing.
Now, since ® spans t*, there is a basis of roots aq, ..., ay.

Lemma 5.20. If § € ®, then § = Ele c;a; with ¢; € Q for all 4.
Proof. We have that g = Zle cioy; with ¢; € C. For each j, calculating (o, 8) and scaling gives

14

7 2(a, o
Ay, 6) E c;——2—22 J (5.25)
(o, O‘J im1 (aj,a5)
This is a system of linear equations in ¢q,...,c,. Since the form is nondegenerate, ((;,;))s; is

2(0‘7770‘.7)
(aj,o)

invertible, so ( ) ~ is also invertible.
ij



Moreover, if o, 5 € @, then

2(8, ) _ 2k(tg, ta)
(o, @) K(ta,ta)

= kltg, ha) = Blha) € Z (5.26)

so the coefficients of the matrix are in @Q, so the solution (¢;) is also in Q. O

Now, let £ = R® C t* be the R-span of ® in t*. By the lemma, dimg £ = dim Ct* since E has
an R-basis {aq,...,as}. The next theorem shows that the collection & C FE satisfies the axioms of
a root system.

Theorem 5.21. (i) The restriction of (-,-) to E x E is real valued and positive definite.
(i) If « € ® and c € R, then ca € ® if and only if c = £1.

(iii) If o, B € ®, then B — 282 € @.

(o,)

() If a, B € P, then % € 7.
Proof. (ii), (iii), (iv) are done by Propositions and [5.19 since % = B(ha)-
(i): We show that («,8) € Q for all o, € ®. If A\, p € t*, then (\,p) = r(ty,t,) =
Tr(ad(tx) ad(t,)) which is the sum of the eigenvalues of ad(ty) ad(¢,). Now, ad(tx) has eigenvalue
0 on t, and a(ty) on g,. So

(A ) =Y alta)alty) = > (A\a)(u,a) (5.27)
acd aed
since (A, @) = K(tx,ta) = a(ty). We plugin A =p = 3 € ®\ {0} to get (3,8) =X el B8)? so
1 1 1 1
B.8)  (B:B)? C;) 76)* (B, 8)” = ; 70(hg)* € Qxo (5.28)

by (iv) and the non degeneracy of the form, which gives positive definiteness

Also, (a, 8) = (8,8) - (555 = (8,8) = (8, B)3a(hs) € Q. O

6 Root spaces: the abstract strikes back

We have shown that ® is a root system. Root systems can be classified, and the root system of a
semisimple Lie algebra determines it. Thus to classify semisimple Lie algebras, we can classify root
systems in the abstract, which we now do.

Definition 6.1. A Euclidean space (E, (+,-)) is a real vector space E and a positive definite bilinear
form (an inner product).
If \,a € E and a # 0, define

A\ aY) = (6.1)
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and the reflection map

We : F— F
A= A= (A aY)a (6.2)
This is the reflection along the hyperplane

Hy,={ze€E]|(z,a) =0} (6.3)
It sends o — —a, and is the identity on H,, so it is a reflection. We have that w? = 1.
Definition 6.2. A root system is a finite subset ® of a Euclidean space E such that
(R1) @ spans E and 0 ¢ ®.
(R2) If o« € @ and ¢ € R, then ca € ® if and only if ca = +1.
(R3) For all @ € @, w,(P) = P (reflection preserves roots).
(R4)

R4) For all o, B € @, (B,a") = % € Z. So the reflection of 8 onto the line spanned by « is an
integer of half-integer multiple of «.

The rank of ® is dimg F.

An isomorphism of root systems ®, ®’ is an isomorphism of vector spaces f : E — E’ such that
f(@) = 2" and (f(B), f(a)") = (B,a") for all o, B € O.
6.1 Examples of root systems

If t is a CSA of a semisimple root system g, then ® = ®(g,t) C E = R® is a root system, as we
have shown in the previous section.

Example 6.3. Let E = R with the standard inner product, and ® = {£1} C E. If a = +1 € E,
then (o,a") =2 and (—a,a") = —2. This is the A; root system.

Example 6.4. The root systems of rank 2 are given in Figure [T It is easy to verify that they
satisfy the root system axioms.

Definition 6.5. The Weyl group, denoted by W (®) or just W, is the subgroup of GL(E) generated
by {wq | @ € ®@}.

Lemma 6.6. W (®) is finite.

Proof. Since ® spans E and w, preserves ®, W(®) acts faithfully on @, so it permutes the finite
number of roots, so it is finite. O

Example 6.7. 1. If @ = Ay, then W(®) = {1,w,} = Cy, because wy, = w_q.
2. We have that W(A1 X Al) = CQ X CQ.

3. W(As) contains r = W,Wps. r sends a —  and 8 — —(a + ) so r is rotation by 120°, so
r3 = 1. So W(As) is generated by s = w, and r = wawg so W(Ay) = Dj is the dihedral
group.
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Figure 1: The root systems of rank 2.

4. W(By) = Dy, W(Gy) = Dg.

5. Let n > 1 and

6.2

E={(w) C R [ =0} (6.4)
with the standard inner product. Let
D={ei—e;|1<izj<n+1) (6.5)

where e; is the standard basis for R™+!. This is a root system, called the root system of type
A,. If o = e; —¢j, then w, swaps the i and j coordinates. Moreover, (o, ) = 2 for all

a € ® so (B,aV) = % = (B,«) € Z. Since transpositions generate S, 11, we have that
W(A,) = Sni1-

Irreducible root systems

Definition 6.8. A root system (D, F) is reducible if there is a partition ® = ®; U $5 such that
(I)l,(bg # @ and (I)l 1 (1)2.
If @ is not reducible, it is irreducible.

Example 6.9. A; x A; is reducible, As, B, G5 are irreducible.

If @ is reducible, so that ® = &1 U &y with &; L P@,, let E; = Spang ®;. Then F = F; @ E»
with F7 1 Fs and ®; is a root system in F;.
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6.3 Angles

Let (®, E) be a root system. The integrality condition R4 turns out to be very restrictive.
Lemma 6.10. If a, 8 € ® with B # +a, then (B,a") - (o, 8Y) € {0,1,2,3}]

Proof. If v € E then |jv|| = (v,v)'/2. If 0 is the angle between a, 3, then (a, ) = (cos8)||a||||B]|-

> 4, B)?
B,a”) - {a, B >=m

But 0 < |cosf| < 1, so 4cos? 0 = {0,1,2,3}. O

=4cos’0cZ (6.6)

Now, let «, 8 € ® be roots such that (8,8) > (a,a) and  # +«. Then we can list all the
options for (3, a"):

B
&l

(B,2Y) | (o, 8Y) (,0) 0
0 0 ? /2
1 1 1 /3
-1 -1 1 27/3
2 1 2 /4
-2 -1 2 3 /4
3 1 3 /6
-3 -1 3 57/6

Using this, we can classify all rank 2 root systems (exercise), and see that they are the ones given
in Figure
Corollary 6.11. If a,f € ® with f # *«, and (o, ) <0, then a+ 5 € .

Proof. WLOG assume (3, 8) > (a, «). Then (a, 3Y) = —1 by the table above so wg(a) = a+ 3 €
d. ]

Corollary 6.12. If ® is irreducible, then {(a,«) | o € ®} has size at most 2.
Proof. Exercise. O

Corollary 6.13. Root strings have size at most 4.

Proof. The root string has length (3, ") + 1, which we know is at most 4 by the table. O

6.4 Root bases

We want to express roots as positive integer linear combinations of a set of “basis roots”.
Definition 6.14. A C ® is a root basis if
(i) A is an R-basis of E.

(ii) Writing A = {ay,...,as}, then for every a € ® we can write
¢
o = Z C;Q; (67)
i=1
where ¢; € Z and either ¢; > 0 for all ¢ for ¢; < 0 for all 4.
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We call the elements of A simple roots and the elements o € ® with ¢; > 0 are called positive roots,
denoted by &+ C &.

Example 6.15. In Ay, {a, 3} is a root basis, and @ = {«a, 3, + B}.
More generally, in A,,, we have a root basis A = {e; — ea,...,€, — €41} With positive roots

{ei—ejli<j}.

Ifae®, let H, = {x € E| (z,a) = 0} be the hyperplane perpendicular to «. By dimensional-
ity, E\ Upee Ha # 0. Take v € E\ U,eq Ha and define

@i ={ae®| (a,y) >0}, ¢ ={a€®|(a,7) <0} (6.8)

Then & = (Iﬁ U®7 . We say that an element o € <I>;“ is decomposable if a = 1+ B2 with B, B2 € <I>;*‘
and it is indecomposable otherwise.
Let A, be the set of indecomposable elements of @7 .

Theorem 6.16. A, is a root basis with positive roots <I’:Y". Moreover, every root basis is of the
form A, for some v € E\ U,cq Ha-

Proof. We prove 3 claims:

Claim 1. If A, = {ai,..., o} then every element of <I>i is of the form )" ¢;a; with ¢; € Z>.
We show this by contradiction. Let a € <I>;r be a counter example with («, ) minimal. Then « is

decomposable, so a = 81 + 2. But (a,7) = (81,7) +(B2,7) so (81,7) < (a,7) and (B2,7) < (a,7),

s0 f1 = > cia; and By = > d;o; with ¢;,d; > 0 so a = > (¢; + d;)a;, which is a contradiction as

ci+di >0

Claim 2. Ifa,f5 € A, and a # 3, then (o, §) <0.

Indeed, recall that if («,3) € ® with a # £ and (o, 8) < 0, then o + 8 € ®. Therefore if
(o, 8) > 0, then o — 8 € @, so a = f + (o — B) is decomposable after possibly switching o and g
so that (o — §,7v) > 0. Thus (a, 3) < 0.

Claim 3. Elements of A, are linearly independent.
We'll show that if S = {\,...,\,} C E has (A;,7) >0, and (A\;, Aj) <O for all ¢ # j, then S
consists of linearly independent elements. If > ¢;A; = 0, we can write

e= Z N = Z Cii (6.9)
i<m i>m
with ¢; > 0 (split the negative and postive ¢;s and relabel). Then
(6,6) = Z Z CiCj(/\i,)\j) < 0 (610)
i<mj>m

so e = 0.
Then (e,7) = > o, ci(Xi,y) = > iomci(Xi,y) > 050 ¢; = 0 for all i so S is a linearly
independent set. B
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Proof of main claim. Now we are ready to prove the theorem and show that A, is a root basis.

Since ® spans F, <I>;“ spans F, and by Claim 1, A, spans E. By Claim 3, A, is a basis.

By Claim 1, and the fact that ® = @ LI ®2, A, is a root basis.

Now, if A C ® is any root basis, we want to choose a vector v € E such that (v, «) > 0 for all
a € A. Let vy,...,v, be the dual basis with respect to (-,-) and take v = v1 + ---v,. Then for
a =Y ca; € @t we have that (y,a) = >J¢; > 0, so & C ®F. Since both sets have the same
cardinality, we have that ®+ = &7,

So we just need to show that every element of A is indecomposable as an element of <I>j‘ JMae A
is of the form o = 81+ 2 with 1, 82 € @, then 8; = > ¢;ja; with ¢;; > 0. Soa = > ilerjter;)ay.
But since o € A and A is a root basis, we must have that 8; = 0 for some 4, so A C A,. Since
they have the same cardinality, we have that A = A,,. O

The connected components of £\ |J,cpp; Ha are called Weyl chambers.

Lemma 6.17. If v,7' € E\ U cpp; Ha then Ay = Ay if and only if v,~' lie in the same Weyl
chamber.

Proof. ~,~' lie in the same Weyl chamber if and only if (o, v) and (a, ') have the same sign for all
a € ¢, if and only if (I):Y" = (I);r,, if and only if Ay, = A, O

Thus the map v — A, defines a bijection between Weyl chambers and root bases, and its inverse
is denoted by
A= pA)={z e E|(z,a)>0WVae A} (6.11)

©(A) is called the fundamental Weyl chamber attached to A.

Definition 6.18. If A = {ay,...,as} is aroot basis @ = ) ¢;a; € D, the root height of « is defined

as Y. c.
Height can be large, A, has max height n.

Lemma 6.19. If A = {ay,...,ap} is a root basis and a € D is positive but not simple, then
a—aq; €D for some a; € A.

Proof. If (e, ;) > 0 for some i, then o — a; € ® so we are done.
If (o, ;) <0 for all 4, then by Claim 2, AU{a} would consist of linearly independent elements,
and this is a contradiction because A is a basis and o ¢ A because « is not simple. O

By induction on the root height, we obtain the following corollary, which says that for any root
«, we can go from 0 to a via a “path through simple roots in ®”.

Corollary 6.20. If o € T, there’s a sequence B, ..., 3, of simple Toots (not necessarily distinct)
such that 1+ -+ B =a and By + -+ B € ® for all k.

6.5 Weyl group and root bases

Let (®, F) be a root system with Weyl group W. If A C ® is a root basis, then so is w(A) for all
w € W. Moreover, W preserves the set of root hyperplanes { H, }nces0 W acts on the set of Weyl
chambers. These actions are compatible, so that w(p(A)) = p(w(A)).
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Theorem 6.21. (i) W acts simply on the set of root bases, so that if A, A" are root bases, then
there exists a unique w € W such that w(A) = A'.

(ii) If A C ® is a fived root basis and o € @, then there exists w € W such that w(a) C A.

(i1i) W is generated by simple reflections {wa, | a; € A} for any fized A.

We will prove some lemmas before we prove this. In what follows, fix a root basis A =
{a1,...,qp} C P.

Lemma 6.22. If o; € A, then w,, preserves @\ {a;}.
Proof. See Sheet 3. O
So w,, maps a; — —a;, and maps all the other elements of ®* to some other element of ®+.

Lemma 6.23. Set 1
p=; Y ackE. (6.12)

Then wq,(p) = p — oy for all a; € A.
Proof. This follows from Lemma [6.22] O

Proof of Theorem[6.21 Let W’ C W be the subgroup generated by simple reflections w, for all
a € A.

Claim 1. W’ acts transitively on root bases.

Indeed, it suffices to show W’ acts transitively on Weyl chambers. Let v € E\ U,cpp; Ha-
Choose w € W’ such that (w(y),p) is maximal among the elements of W’. By considering
(wa, w(7y), p) < (w(7), p) we get that (w(7y), ;) > 0. Since v ¢ Hy, (w(7), ;) > 0so w(y) € A.

Details on the example sheet.

Claim 2. For all o € @, there exists a w € W’ such that w(a) € A.

By Claim 1, it suffices to show « lies in some root basis of ®. Take v € E \ U,¢pp; Ha such
that (y,a) > 0 and |(y,8)] > (7,«) for all 8 € & \ {£a} (we need to show why such a v exists).
Then oo € A,. We can choose ~ just off the perpendicular to a.

Claim 3. W’ = W. Indeed, let o € ® and let w € W’ be such that w(a) € A. Then wy () =
w---we - w” ! by basic geometry, so w, = w! CWp(a) - w € W
It remains to show that the stabilizer of A in W is trivial, this is done in Sheet 3. O

6.6 The Cartan matrix
Let ® be a root system with root basis A = {aq,...,as}.

Definition 6.24. The integers (ay, ) are called Cartan integers and C' = ((ay,)))i; is the
Cartan matriz.

Example 6.25. 1. For 4;, C = (2).
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2 -1
2. For Ay, C = (_1 9 )

3. For Al X Al, C = (2 0)

0 2
2 -1

4. For By, C = (_2 ) )
2 -1

5. For GQ, C = (_3 2 )

Proposition 6.26. If (9, E') is another root system with root basis {a, ..., oy} and (af, o)) =
(cu, a]V) for alli,j, then there exists a unique isomorphism f : (®,E) — (®', E’) such that f( i) =
/

aj.

Proof. There exists a unique R-linear isomorphism f : E — E’ sending o — «} for all i as
A, A’ are bases. We need to show that f(®) = @', and (f(a), f(8)Y) = (o, 8Y). By assumption,
(f(ai), f(az)¥) = (i, af ). By linearity, (f(A), f(a;)¥) = (A, ) for every A € E. Therefore

We(ay) (f(A) = flwa, (N)), (6.13)
S0 Wq, = fowq, o f~!. Consider the isomorphism
G : GL(E) — GL(E)
g fogof! (6.14)

We showed that G(wa;) = Wy, Since W is generated by simple reflections, G maps W — W',
the Weyl group of ®'. If & € @, let w € W be such that w(a) = a; € A. Let w' = G(w) =
fowo f7t € W. Then w'(f(a)) = f(w(a)) = f(a;) = a}. Then f(a) = (w')"}) € ¥/, so
f(®) = ®’. Similarly, we get that (o, 8Y) = (f(«), f(8)Y) for all a, 8 € ®.

Corollary 6.27. Cartan matrices determine root systems.

Proof. See Humphreys for a concrete construction of ® from the Cartan matrices. O
Remark 6.28. Since W acts transitively on root bases, the Cartan matrix is unique up to reordering
rows and columns.

6.7 Dynkin Diagrams

Let (@, E) be a root system, and let A = {ay,...,a;} C ® be a root basis, and C' the Cartan
matrix.

Definition 6.29. The Dynkin diagram D(®) determines C, which determines ® by the work in
the previous section. It is the graph where

1. Vertices are simple roots aq, ..., ay.

2. Ifa, B € A, draw (o, 8Y) (B, @) edges between « and 3 recall that (o, 83Y)(8,a) € {0,1,2, 3}.
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An . > i - - s 5 dots  su(n)

B, . - s - ‘_\:", n dots so(2n+ 1)

c, . i = . -—<:. n dots sp(n)

D, — o .- —o—< n dots  s0(2n)

E(i - A—I—’—‘—’ €p

FEg '—’—I—.—o—o—o—. (43

Fy = =" fa

Ga ——s a2

Figure 2: Dynkin diagrams

3. If o, B € A have at least one edge between them and (o, ) < (8, 8), so (8,aY) € {—2, -3},
then draw a < pointing to «a.

4. Don’t draw self edges from « to a.

We show some Dynkin diagrams in Figure[2] Using Euclidean geometry and combinatorics, one
can show the following.

Theorem 6.30. The association ® — D(®P) induces a bijection between irreducible root systems
and the Dynkin diagrams in Figure[3

Proof. @ is irreducible if and only if D(®) is connected (Sheet 3). The rest is in Humphreys,
§11.4. 0

7 Root spaces: return of the Lie algebras

Summarizing our work so far, we have constructed a map from (g, t) a semisimple Lie algebra with
Cartan subalgebra t to a root system, but we don’t yet know that this map is bijective. We have
also constructed a bijection between root systems and disjoint unions of Dynkin diagrams. We also
want to be able to “forget t’ by showing that all CSAs are isomorphic in g.

7.1 Independence of t

Theorem 7.1 (Conjugacy of CSAs). If g is a semisimple Lie algebra, and t,t C g are CSAs, then
there exists a Lie algebra automorphism f : g — g such that f(t) = t'.

Proof. Humphreys, §16.4. O

Thus is we choose t and t' and build root systems, they are the same.
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Corollary 7.2. Let ®, 9’ be the root systems of g in t* and (t')*. Then ® and ®' are isomorphic
as root systems.

Proof. If f : g — g is an automorphism with f(t) =/, then
fra)y = (7.1)
is an isomorphism and preserves the pairings induced by the Killings forms, so it sends &’ to ®. [

Corollary 7.3. If g is semisimple with CSA t giving rise to ® = ®(g,t), then g is simple if and
only if ® is irreducible if and only if D(®) is connected.

Proof. Exercise. Sketch: If g is not simple, then g = g1 @ go. Take CSAs t; C g. Then t; {5 is a
CSA in g. By the conjugacy theorem, we may assume that t = t; @ t3, so ® = &1 LI §s. O

7.2 Existence and uniqueness theorems

Theorem 7.4 (Existence). For each irreducible root system ®, there exists a simple Lie algebra
with CSA t C g such that the root system of (g,t) is isomorphic to .

Theorem 7.5 (Uniqueness). Let g, g’ be semisimple Lie algebras with CSAst C g, ¥ C ¢, giving
root systems ®,®’. Choose root bases A C ®, A’ C ®'. Choose, for each o € A, a generator
Yo € 8o and similarly ¢, € gl,.

Let f: ® — ' be an isomorphism of root systems with f(A) = A’. Then there exists a unique
isomorphism f : g — g’ such that f(t) C ¥ and f(eq) = €f(a) for all o € A.

Proof. Sketch: Recall the root space decomposition

9=t0 P ga- (7.2)

acd

For each o € ®, choose a generator e, € g,. Then we can choose e, compatibly with e, so that

2t,
[eme,a} == ha == m et (73)
and (eq, ha, fo) form an sly-triple. So g has a basis
{ha |a € A} U{ey | a € P} (7.4)

What is the Lie bracket?
o Ift €t, a € P, then [t,e,] = a(t)e,.
o If t,t' € t then [t,¢'] = 0.

o If & € ®, then [eq,e_4] = ha.

If a, € ® with o+ 5 ¢ ® and 8 # %, then [e,,eg] = 0.

If o, € ® and B # £a and o+ 3 € @, then [ga, 98] = Ja+s SO [€n, €8] = Cap€a+s Where
Cap 7& 0.
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The theory of “structure constants”: choose a nice basis of g such that c,g = £1 and the basis is
“compatibly”. This leads (after a lot of work) to both of these theorems. See Humphreys §18.4. O

Remark 7.6. There’s a slightly different approach due to Serre using generators and relations.
To conclude, we have bijections between simple Lie algebras, irreducible root systems, and the

Dynkin diagrams in Figure 2]

7.3 Classical Lie algebras

Simple Lie algebras or irreducible root systems of type A,, B,,C,, D, are called classical. What
are the classical Lie algebras?

Let g = sl, 41, =t be the diagonal CSA, and e; : t — C sending a diagonal matrix to its ith
entry. Then

t'=(Ce1®-- - ®Cepy1)/(e1+ - +en) (7.5)
and
D=fei—e;|1<izj<n+1) (7.6)
and a root basis is
A:{€1—627...,€n—€n+1} (77)

By calculating root strings or otherwise, we find that

2 =
(ai,a}/) =q¢-1 |i—j|<1 (7.8)
0 otherwise

You don’t need to compute any Killing forms for this. Thus by looking at the Dynkin diagram we
see that the root system is of type A,,.

The Weyl group W C GL(t*) is generated by w, with a = e; — e;. We see that w, swaps
e; and e;. Since transpositions generate the symmetric group, we have that W = S, ;. Similar
computations with sp,, and so,, show that they are of the following types:

Type g ® CR” A w dim g
B, | s09n41 | {e;}U{%e; e |i#j} {e1 —ea,...,en_1 —€n,en} Sy X C¥ 2n% +n
Cp 8po, | {2e;}U{xe;te;|i#j} {e1 —ea,...,en_1 —€n,2€,} Spx CY | 2n?+n
D, 509, {£e;te;|i#j} {e1—e2, . yen 1 —enyen_1+ent | Sux Oyt | 2n2 —n

An essential exercise is to verify the claims about ® and A.

Non-examinable. How does W act on ® in each case? S, acts on R™ by permuting the basis
vectors. In the B, and C,, case, C¥ = {(J;) | §; = £1} acts via e; — d;e;. In the D, case,
Cy~t c Oy with [[d6; = 1.

Since By = (5, we have that sos = sp,. Similarly, D3 = Az so sog = sly. These are the
“accidental isomorphisms”.
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7.4 Exceptional Lie algebras for culture
If g (or @) has type E, F, G, we call it exceptional. We denote these Lie algebras by gs, {4, €6, €7, es-

Some facts:

[71

Type ‘ H#OT | H#W ‘ dimg ‘ Dim of smallest faithful rep g — g

|
G [ |

Will fill in later.

7.5 The root and weight lattice
Let (@, E) be a root system. A lattice in E is the Z-span of an R-basis.

Definition 7.7. The root lattice of ® is

Z® ={) _ car| ca € Z}. (7.9)
acd
The weight lattice of ® is
X={a€eE|(\aY)eVa € ?} (7.10)

These are indeed lattices: fix a root basis A = {ay,...,ap} of ®. Then Z® is the Z-span of A,
which is an R-basis. On example sheet 3, we showed that

X={NeE|(\a)) € ZVa; € A} (7.11)

Let wi,...,wy € E be the unique elements such that (wi,a}/) = 0;;. These are called the
Sfundamental weights of ® with respect to A. Clearly X is the Z-span of wq,...,ws.

Example 7.8. If ® = {+a} 2 A}, Z® = Za, and (a,a") =2, s0o X = Z(«a/2).

Example 7.9. We can do some careful calculations with Ay, By, G2 and determine there weight
and root lattices.

Since (o, 8Y) € Z for all o, 3 € ®, we have that Z® C X. Then X/Z® is a finite group, called
the fundamental group of ®. This is the fundamental group of a Lie group. Moreover,

#(X/Z®) = | det(C)| (7.12)

where C' is the Cartan matrix. This is somewhat intuitive.
In the previous examples, we have that the size of the fundamental group is 2 if & = Ay, 3 if
(I)ZAQ, Qifq):BQ, and 1if@:G2.

Definition 7.10. An element A € X is dominant if (\,a") € Z>( for all & € ®T. We have that
A € X is dominant if and only if (A\,«)) > 0 for all o; € A, if and only if A = Zle ciw; with
¢; > 0, if and only if A lies in the closure of the fundamental Weyl chamber.
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8 Representations of semisimple Lie algebras

Let g be a semisimple Lie algebra, t C g a CSA, and & C t* the root system. Fix a root basis
A C ®. We have that Z® C X C t*.

Lemma 8.1. An element A € t* lies in X if and only if A(ha) € Z for all o € .
Proof. Recall that h, = —2t<— and A\(hq) = (A, V) for all a € ®. O

K’(touta

Now, let V' be a representation of g. Since t is abelian and every element of t is semisimple as
an element of g, we can diagonalize V' under the t-action, so that

V=W W={veV|[tv=AtVtet} (8.1)
AEt*

Note that the Weyl group W acts on X C E.
Proposition 8.2. (i) Ifa € ® and ey € go \ {0}, then e - Vi C Vaya (hopping to the left).
(i) If Va # 0, then A € X (weights are integers).
(iii) dim V) = dim V,,(\) for all w € W (symmetry under Weyl group).
Proof. (i): This follows from direct computation: if ¢ € t and v € V), then
tleq - v) = eq(t-v) + [t, eq]v
= At)(eq - v) + aft)(eqv). (8.2)

(ii): Fix a root a € ® and choose e, € g, and f, € g_, such that {eq, ha, fo} satisfy the sly
relations, so they span m, =2 sl5.

View V as a representation of m,. Then the h, weights are in Z, and these are exactly the set
(compare with the definition of an sl weight)

(Mha) | A€ 5, Vi £ 0}, (8.3)

So A(hy) € Z for all @ € ® and all A with V) # 0. So if V), # 0, then A € X.
(iii): We will show the result for w = wq, and the full result will follows because the wqs
generate W. Note that

Decompose V as a direct sum of irreducible m,, representations:

V=pve. (8.5)
i=1
Since V) is a direct sum of distinct weight spaces for hq, Va has a basis vy, . . ., v, with the property

that v; € V® (after reordering the summands V(i)). This is a completely trivial fact: each V()
contributes at most 1 dimension to V) by sl theory.
The —\(h,) wieght space of V() is generated by an element of the form f7*-v; or e™wv; for some
m > 0. Therefore this element lies in V,,_x) by (i).
O
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Definition 8.3. An element v € V' \ {0} is called a highest weight vector if v € V) for some A, and
eq-v=0for all &« € A, where e, € go \ {0}. In that case A is called a highest weight.

Lemma 8.4. (i) V has a highest weight vector.
(i) Every highest weight vector is dominant.

Proof. (i): This follows from Proposition (i) and the fact that dimy < oo. Take a nonzero
v € V), and apply e, repeatedly for each o € A. Eventually e,v = 0.

(ii): View V as an m, representation for some o € A. Then a highest weight vector must be
one for V, viewed as an m,, representation. By sl theory, A(ha) = (A, ") € Z>o. O

8.1 The universal enveloping algebra

In this section vector spaces may be infinite dimensional, and in fact the universal enveloping algebra
is always infinite dimensional for a Lie algebra g.

Definition 8.5. An algebra is a vector space A with a bilinear map A x A — A (x,y) — xy. It is
unital if it has a unit, and associative if x(yz) = (zy)z for all z,y, z € A.

Associative algebras are the mostly general structure for which it makes sense to do representa-
tion theory. If A is an associative algebra, we can define the bracket [z,y] = xy — yx. This defines
a Lie algebra on A, we call this Lie(A).

Example 8.6. If V is a vector space, then A = End(V) is a unital associative algebra with
Lie(A) = gl(V).

Definition 8.7. A representation of A is an algebra homomorphism
A — End(V). (8.6)

If G is a finite group, we can define the group algebra C[G] such that representations of the
finite group G correspond to C[G] representations.

Definition 8.8. For any Lie algebra g, we will construct a unital associative algebra U(g), called
the universal enveloping algebra with a similar property to the group algebra C[G] described above.

This algebra will satisfy the following universal property: if A is a unital associative algebra
and f: g — Lie(A4) is a Lie algebra map, there is a unique f: U(g) — A such that foi=f. In
diagram form we have



where V®° = C and we have the graded algebra structure
Ve yem — yeintm) (8.8)
by composition. This is a unital algebra called the tensor algebra.

Definition 8.10. A two sided ideal I of an algebra is a subspace I satisfying I C I, Iz C I for
all z € A.
If I is a two sided ideal, then A/I inherits the structre of an algebra.

Definition 8.11. If V is vector space, then define the symmetric algebra Sym(V) = T'(V)/I,
where
I=zy—y®z|z,yeV) (8.9)

Definition 8.12. Let g be a Lie algebra. Then the universal enveloping algebra is U(g) = T'(g)/J,
where J is the two sided ideal generated by

{rey-—y@r—[r,y]| v,y € g} (8.10)

Note that this messes up the grading of our algebra, since T @y, y@x € g2 and [z,y] € g. We will
write 21 ® +-- @z, € U(g) as a1+ - - Tp,.

Lemma 8.13. U(g) satisfies the universal property of the universal enveloping algebra.

Proof. Given a Lie algebra map f : g — Lie(A4), we have that f is a linear map g — A. We can
extend this map to T'(g) by

fliT( — A
Since f preserves the Lie bracket, we have that f(a @y —y®x — [z,y]) =0, so J C ker(f’). So f’

factors through an algebra map f:U(g) — A. Let i: g — U(g) be the canonical inclusion. Then
foi= f. Since U(g) is generated by g as an algebra, f must be unique. O

Applying this to A = End(V), we get a bijection between Lie algebra homomorphism g — gl(V)
and algebra homomorphisms U(g) — End(V). Soif p: g — gl(V) is a representation and z € U(g),
then p(x) = p(x) “makes sense”. In other words, the action of g on V' extends to U(g) action on V
via zv = p(z)(v) for all z € U(g).

Example 8.14. If g is abelian, then U(g) = Sym(g) so U(g) is infinite dimensional.

Example 8.15. If g = 5l(C) and Q = ef + fe + 1/2h? € U(g), then p(Q2) = Q, is the Kasimir
element. In fact, Q lies in the center of U(g), so by Schur’s lemma it acts by scalars.

Example 8.16. If g = sl5(C), then e(fv) = f(ev) + hv for any g-module V and any v € V.
This comes from the fact that ef = fe + h in U(g), so it carries to any representation.
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8.2 Poitcare-Birkhoff-Witt Theorem (PBW)

This theorem describes bases of U(g). U(g) is not nicely graded because the ideal J is not homoge-
neous. But it is filtered: if F, is the image of @, ., V®* under the projection T'(g) — U(g), then
F, is a subspace of U(g) and we have a filtration

OCFyCcF C---CU(g), (8.12)
and UnZO F, =U(g) and F; - F; C F;;;. We can make a graded algebra by setting
gr(U(9)) = P Fu/Fua (8.13)
n>0
where F_; = 0. The multiplication maps F; x F; — F;;; induce maps
(Fi/Fio1) x (Fj/Fj—1) = Fiyj/Figja, (8.14)
which defines an algebra structure on gr(U(g)).
Lemma 8.17. gr(U(g)) is commutative.

Proof. Concretely, this means that the Lie bracket on gr(U(g)) is zero. If z,y € g, then zy — yz =
[z,y] in U(g), so [F1, F1] C Fy. Set gr™ == F,,/F,,_1 C gr(U(g)). Then this shows that zy = yx for
all z,y € grl. Since gr(U(g)) is generated by gr!, [z,y] = 0 for all z,y € gr(U(g)). O

We have algebra homomorphisms
T(g) — Ul(g)
3
Sym(g) —— gr(U(g))

Since gr(U(g)) is commutative, f(x @ y —y ®@x) = 0 for all z,y € g, so f factors through ¢ (so the
diagram above commutes).

Theorem 8.18 (PBW). ¢ is an isomorphism of algebras.

Proof. We’ve already shown ¢ is surjective. To show injectivity is a bit harder, see Humphreys
§17.4. O

Corollary 8.19. Ifzy,...,x, is a basis of g, then {x§* ---zk» | k; € Zso} is a basis of U(g).
Proof. This follows from the PBW theorem and the isomorphism of vector spaces
Ulg) = er(U(g)). (8.15)
O
Lemma 8.20. IfV is a g-representation and v € V, then
U(g) -v={xv |z eU(g)} (8.16)
s the smallest g subrepresentation of V' containing v.

Proof. If A is a unital associative algebra with representation V and v € V, then Av C V is
the smallest A-subrepresentation of V' containing v. We apply this to A = U(g) and note that
g-subrepresentations are the same as U(g)-subrepresentations. O
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8.3 Highest weight modules

To study irreducible finite-dimensional representations, we study a larger class of representations
with similar properties. Let g be a semisimple Lie algebra, t C g, ® C t* the root, and A =
{a1,...,a¢} C ® aroot basis.

Let V be a (possibly infinite dimensional) representation of g. Then we can still diagonalize so
that the following notion makes sense:

Aet', a={veV |tv=AtwVtet} (8.17)

A highest weight vector is an element v € Vi \ {0} for some X\ € t* such that e, -v = 0 for all & € ®+
and for all e, € go \ {0} (equivalently for all a € A).

Definition 8.21. V is a highest weight module if V' contains a highest weight vector v € V), and is
generated by v, so that V. =U(g) - v.

Lemma 8.22. IfV is finite dimensional and irreducible, then V is a highest weight module.

Proof. Since V is finite dimensional, we showed that it has a highest weight vector v. By irre-
ducibility and Lemma we have that V = U(g) - v. O

Thus we have shown that highest weight modules are generalizations of finite dimensional irre-
ducible representations.

Example 8.23. If g = sly, there are infinite dimensional highest weight modules. Let V be the

vector space with infinite basis vy, v1,..., and g action defined by
e-vg=0

[ i =vip

and extend using linearity and the Lie bracket. This is a highest weight module generated by highest
weight vector vg. But vy is also a highest weight vector, as we can calculate that h - v, = —2nv,
and e - v, =n(l —n)v,—1. So U(g) - v1 = Span{vy,va,...} C V is a subrepresentation, so V' is not
irreducible.

Definition 8.24. Define

nt = @ Oa, N = @ O (8.19)

aedt aed—
These are subalgebras and as vector spaces we have that

g=n"oton . (8.20)

Lemma 8.25. If V is a highest weight module generated by highest weight vector v, then V =
Un™)-v.

Proof. Choose for each 8 € ® a nonzero element eg € gg. Let ¢1,...%; € t be a basis of t. By PBW,
U(g) - v is spanned by elements of the form

eilﬁl e ei’bntlil e t?zegll e e%z -V (821)

where {$1,...,6,} € ® and a;,b;,¢; € Z>o. Since v is a highest weight vector, eg, - v = 0 and
t;v = A(t;)v, so we can assume that b; = ¢; = 0. O
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If A\, p € t*, we say that p < XN if A —p =3 k;a; with k; € Z>(. This defines a partial order on
t.

Proposition 8.26. Let V be a highest weight module generated by highest weight vector vy € V.
Then

(i)
V=PV (8.22)

n<A

(i) If W C V is a subrepresentation, then

W =W, (8.23)

159\
(iii) dim(V,) < oo and dim(Vy) = 1.
(iv) V is irreducible if and only if every highest weight vector lies in V.

(v) V has a unique mazimal proper subrepresentation, so there exists a unique irreducible quotient
representation.

Proof. (i) By Lemma V =U(n") - vy and is spanned by elements of the form

eﬁlﬁl . ~eli”/'3n vy (8.24)

with k; € Z>¢. By Proposition (i), we have that e, - Vi C V4o (even if dimV = c0), so
lies in V,, with pp =X — > kif;, so pp < A,

(ii) Let W C V be a subrepresentation. We need to show that if w € W has w = v; + -+ 4+ vy,
with v; € Vy,, then v; € W for all i. Suppose for the sake of contradiction that w is an element
violating this condition, with k£ minimal. Then k > 2, and v; ¢ W for all 1 <4 < k by minimality.
Let ¢ € t be such that A;(¢) # A2(t). Then

1w — A (H)w = (Aa(t) = A ()va + - + k(t) — A (t))vr € W (8.25)

because W is a subrepresentation. By minimality, we have that (A2(t) — A1 (¢))ve € W, s0 va € W,
contradicting the fact that v ¢ W.

(iii) By Lemma the dimension of V), is at most the number of tuples ki,...,k, such that
pw=MX—> k;B;. This is a finite set (exercise), and is 1 if u = A.

(iv) If v, C V,, is a highest weight vector with p # A, then p £ A, and U(g)v, = U(n")v, is a
proper subrepresentation. If W is a subrepresentation and W # V', let u be an element such that
W, # 0 and such that g is maximal with respect to <. Then w, € W, \ {0} is a highest weight
vector and g # .

(v): By (iv), a subrepresentation W C V is proper if and only if W) = 0. So the sum of all
proper subrepresentations still satisfies W = 0, so it is a proper subrepresentation. Thus taking
the sum of all proper subrepresentations gives a maximal proper subrepresentation. Thus V" has a
unique irreducible quotient.

O

Remark 8.27. Part (ii) is a special case of the general fact that the subspace of a vector space
which is stable under a linear operator is the direct sum of the eigenspaces.???
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8.4 Verma modules

Why do highest weight modules exist? It turns out we can construct the “biggest” highest weight
module, called the Verma module.

Generally, if T is a left ideal of an associated algebra, then A/I has the structure of an A-
representation, via z(y + I) = zy + I. Using this, we can construct the “biggest” highest weight
module for A € t*.

Definition 8.28. Let A € t*, and let J(A) be the left ideal of U(g) generated by: (i) eg for all
B € @+, where eg € gg\{0} is some generator, and (ii) t—\(¢)-1 for all ¢ € t. The first condition gives
that acting by eg gives 0, and the second gives that acting by ¢ gives A(t). Then M(X) = U(g)/J(N)
is the Verma module for X: it is a U(g) representation, so also a g-representation.

Let my =1+ J(A) € M(A\). Then eg-my =0 for all B € @ and t-my = A\(t)m, for all t € t.

Lemma 8.29. M) is a highest weight module generated by my = 1+ J(N). If V is another
highest weight module generated by highest weight vector v € Vy, then there is a unique surjection
of g-representations ¢ : M(\) — V which is surjective, and maps my — v (universal property).

Proof. We have that eg-my =0 for all € ®T and ¢ - my = A(f)m, for all ¢ € t. Since 1 generates
U(g) as a U(g)-module, in order to show that M, is generated by my, it suffices to show that
my # 0, s0 1 ¢ J(A). This follows from the PBW Theorem (exercise).

If V is another highest weight module with highest weight vector v € V), then we can define a
map

v:U(g) =V
T T (8.26)

This is a map of g-representations and J(A) C ker ¢, since ¢(eg) =eg-v=0and (¢t — A(t)-1) =
tv — A(t)v = 0. So ¢ factors through some ¢ : U(g)/J(A) = V. O

Example 8.30. If g = sy, then M (0) is the highest weight module given in Example Then
Span{vy, vy ...} is a subrepresentation, with quotient congruent to V'(0).

By Proposition M(X) has a unique maximal proper subrepresentation, so a unique irre-
ducible quotient. Call this quotient V().

8.5 Classification of irreducible representations

It turns out that we have already classified irreducible highest weight modules.

Proposition 8.31. The assignment A — V() induces a bijection between t* and the isomorphism
classes of highest weight modules.

Proof. This is a straightforward application of Lemma [8:29 and Proposition [8.26]

If V is an irreducible highest weight module generated by highest weight vector v € V) for
some A € t*. Then V is a quotient of M(\) by Lemma Since M (A) has a unique irreducible
quotient, we have that V' = V()). Why is X unique? Since V is irreducible, every highest weight
vector lies in V), hence is a multiple of v since dimVy = 1. So if V' = V (i), then p is a highest
weight vector, so A = cu, and the isomorphism is given by rescaling. O
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Thus we have a bijection between t* and irreducible highest weight modules. We know that the
finite dimensional irreducible representations are a subset of the irreducible highest weight modules,
but what is the corresponding subset of t*7 It turns out that they have a very nice description as
the intersection of the dominant weights (a cone) and the weight lattice (a lattice).

Theorem 8.32. If \ € t*, then V() is finite dimensional if and only if A\ € X and X\ is dominant.
Using this theorem, we can prove the following

Corollary 8.33. Fvery finite dimensional irreducible representation V' of a semisimple Lie algebra
g has a unique highest weight vector \, and the assignment of V' to its highest weight vector induces
a bijection between finite dimensional irreducible representations of g and dominant elements of the
weight lattice A € X.

Before we prove the theorem, we need the following lemma.

Lemma 8.34. For each o; € A, lete; € ga,, [i € §—a, and h; € t such that (e;, hy, f;) is a sly-triple.
Then in U(g) we have for all k € Z>o that

lei [{T1] =0, i#] (8.27)

lei fiT1] = —(k + ) fF (k-1 - hy) (8.28)

Proof. Use induction on k. If k = 0, then [e;, f;] € ga,—a; = {0} if i # j because o;,a; € A and
[e;, fi] = hi by the sly-triple action.

The claim follows by induction and the identity [A, BC] = [4, B]C + B[A, C]. O

We are now ready to prove our big theorem. For A € X dominant, the key idea is to let
T = {u | V), # 0}, (8.29)

Since dim(V'(X),,) < oo by Proposition it suffices to prove that #II(\) is finite. We will show
that II(A) is Weyl group invariant, and that it has finitely many orbits under the action of W, so
it is finite.

Proof of Theorem[8.33 If V() is finite dimensional, then we proved that A € X in Proposition
(ii) and we proved that A is dominant in Lemma (ii).
Now let A € X be dominant. We want to show that V() is finite dimensional.

Claim 1. For each i, let n = A\(h;) = (A, )). Then f**.v =0.
Proof: Let u = f™!.v. We know that e; - v = 0 for all j. Moreover, for all j, we have that

ej-u=(fI""e5) v+ lej, [T

_ 0 j#i
_{_(”+1)ff‘(nv—hiv) j=i. (8.30)

But since h; = nv, we have that e; - u = 0 always. So if u # 0, then u would be a highest weight
vector. But u € Vy_(541)a,, 50 it lies in a different weight space from v, so u = 0.
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Claim 2: W = Span{v, f;v,..., fl'v} is an m,,-subrepresentation, where m,, = Span{e;, h;, f;}.
Proof: We need to show that W is stable under the action of e;, h;, f;:

e Stable under f;: follows from Claim 1.

e Stable under h;: ffv € Va_ga, 50 hi(fFv) = (A — kay)(h;) - fFo.

K2

e Stable under e;: follows from ([8.28)).

Claim 3: For each i, V is a direct sum of finite-dimensional m,,-subrepresentations of V. So
every v € V lies in a finite-dimensional m,,,-subrepresentation.

Proof: Let V' be the sum of all finite dimensional m,,-subrepresentations of V. By Claim 2,
V' # 0. We need to show that V' is g-stable, as then V = V’ by irreducibility. So let w € V' be
arbitrary, so that w € W C V for W a finite-dimensional m,,,-subrepresentation. Let

4
W'=Yt W+ > eg-W (8.31)
i=1 ped

where t1,...,t; € tis a basis for t and eg € gg \ {0} is a generator. We have that = - W C W’ for
all x € g. Moreover, dim W’ < oo since dimW < oo. W' is also stable under m,,: it suffices to
check stability under e;, h;, f;. This is an exercise, check that

ei-egW Ceg-e;- W+ e, ep)- W
CegW +egqa, - W
cw'. (8.32)

therefore W/ C V', so 2V’ C V' for all z € g.
Start with arbitrary m,, stable W, let W’ be image of W under the g-action, show that W’ is
also m,,-stable, so W’ C V, so that if w € V/, then z-w € W/ C V', so 2V’ C V.

Claim 4: The Weyl group W preserves II()), so that dim(V(A),) = dim(V (A)y(,) for all p < A,
and all w e W.

Proof: We showed that this claim holds for finite dimensional representations in Proposition [8.2
(iii). The same proof works here as well.

Claim 5: The number of W orbits in II()) is finite.

Proof: Let p € II(A). Then p is in the closure of some Weyl chamber. Since W acts transitively
on the Weyl chambers, we may assume (after replacing p by a W-conjugate) that 4 € X and is
dominant. So each orbit has a representative in

S={ueX|pu<A (8.33)

Since X C t* is discrete, S is a discrete subset of t*. If u € §, then A\ + p is dominant and
A — € Z>o - A. Therefore (A + p, A —p) >0, so (A, A) > (p, i), so S is bounded and discrete, so
S is finite.

We’ve shown that W acts on II(\) with finitely many orbits. Since W is finite, II(\) is finite,
so dim V is finite. 0
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8.6 The character of V()\)

For A € X dominant, let
I\ ={p e X |dimV(X), # 0} (8.34)

viewed as a multiset of weights with multiplicity dim V(\),. What is TI(A)? We know that
o II(A) C {u| u < A} (Proposition (i)).
e W preserves II(A) and the multiplicities (Claim 4 in the proof of Theorem [8.32]).

e The multiplicity of p is at most the number of ways to write A — u as a sum of positive roots
(as V(X)) is generated by highest weight vector v € V)).

Proposition 8.35. If u, A\ € X are dominant, then p € TI(A) if and only if p < A.

Proof. If p € TI(\), then the claim follows from Proposition (1).

Let p < X be dominant. Say that ' € X is good if pn € II(A) and p/ = p+> ko with k; € Z>.
We claim that if 1/ is good and k; > 0 for some ¢, then there is a simple a; such that p' — c;. This
proves the proposition by starting with A, which is good.

To prove the claim, since k; > 0 for some 4, we have that (> k;a;, > k) > 0. So there exists
J with k; > 0 such that (3 ki, ;) > 0 and we have that (p, ;) > 0 since p is dominant, so
(', @) > 0. Therefore

Pr € ZViina, (8.35)
is an m, ;-representation since (1', o) >0, s0 Vo, # 0, so 1 — oy is good. O
Note that the above Proposition does not hold if x4 is not dominant.
Corollary 8.36. € X lies in II(A\) if and only if for allw € W, w(p) < A.
Proof. Exercise. O
Example 8.37. In G5 with A = 2w;, we have that II(2w;) = {0,w,ws, 2wy } and the conjugates.

What about the multiplicities? If g € II(A), then multy(p) = dim(V(X),). We know that
multy(w(A)) =1 for all w € W. In general multiplicities can be greater than 1.

Example 8.38. Suppose g is simple and suppose that V' = ad g the adjoint representation. Then
V = V(ap) where oy is the highest root, because all the roots of the adjoint representation are roots
of ®. The weights of V" are ®U{0}, and mult(a) = 1 if & € @, but mult(0) = dimc t = rank & = #A.

The Weyl character formula contains information about all the multiplicities of a representation.

Definition 8.39. Let Z[X] be the free abelian group with generators {e* | A € X}. So

Z[X] = {Z exe | ex = Ofor all but finitely many cy € Z} (8.36)
AeX

The assignment e* - e# = e**# makes Z[X] a ring, called the character ring.
If V is a finite dimensional g-representation, then the character of V is

ch(V) =) dim(Vy)e* € Z[X]. (8.37)
AEX
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Example 8.40. If g = sly, then X = Z - (a/2). If t = ¢®/2, then Z[X] = Z[t,t '], and
ch(V(n))=t"+tn—2+--- 4+t ". (8.38)

In general, choosing an isomorphism X 22 Z¢ determines an isomorphism Z[X| = Z[t1,t7 ", .. . , te, t[l].
The following facts are using the the Weyl character formula.
1. Set

p= % > a (8.39)

aedt

We showed that if w,, is a simple reflection, then since w,, permutes ®* \ {a;}, wa, (p) =

p—a; =p—(p,a;)a;. So then because (w;, ) = §;;, we have that

J
p=wi+ -+ wy, (8.40)
where w1, ...,wy are the fundamental weights.

2. Recall that S,, has a sign homomorphism S,, — {£1}. This generalizes to W, where w € W
is interpreted as an element of the permutation group of ®. In particular, let w € W and
write w = wy - - - wy, where the w;s are simple reflections, and set sgn(w) = (—1)". This is a
well-defined (Sheet 4) group homomorphism W — {£1}.

Theorem 8.41 (Weyl character formula). If A € X is dominant, then in Frac(Z[X]) we have that

> wew sgn(w)e )
e [Toca+ (1 —€7%)

Proof. Humphreys §24.3. O

ch(V (X)) =

(8.41)

We have some easy corollaries of the Weyl character formula.

Corollary 8.42 (Weyl denominator formula). In Z[X], we have

Z sgn(w)e?(?) = eP H (I1—-e7%) (8.42)
weW aedt
Proof. Take A = 0 in the Weyl character formula. O
Corollary 8.43 (Weyl dimension formula). If A € X is dominant, then
A v A
dimv() = ] A+pa?) 11 A+pa) (8.43)

v
wewr (o) 20 (pa)
Proof. We want to set e* =1 for all A € X, as then

ch(V)(1) =) dimV, = dim V() (8.44)

But the RHS of the character formula is “0/0”. But we can get the identity with L’Hopistal and
differentiating in a clever direction (see notes). O
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Example 8.44. Let g = sl;. Then ® = {+a}, p = «/2, and W = {£1}. So the Weyl character

formula is
tn-i—l _ t—(n+1)

fre A A (8.45)

ch(V(na/2)) =
Example 8.45. Let g = sl3, & = {+a, 28, £(a + B)}, A = {a, [}, and p = w1 + we. We can

calculate
(n1 + 1)(712 + 1)(TL1 + no + 2)

2

Example 8.46. Let g = sp, = Co = By, and A = {«, 8} with « short. Then we can do some
more calculations.

(8.46)

dim V(n1w1 + RQWQ) =

50
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