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1 Introduction

Let A be a ring of characteristic p > 0. The Frobenius morphism FA : A → A on A is given by
FA(a) = ap. If p ∈ SpecA, then clearly F−1

A (p) = p.
We can extend this notion from rings to schemes. Let k be an algebraically closed field of charac-

teristic p > 0, and let X be a scheme over k. Then we can define the Frobenius morphism FX : X → X
on X which is the identity map on the underlying topological space and is given on sections by
F#
X : OX → (FX)∗OX sending g 7→ gp. We often abbreviate F = FX if there is no confusion about

which Frobenius morphism we are taking.
The Frobenius morphism enjoys many pleasant properties. It is clearly affine, and it is finite, hence

proper. Additionally, if X is a smooth variety, then FX is flat. Given any morphism of schemes
f : X → Y , we have that f ◦ FX = FY ◦ f . However, note that FX is not a morphism of k-schemes in
general. If it was, then we would have that ap = a for all a ∈ k.

If there exists a map φ : F∗OX → OX such that φ◦F# = idOX
, we say that X is Frobenius split (or

simply split), and that φ is a Frobenius splitting (or simply a splitting) of X. As F# is the pth-power
map, we can think of a Frobenius splitting as a pth-root map. It is fairly easy to show that Frobenius
split schemes have several nice properties. For instance, if X is Frobenius split, then X is reduced
(Lemma 3.2), and if L is a line bundle on X, then H i(X,L) = 0 for all i ≥ 1 (Proposition 3.9).

The goal of this essay is to show that Schubert varieties associated to a reductive group over k are
Frobenius split, and derive several geometric consequences as a result. Let G be a reductive group,
B ⊂ G a Borel subgroup and P ⊃ B a parabolic subgroup. Then the homogeneous coset space G/P
is a flag variety, and can be given the structure of a projective variety. Letting B act on the left in
G/P , the closure of a B-orbit is a Schubert variety ; it is a closed subvariety of G/P . While Schubert
varieties are not smooth in general, using Frobenius splitting we can show that they are normal and
Cohen-Macaulay.

1.1 Historical context

The study of Schubert varieties has its origins in the 19th century with the Schubert calculus, which gives
a somewhat well-founded solution to problems in enumerative geometry. For example, the Schubert
calculus gives a method to count the number of lines in P3(C) which intersect 4 given lines. While
not always rigorous, the Schubert calculus inspired the development of important areas of algebraic
geometry such as intersection theory. For more information on the history of the Schubert calculus and
its connections to algebraic geometry, see [KL72].

In the modern context, Schubert varieties are an integral part of the theory of reductive groups,
as initiated in the foundational work of Chevalley [Che05]. They have connections to areas such as
combinatorics [Ful96], representation theory with the Demazure character formula [Dem74], and number
theory [PRS13] in the theory of Shimura varieties. Mehta and Ramanathan [MR85] introduced the
notion of Frobenius splitting and proved that Schubert varieties are Frobenius split. Using this, they
gave the first proof that ample line bundles on Schubert varieties have vanishing higher cohomology. As
a consequence of their Frobenius splitting, and Ramanan and Ramanathan [RR85] showed that Schubert
varieties are normal and Ramanathan [Ram85] showed that they are Cohen-Macaulay (although a proof
of normality without using Frobenius splitting was published by Anderson [And85] in the same year).
Mehta and Srinivas [MS87] later gave a short proof of normality directly from Frobenius splitting.

1.2 Proof strategy

In order to show that a particular scheme is Frobenius split, it is often easier to prove the splitting of a
larger scheme. Let Y ⊂ X be a closed subscheme of X with ideal sheaf IY ⊂ OX and φ : F∗OX → OX

2



a Frobenius splitting of X. Given any open set U and any f ∈ IY (U), we have that fp ∈ F∗IY (U) as
IY (U) is an ideal and F∗IY = IY as sheaves of abelian groups. Thus φ(fp) = f , so IY ⊆ φ(F∗IY ). If
equality holds, we say that φ compatibly splits Y , and that Y is compatibly split in X. Importantly, if
Y is compatibly split in X, then Y itself is Frobenius split (Lemma 3.4). We prove more result about
compatible splitting in Section 3.1.

A key point of emphasis is the relative, local nature of Frobenius splitting. For example, if a dense
open subscheme of a reduced scheme X is Frobenius split, then X itself is Frobenius split (Lemma 3.5).
If f : X → Y is a morphism of varieties with X Frobenius split such that f∗OX = OY , then Y is
Frobenius split (Lemma 3.6). If Y1, Y2 ⊂ X are both compatibly split by φ : F∗OX → OX , then their
union and intersection is compatibly split.

These results allow us to utilize duality theory to prove that Schubert varieties are Frobenius split.
In Proposition 4.11, we connect the Frobenius splitting of a smooth variety to the existence of a certain
section of the invertible sheaf ω−1

X . This is the key result of the essay, as it allows us to give a tractable
criterion for the otherwise difficult notion of Frobenius splitting. However, as Schubert varieties are not
always smooth, we cannot apply this criterion directly to show that Schubert varieties are Frobenius split.
Instead, we construct the Bott-Samelson-Demazure-Hansen (BSDH) variety associated to a Schubert
variety, which is a smooth resolution of its singularities. By giving an explicit description of the canonical
sheaf of a BSDH variety, we show that it is Frobenius split, which then implies the Frobenius splitting
of the associated Schubert variety. From here, we use the properties of Frobenius split schemes to show
that Schubert varieties are normal and Cohen-Macaulay.

While our criterion for splitting is very general, and Frobenius split varieties enjoy many pleasant
properties generically, we frequently utilize the structure theory of reductive groups in our proofs. For
example, the line bundles on Schubert varieties and BSDH varieties can be described in terms of the
root system of the associated reductive group. We give some background on reductive groups in Section
2.1. We also frequently quote algebraic geometry results from the standard references [Har77, Sta25],
and assume a familiarity with the subject at the level of [Har77], Chapters II and III. Our proofs
are adapted from the papers of Mehta and Ramanathan [MR85], Mehta and Srinivas [MS87], and
Ramanathan [Ram85], and the definitive textbook by Brion and Kumar [BK04].

1.3 Main results

Our main result is the Frobenius splitting of the Schubert varieties associated to a reductive group. We
use it to prove the results which follow.

Theorem 1.1. Let G be a reductive group over an algebraically closed field k of characteristic p > 0,
P ⊂ G a parabolic subgroup, and SP (w) ⊂ G/P a Schubert variety. Then G/P is Frobenius split, and
SP (w) splits compatibly in G/P .

We prove Theorem 1.1 in Section 5 using the machinery developed in the previous sections. The
above result holds in characteristic p > 0 (as in characteristic 0 there is no notion of Frobenius split-
ting), but using semicontinuity, we can prove some results about the properties of Schubert varieties in
arbitrary characteristic.

Theorem 1.2. Let G be a reductive group over an algebraically closed field k of arbitrary characteristic,
P ⊂ G a parabolic subgroup, SP (w) ⊂ G/P a Schubert variety, SP (w′) ⊂ SP (w) a Schubert subvariety,
and L an ample line bundle on SP (w). Then

(i) H i(SP (w),L) = 0 for all i ≥ 1.

(ii) The restriction map H0(SP (w),L) → H0(SP (w′),L) is surjective.

3



We prove Theorem 1.2 in Section 6. The result for k of characteristic p > 0 is true for any Frobenius
split scheme (Lemma 3.9), we prove it for characteristic 0 using semicontinuity.

While Schubert varieties are not smooth in general, they are both normal and Cohen Macaulay,
which means that they have only mild singularities in a certain sense. Recall that a scheme X is normal
if for every x ∈ X, the local ring OX,x is integrally closed in its field of fractions.

Theorem 1.3. Let G be a reductive group over an algebraically closed field k of arbitrary characteristic,
P ⊂ G a parabolic subgroup, SP (w) ⊂ G/P a Schubert variety. Then SP (w) is normal.

We prove Theorem 1.3 in Section 6.1. The proof relies on an inductive argument utilizing the
structure theory of reductive groups as well as Theorem 1.1. Notably, there exists Frobenius split
schemes which are not normal, but every Frobenius split scheme is weakly normal (see [BK04, §1.2]).
For example, the union of two axes Spec k[x, y]/(xy) is Frobenius split but not normal.

We also show that all Schubert varieties are Cohen-Macaulay. If (A,m) is a local ring, then
a1, . . . , ar ∈ A is a regular sequence for A if ai is not a zero divisor in A/(a1, . . . , ai−1) for all 1 ≤ i ≤ r.
The depth of A is the maximal length of a regular sequence a1, . . . , ar ∈ m contained in the maximal
ideal. The ring A is Cohen-Macaulay if the depth of A equals its Krull dimension. A scheme X is
Cohen-Macaulay if for every x ∈ X, OX,x is a Cohen-Macaulay local ring. Cohen-Macaulayness can be
thought of as a weak form of smoothness, as every smooth variety is Cohen-Macaulay.

Theorem 1.4. Let G be a reductive group over an algebraically closed field k of arbitrary characteristic,
P ⊂ G a parabolic subgroup, SP (w) ⊂ G/P a Schubert variety. Then SP (w) is Cohen-Macaulay.

We prove Theorem 1.4 in Section 6.2. We define the notion of a rational resolution f : X → Y ,
and show that the existence of a rational resolution implies that Y is Cohen-Macaulay. In Proposition
6.7 we show that the BSDH resolutions are rational resolutions, and the proof of Theorem 1.4 follows
easily. Importantly, the proof of Proposition 6.7 depends on the various properties of Frobenius split
schemes developed in Section 3.

1.4 Outline of essay

In Section 2, we recall the basic theory of reductive groups and their Schubert varieties, giving plenty of
examples along the way. We then construct the BSDH resolution of a Schubert variety in Section 2.3,
and give a description of its canonical sheaf. In Section 3, we prove some basic facts about Frobenius
split schemes, with an emphasis on the notion of compatible splitting. We also prove consequences of
Frobenius splitting such as the vanishing of higher cohomology of ample line bundles. In Section 4, we
develop a criterion for a smooth projective variety to be Frobenius split by using duality theory and the
Cartier operator to connect Frobenius splitting to sections of the canonical sheaf. In Section 5 we apply
this criterion for splitting to the BSDH varieties, and the proof of Theorem 1.1 follows. In Section 6 we
derive some geometric properties of Schubert varieties from their Frobenius splitting, proving Theorems
1.2, 1.3, and 1.4. By standard semicontinuity arguments, we show that these properties hold in arbitrary
characteristic. We conclude in Section 7 with a discussion of further applications of Frobenius splitting
and the role of Schubert varieties in other contexts.

2 Reductive groups and Schubert varieties

In this section, we develop the theory of Schubert varieties and their standard resolutions. In Section 2.1,
we recall some basic facts about linear algebraic groups. In Section 2.2, we define Schubert varieties over
reductive groups and give some of their basic properties, including their connection with flag varieties.
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In Section 2.3, we construct Bott-Samelson-Demazure-Hansen (BSDH) varieties, which are resolutions
of singularities of Schubert varieties. The main results is Proposition 2.28, which gives a description of
the canonical sheaf of BSDH varieties. We use this result in Section 5 to show that the BSDH varieties
are Frobenius split, and the Frobenius splitting of Schubert varieties follows.

Throughout this section, let k be an algebraically closed field of arbitrary characteristic.

2.1 Preliminaries

In this section we recall basic results on reductive groups from the standard references [Spr98, Hum75].
For any scheme X over k and any k-algebra R, let X(R) denote the R-valued points of X. Recall

that if k is algebraically closed, then X(k) is in canonical bijection with the closed points of X. For
brevity, we often identify X(k) with X.

By a variety over k, we mean an integral k-scheme which is separated and of finite type over k.

Definition 2.1.

1. An algebraic group G over k is a variety over k equipped with a multiplication morphism m and
an inverse morphism i, defined as

m : G×G→ G, (x, y) 7→ xy

i : G→ G, x 7→ x−1 (2.1)

m and i are morphisms of varieties, and the induced map on k-valued points turns G(k) into a
group. Equivalently, an algebraic group is a group variety over k.

2. A morphism of algebraic groups G,G′ is a morphism of varieties f : G→ G′ such that the induced
morphism G(k) 7→ G′(k) on k-valued points is a group homomorphism.

3. If G is affine, then G is a linear algebraic group.

4. A closed subgroup of G is a closed subvariety of G which is itself an algebraic group.

5. There exists a unique irreducible component G◦ of G which contains the identity e ∈ G(k). G◦ is
a normal subgroup of finite index in G, and G is irreducible if and only if G◦ = G, in which case
we say that G is connected.

We list some important examples of linear algebraic groups.

Example 2.2.

1. The additive group: Ga = Spec k[t] ∼= A1
k has the structure of an algebraic group under the

co-multiplication map

m# : k[t] → k[t1, t2]

t 7→ t1 + t2. (2.2)

The co-inverse map is given by i# : t 7→ −t. We then have that Ga(k) = (k,+).

2. The multiplicative group: Gm = Spec k[t, t−1] ∼= A1
k \ {0} has the structure of an algebraic group

under the co-multiplication map

m# : k[t, t−1] → k[t1, t2, (t1t2)
−1]

t 7→ t1t2. (2.3)

The co-inverse map is given by i# : t 7→ t−1. We then have that Gm(k) = (k×,×).
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3. The general linear group: let

GLn = Spec k[{tij}1≤i,j≤n,det(tij)
−1]. (2.4)

Then GLn(k) is the group of invertible n×nmatrices, as adjoining det(tij)
−1 to Spec k[{tij}1≤i,j≤n]

is like ensuring that det(aij) ̸= 0. We have that m# is given by matrix multiplication:

m# : k[{tij}] → k[{rij}, {sij}, det(rij)−1 det(sij)
−1]

tij 7→
n∑

ℓ=1

riℓsℓj . (2.5)

4. The special linear group is the closed subgroup of GLn defined by det(tij) = 1. We have that

SLn = Spec k[{tij}1≤i,j≤n]/(det(tij)− 1). (2.6)

5. The diagonal group Dn is the closed subgroup of GLn defined by tij = 0 if i ̸= j. We have that

Dn = Spec k[t11, t
−1
11 , . . . , tnn, t

−1
nn ]

∼=
n∏

i=1

Gm. (2.7)

6. The group of upper triangular matrices Bn is the closed subgroup of GLn defined by tij = 0 if
i < j. The group of strictly upper triangular matrices Un is the closed subgroup of Bn defined by
tii = 1.

Given any linear algebraic group G, we have that G is isomorphic to a closed subgroup of GLn for
some n, which justifies the descriptor “linear”.

Definition 2.3. A linear algebraic group G is diagonalizable if it is isomorphic to a closed subgroup of
Dn. A torus is a connected diagonalizable group. A maximal torus of G is a closed subgroup T ⊆ G
which is a torus, and not contained in any other. For example, Dn is a maximal torus of GLn.

Definition 2.4. An element x ∈ G is semisimple if there exists a faithful representation ρ : G → GLn

with ρ(x) a diagonal matrix. An element x ∈ G is unipotent if there exists a faithful representation
ρ : G→ GLn with ρ(x) strictly upper triangular. G is unipotent if all of its elements are unipotent.

Let (G,G) = {ghg−1h−1 | g, h ∈ G} be the commutator subgroup. Set G0 = G and Gi =
(Gi−1, Gi−1). We say that G is solvable if there exists m ≥ 0 such that

G = G0 ⊇ G1 ⊇ · · · ⊇ Gm = {e}. (2.8)

By the Lie-Kholchin theorem [Hum75, §17.6], any solvable subgroup can be embedded as a subgroup
ofBn and any unipotent group can be embedded as a subgroup of Un, so we can think of solvable elements
as upper triangular matrices, and unipotent elements as strictly upper triangular matrices.

Definition 2.5. A Borel subgroup of G is a maximal connected closed solvable subgroup of G. For
example, the group of upper triangular matrices Bn is a Borel subgroup of GLn. In general, G will
contain many Borel subgroups, all of which are conjugate.

Definition 2.6. The radical of G, denoted R(G), is the unique maximal connected normal solvable
subgroup of G. The unipotent radical of G, denoted Ru(G), is the unique maximal connected normal
unipotent subgroup of G. We have that Ru(G) is the subgroup of R(G) consisting of unipotent elements.
If R(G) = {e}, we say that G is semisimple. If Ru(G) = {e}, we say that G is reductive.
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Example 2.7. We have that R(GLn) = k∗I consists of scalar matrices in GLn. It follows that
Ru(GLn) = {I}, so GLn is reductive. Likewise, Dn is reductive and SLn is semisimple.

For any connected G, we can give G/R(G) the structure of a semisimple group and G/Ru(G) the
structure of a reductive group.

Definition 2.8. Let G be a reductive group and T ⊂ G a maximal torus. The Weyl group W of G is
NG(T )/T , where NG(T ) is the normalizer of T in G. As all maximal tori are conjugate, the Weyl group
is independent of the choice of T . If G is connected, then W is finite. If w ∈W , we write ẇ for a coset
representative of w, so that ẇ ∈ NG(T ) ⊂ G.

Example 2.9. If G = GLn and T = Dn, then NG(T ) is the group of matrices of the form P ·D, where
P is a permutation matrix and D ∈ Dn is a diagonal matrix. Thus we have that W = NG(T )/T ∼= Sn,
the symmetric group on n elements. We can uniquely represent each element of W by a permutation
matrix.

Definition 2.10. A character of G is a homomorphism χ : G → Gm
∼= k×. We denote the group of

characters by X∗(G).
Of particular interest is the character groupX∗(T ) for T a maximal torus. We have thatX∗(T ) ∼= Zn,

where n is the dimension of T .

Example 2.11. If T = Dn, then Dn
∼=
∏n

i=1Gm, and X∗(T ) ∼= Zn is generated by the projections
πi : (x1, . . . , xn) 7→ xi, 1 ≤ i ≤ n, under multiplication.

Definition 2.12. To each reductive group G we can attach a root system Φ ⊂ X∗(T ). Associated to
any Borel subgroup is a set of positive roots Φ+ ⊂ Φ, a set {α1, . . . , αn} ⊂ Φ+ of simple roots, and the
corresponding simple coroots {α∨

1 , . . . , α
∨
n}.

The set of simple roots corresponds to a set of simple reflections {s1, . . . sn} ⊂W . The set of simple
reflections generate W . In fact, given any w ∈ W , we can write w = si1 · · · sir as a product of simple
reflections with r minimal, this is a reduced expression for w. We set ℓ(w) = r to be the length of w.

There exists a unique element w0 ∈W of maximal length, called the longest element.

Example 2.13. In G = GL3, the Weyl group is W ∼= S3 generated by simple reflections {(12), (23)}.
The longest element is w0 = (23)(12)(23) = (13) with length 3. It has coset representative

ẇ0 =

0 0 1
0 1 0
1 0 0

 (2.9)

2.2 Schubert varieties

In this section, we recall the basics of Schubert varieties from [BK04, BL00]. Throughout this section,
let G be a reductive group over an algebraically closed field k, B ⊆ G a Borel subgroup, T ⊆ B a
maximal torus, and W the Weyl group.

Definition 2.14. Let G be an algebraic group. A G-variety is a variety X over k equipped with
a morphism of varieties (the action morphism) θ : G × X → X such that the induced morphism
G(k) ×X(k) → X(k) is a group action on X(k). If G(k) acts transitively on X(k), then we say that
X is a homogeneous space for G. Suppose that G(k) acts transitively on X(k), and let StabG(k)(x0) be
the stabilizer of x0 ∈ X. Then there exists a closed subgroup H ⊆ G such that H(k) = StabG(k)(x0),
and we can identify the left cosets G(k)/H(k) with X(k).

For brevity, we often identify the closed points X(k) of a G-variety with X itself, and write G/H
for the coset space G(k)/H(k).
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Example 2.15. GLn acts on Gm via m · a = (detm)a, and the stabilizer is SLn. Thus we have that
GLn / SLn

∼= Gm.

In fact, given any closed subgroup H ⊆ G, we can give G/H the structure of a quasi-projective
variety (so G/H is an open subvariety of a projective variety). Note that G/H is not an algebraic group
in general.

Definition 2.16. A closed subgroup P ⊆ G is parabolic if G/P is a projective variety. A parabolic
subgroup P is minimal if the only parabolic subgroups it contains are B and itself.

We are primarily interested in the projective varieties G/P and their subvarieties. Given any re-
ductive group G, we have that R(G) ⊂ B for any Borel subgroup B, so G/B ∼= (G/R(G))/(B/R(G)).
Since G/R(G) is semisimple, it suffices to consider all our results for G semisimple, however we state
them for general reductive groups. Additionally, since all Borel subgroups are conjugate, we have that
G/B ∼= G/B′ for any two Borel subgroups B,B′ ⊂ G. The following lemma characterizes the parabolic
subgroups of G.

Lemma 2.17. Let G be a connected algebraic group and let B be a Borel subgroup. Then

(i) B is a parabolic subgroup.

(ii) A closed subgroup of G is parabolic if and only if it is contained in a Borel subgroup.

Proof. See [Hum75, §21.3].

To make the variety structure of G/P more concrete, we introduce the notion of a flag.

Definition 2.18. Let V be a finite dimensional vector space over k. Then the Grassmannian Grm(V )
is the set of all m-dimensional vector spaces of V . We can give Grm(V ) the structure of a projective
variety via the embedding Grm(V ) → P(∧mV ) into projective space over the mth exterior power of V .

Definition 2.19. Let V be a finite dimensional vector space over k. A flag is a strictly increasing chain
of subspaces

0 = V0 ⊊ V1 ⊊ · · · ⊊ Vd = V. (2.10)

A full flag is a flag with d = dimV , so that dimVi = i for all i. Let F(V ) denote the space of full flags
of V . Then F(V ) is a projective variety via the embedding F(V ) ↪→ Gr1(V )× · · ·Grd(V ).

Example 2.20.

(i) Let G = GLn and B = Bn be the group of upper triangular matrices. Then GLn acts transitively
on the space of full flags in V = kn, and the stabilizer is B. Thus we have that G/B ∼= F(V ) as
G-varieties.

(ii) Let P ⊂ GL4 = G be the subgroup of 2× 2 block upper triangular matrices, that is, matrices of
the form 

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

 (2.11)

Then P is a parabolic subgroup as it contains B = Bn. G acts transitively on the Grassmannian
Gr2(k

4), and the stabilizer is P , so we have that G/P ∼= Gr2(k
4).
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(iii) Let Q ⊂ GL3 = G be the subgroup of matrices of the form∗ ∗ ∗
∗ ∗ ∗
0 0 ∗

 (2.12)

Then Q is a minimal parabolic subgroup of G. Let W = ⟨e1, e2⟩ be the subspace spanned by the
first two standard basis vectors. Then Q acts transitively on the full flags of W , and the stabilizer
of this action is B, so we have that Q/B ∼=W . But W is a 2-dimensional space, and the full flags
are just 1-dimensional subspaces, so we have that Q/B ∼= P(W ) ∼= P1

k.

Definition 2.21. Let G be a reductive group. The Bruhat decomposition of G gives a partition of G
into disjoint double cosets:

G =
⊔

w∈W
BẇB. (2.13)

Thus we have that
G/B =

⊔
w∈W

BẇB/B =
⊔

w∈W
X(w) (2.14)

where each X(w) = BẇB/B is a Bruhat cell. Thus if we let B act on the left on G/B, each Bruhat
cell is the orbit of the B-action represented by some element of w ∈W . We have that X(w) ∼= Aℓ(w) is
a locally closed subscheme of G/B.

Example 2.22. Let G = GL3 with Weyl group W ∼= S3 generated by simple reflections {(12), (23)}.
Let wσ ∈ G represent the permutation σ ∈ W . Then we have that w(132) = w(23)w(12), and the
associated double cosets are the matrices in GL3 of the form

X((12)) = Bw(12)B =

∗ ∗ ∗
□ ∗ ∗
0 0 ∗

 , X((132)) = Bw(132)B =

∗ ∗ ∗
□ ∗ ∗
0 □ ∗

 (2.15)

where we write □ to denote a nonzero entry. From this it is apparent that X(w(12)) ∼= A1 and
X(w(132)) ∼= A2.

Definition 2.23. A Schubert variety S(w) = X(w) is the closure of a Bruhat cell in G/B.

Each Schubert variety is a closed B-invariant subvariety of G/B. Likewise, any irreducible B-
invariant closed subvariety is a Schubert variety. Thus a Schubert variety is a union of Bruhat cells, and
the cells which appear have an explicit description in terms of the roots which are “smaller” than w.

Definition 2.24 (Bruhat order). Let w ∈ W have reduced expression w = si1 · · · sir . Then we write
x ≤ w if x can be written “subproduct” of the reduced expression for w, so that x = sij1 · · · sijm for
some 1 ≤ j1 < · · · < jm ≤ r.

Note that the expression x = sij1 · · · sijm may not be reduced. However, if w0 = si1 · · · siN is a
reduced expression for the longest element, we have that w ≤ w0 for all w ∈ W , and in fact there is a
reduced expression w = sij1 · · · sijm for w as a subproduct of the reduced expression for w0.

The Bruhat order allows us to give a simple decomposition of Schubert varieties into Bruhat cells:

S(w) =
⊔
x≤w

X(x). (2.16)
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The boundary of a Schubert variety ∂S(w) is the complement S(w) \X(w) so that

∂S(w) =
⊔
x<w

X(x). (2.17)

The boundary is the union of all the codimension 1 Schubert subvarieties of S(w), so we can consider
it as a Weil divisor.

Example 2.25.

(i) If w0 ∈W is the long element, then X(w0) is the big cell. We have that S(w0) = X(w0) = G/B.

(ii) Let G = GL3 and recall the setup of Example 2.22. Then S((12)) = X((12)) = Q/B ∼= P1, where
Q is given in Example 2.20 (iii).

(iii) More generally, let si ∈ W be a simple reflection and set P (si) := BėB ⊔ BṡiB. Then P (si) is a
minimal parabolic subgroup and S(si) = P (si)/B ∼= P1 is a Schubert variety.

(iv) Even more generally, the parabolic subgroups of G are in bijection with subsets I ⊂ {s1, . . . , sn}
of the set of simple reflections in W . Let WI ⊂W be the subgroup generated by I and let

P (I) :=
⊔

w∈WI

BẇB. (2.18)

Then for every parabolic subgroup P ⊂ G, there is a unique I ⊂ {s1, . . . , sn} such that P = P (I).
The quotient P (I)/B is Schubert variety, which is in fact smooth.

(v) Schubert varieties are not necessarily smooth in general: let G = SL4, and let w = (13)(24) ∈W .
Then S(w) is not smooth (see [LS90] or [BL00, §4.5]).

We can similarly define Schubert varieties in G/P , where P ⊂ G is any parabolic subgroup. Let
XP (w) = BwP/P ⊂ G/P be a B-orbit in G/P . Then the closure SP (w) = XP (w) is a Schubert
variety; it is a B-invariant closed subvariety of G/P . Conversely, any B-invariant closed subvariety of
G/P is a Schubert variety. We mostly work with Schubert varieties in G/B, as we can translate our
results to Schubert varieties in G/P using the natural map

πP : G/B → G/P, xB 7→ xP (2.19)

πP is a locally trivial fibration with smooth fiber P/B, and each Schubert variety SP (w) ⊂ G/P is the
image of S(w) under the map πP .

The following lemma from [Kem76] is useful when applying inductive arguments, as it allows us to
relate a Schubert variety associated to a Weyl group element of length r with one of length r − 1.

Lemma 2.26. Let w ∈ W be an element of the Weyl group, si a simple reflection, and SP (si)(w) the
image of S(w) under the projection map πP (si) : G/B → G/P (si). Then

(i) ℓ(wsi) = ℓ(w)− 1 if and only if S(w) is a locally trivial P1-fibration over SP (si)(w). In this case
πP (si)(S(wsi)) = SP (si)(w).

(ii) If ℓ(wsi) = ℓ(w) + 1 if and only if S(w) is mapped birationally onto SP (si)(w), and in this case
the fibers are either P1 or single points.

10



Proof. This follows from the basic facts about root systems and the Bruhat decomposition given in
[Kem76, §2]. We give a sketch. The Bruhat cell BẇB/B is spanned by the one parameter subgroups
U(α) such that w(α) < 0 where α ∈ Φ is a simple root. Let αi be the simple root associated to the
simple reflection si. We have that ℓ(wsi) = ℓ(w)−1 if and only if U(αi) ⊂ BẇB/B, and in this case the
fiber is P (si)/B ∼= P1, which gives (i). The Bruhat cell BẇB/B is mapped bijectively onto BẇB/P (si)
if and only if ℓ(wsi) = ℓ(w) + 1, which gives (ii).

In order to study the structure of Schubert varieties, we study line bundles on them. Let λ ∈ X∗(T )
be a character of the maximal torus T . Then λ lifts uniquely to a character λ ∈ X∗(B), and B acts on
Ga

∼= A1 ∼= k via b · a = λ(b). This defines a 1-dimensional representation of B, which we denote kλ.
Letting B act on the product G×Ga via b · (g, a) = (gb, λ(b)−1a), we obtain a line bundle (G× kλ)/B
over G/B. By convention, we write

L(λ) := (G× k−λ)/B. (2.20)

Let χ1, . . . , χn denote the fundamental weights of Φ (the dual basis for the set of simple coroots). We
have that L(χi) = OG/B(S(w0si)) (recall that S(w0si) is a prime divisor in S(w0) = G/B). The
decomposition of λ into a sum of fundamental weights then gives a decomposition of line bundles:

λ =

n∑
i=1

⟨λ, α∨
i ⟩χi =⇒ L(λ) =

n⊗
i=1

L(χi)
⊗⟨λ,α∨

i ⟩ (2.21)

From this, we see that the global sections Γ(G/B,L(λ)) ̸= 0 if and only if λ is dominant. Setting
ρ = χ1 + · · ·+ χn, we have that

L(ρ) =
n⊗

i=1

L(χi) = OG/B(∂S(w0)). (2.22)

2.3 Bott-Samelson-Demazure-Hansen (BSDH) resolutions

Given a Schubert variety S(w), we will construct a smooth resolution Z(w). The material in this section
is adapted from [BK04, §2.2].

For w ∈W with reduced expression w = si1 · · · sir , we have that

BẇB = (Bṡi1B) · · · (BṡirB) (2.23)

and in fact
S(w) = P (si1) · · ·P (sir)/B. (2.24)

Thus, even though the Schubert variety S(w) may not be smooth, we may be able to construct a
resolution out of the smooth varieties P (si)/B ∼= P1.

Let Y and Z be algebraic groups equipped with a right and left B-action, respectively. Then we
write Y ×B Z for the quotient (Y × Z)/B under the action (y, z) · b = (yb, b−1z), if it exists. Set

Z(w) = P (si1)×B · · · ×B P (sir−1)×B (P (sir)/B) (2.25)

Since P (si)/B ∼= P1 for all i, this is an iterated P1-fibration, and hence a smooth variety.
We have a product map

θw : Z(w) → G/B

[p1, . . . , pr] 7→ p1 · · · pr/B. (2.26)
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It is easy to see that this map is well defined, and by the decomposition (2.24), its image is S(w). Recall
that P (si) = BėB ⊔BṡiB. We have that Bṡi1B ×B · · · ×B (BṡirB/B) is an open subset of Z(w), and
is mapped bijectively by θw to Bṡ1 · · · ṡrB = BẇB = X(w). The Bruhat cell X(w) is open in S(w), so
θw is birational mapping Z(w) → S(w). Thus θw is a smooth resolution of the singularities of S(w).

If J = {j1, . . . jm} ⊂ {1, . . . , r} is a set of indices with j1 < · · · < jm, set w(J) = sij1 · · · sijm to be
the subproduct of w. In particular, we write ĵ = {1, . . . , j − 1, j + 1, r}, so that w(ĵ) = si1 · · · ŝij · · · sir
is the Weyl group element with sij removed. We define the variety Z(w(J)) analogously to Z(w) as

Z(w(J)) := P (sij1 )×B · · · ×B P (sijm−1
)×B

(
P (sijm )/B

)
. (2.27)

Then Z(w(J)) is a closed subvariety of Z(w) via the embedding

iw(J) : Z(w(J)) ↪→ Z(w)

[pj1 , . . . , pjm ] 7→ [1, . . . , 1, pj1 , 1 . . . , 1, pjm , 1, . . . , 1] (2.28)

where pjq is mapped to the jqth index and all the other indices are filled by 1s. Each Z(w(ĵ)) is a prime
divisor in Z(w), and as with Schubert varieties we can define the boundary

∂Z(w) :=

r⋃
i=1

Z(w(ĵ)). (2.29)

As subvarieties of Z(w), we have that

Z(w(J)) =
⋂
j /∈J

Z(w(ĵ)) (2.30)

and in particular
⋂r

i=1 Z(w(ĵ)) = {[1, . . . , 1]}.
Now, let ψw : Z(w) → Z(w(r̂)) be the morphism sending [p1, . . . , pr] 7→ [p1, . . . , pr−1]. Then ψw is a

locally trivial P1-fibration, and the inclusion mapping iw(r̂) sending [p1, . . . , pr−1] 7→ [p1, . . . , pr−1, 1] is
a section for ψw.

We want to give an explicit description of the canonical sheaf ωZ(w) of Z(w), so we can apply the
criteria for splitting developed in Section 4. Given a line bundle L(λ) on G/B as defined in (2.20), let
Lw(λ) = θ∗wL(λ) be the pullback line bundle on Z(w).

To prove our main result, we use the following lemma from [Ram85], which allows us to calculate
ωZ(w) inductively.

Lemma 2.27. Let X,Y be smooth varieties, and let f : X → Y be a locally trivial P1-fibration. Let
σ : Y → X be a section of f , and let D = σ(Y ) be the prime divisor in X. Let L be a line bundle on
X whose degree along the fibers of f is 1. Then

ωX
∼= f∗ωY ⊗OX(−D)⊗ L−1 ⊗ f∗σ∗L (2.31)

Proof. The key idea is to study the degree of line bundles along the fibers of f . Since f is a P1-fibration,
the restriction of a line bundle L to f−1(y) for y ∈ Y will be a P1-bundle isomorphic to OP1(d) for some
degree d. In particular, if L has degree 0 along the fibers of f , then f∗σ∗L = L.

Now, OX(D) has degree 1 along the fibers of f since D = σ(Y ) and σ is a section. So L⊗OX(−D) ∼=
f∗σ∗L ⊗ f∗σ∗OX(−D). By [Har77, Proposition II.8.20] we have that

σ∗OX(−D) ∼= σ∗ωX ⊗ ω−1
Y (2.32)
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so
L ⊗OX(−D) ∼= f∗σ∗L ⊗ f∗σ∗ωX ⊗ f∗ω−1

Y . (2.33)

Now, ωX has degree -2 along the fibers of f as ωP1
∼= OP1(−2) (see [Har77, Example II.8.20.1]) and f

is a P1-fibration. Thus ωX ⊗ L⊗2 has degree 0 along the fibers, so we have that

f∗σ∗ωX
∼= ωX ⊗ L2 ⊗ f∗σ∗L−2. (2.34)

Substituting (2.34) into (2.33) and rearranging gives the result.

We are now ready to prove the main result of the section.

Proposition 2.28. We have that

ωZ(w)
∼= OZ(w) (−∂Z(w))⊗ Lw(−ρ). (2.35)

Proof. We proceed by induction on ℓ(w) = r. If r = 1, then Z(w) ∼= P (si1)/B
∼= P1, so ωZ(w)

∼=
ωP1

∼= OP1(−2). We have that ∂(Z(w)) is a single point, so OZ(w)(−∂Z(w)) = OP1(−1). The map
θw : Z(w) → G/B is just the inclusion Pi1/B ↪→ G/B, so by (2.22) and the fact that Pi1/B ⊂ ∂(S(w0)),
we have that Lw(−ρ) ∼= OP1(−1), which gives the desired result.

Now, suppose the claim holds for all w ∈W with ℓ(w) < r, so that

ωZ(w(r̂))
∼= OZ(w(r̂))(−∂Z(w(r̂)))⊗ Lw(r̂)(−ρ). (2.36)

We want to apply Lemma 2.27 for the morphism ψw : Z(w) → Z(w(r̂)) with section iw(r̂) using
the line bundle Lw(ρ). By (2.22), we have that Lw(ρ) has degree 1 along the fibers of ψw. We
have that iw(r̂)(Z(w(r̂))) = Z(w(r̂)) ⊂ Z(w) is the inclusion. Since θw(r̂) = θw ◦ iw(r̂), we have that
i∗w(r̂)Lw(ρ) = Lw(r̂)(ρ).

Furthermore, we have that ψ∗
wOZ(w(r̂))(−∂Z(w(r̂))) = OZ(w)(−∂Z(w) + Z(w(r̂))). Thus applying

Lemma 2.27 gives

ωZ(w) = ψ∗
wωZ(w(r̂)) ⊗OZ(w)(−Z(w(r̂)))⊗ Lw(−ρ)⊗ ψ∗

wi
∗
w(r̂)Lw(ρ) (2.37)

= OZ(w)(−∂Z(w) + Z(w(r̂)))⊗ ψ∗
wLw(r̂)(−ρ)⊗OZ(w)(−Z(w(r̂)))⊗ Lw(−ρ)⊗ ψ∗

wLw(r̂)(ρ)

= OZ(w)(−∂Z(w))⊗ Lw(−ρ) (2.38)

as desired.

3 Frobenius splitting

In this section, we study the properties of Frobenius split schemes and compatibly split subschemes
as defined in Section 1, deriving some basic consequences and introducing criteria for a variety to be
Frobenius split. In Section 3.1, we introduce the notion of compatible splitting and derive some generic
criteria for a scheme to be Frobenius split. In Section 3.2, we prove the key Proposition 3.9 about the
cohomology of line bundles on Frobenius split schemes. The material in this section is adapted from
[BK04, §1.1-1.2]. Throughout this section, k is an algebraically closed field of characteristic p > 0 and
all schemes are defined over k.

First, recall that a scheme X is Frobenius split if F# : OX ↪→ F∗OX splits, so there exists φ :
F∗OX → OX such that φ ◦ F# = idOX

. If X is split by φ, then we have a split exact sequence

0 OX F∗OX OX 0F# φ
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which we refer to as the Frobenius exact sequence. We can think of a Frobenius splitting as a
“pth-root map” on OX as follows.

Since F is the identity on the underlying topological space of X, F∗OX and OX are equivalent as
sheaves of abelian groups, but have different OX -module structures. Let U ⊂ X be an open subset of
X. Then for f ∈ OX(U), g ∈ F∗OX(U), we have that f · g = F#(f)g = fpg. Thus any morphism of
OX -modules φ : F∗OX → OX satisfies

φ(f · g) = φ(fpg) = f · φ(g) = fφ(g). (3.1)

In particular, we have φ(fp) = fφ(1), so (φ ◦ F#)(f) = fφ(1). Thus φ ∈ HomOX
(F∗OX ,OX) is a

Frobenius splitting if and only if φ(1) = 1, and in fact we can check this globally. Thus we have shown
the following lemma.

Lemma 3.1. Let φ ∈ HomOX
(F∗OX ,OX) be a morphism of OX-modules. Then φ is a Frobenius

splitting if and only if φ(1) = 1 where 1 ∈ Γ(X,OX) is a global section of X.

If X is proper, so that Γ(X,OX) = k, then φ is a scalar multiple of a splitting if and only if
φ(1) ̸= 0. Thus we can study HomOX

(F∗OX ,OX) in order to determine if X is Frobenius split, which
we undertake in Section 4.

Frobenius split schemes enjoy many pleasant properties, which we detail in the following sections.
First, we prove a simple but valuable consequence of splitting.

Lemma 3.2. Let X be a Frobenius split scheme. Then X is reduced.

Proof. Let φ be a splitting of X, let U ⊂ X be an open set, and f ∈ Γ(U,OU ) be nilpotent. Then there
exists ν > 0 such that fpν = 0. But since X is Frobenius split,

fp
ν−1

= (φ ◦ F#)(fp
ν−1

) = φ(fp
ν
) = 0. (3.2)

By iteration, we find that f = 0, so X is reduced.

3.1 Compatible splittings

In this section we prove more properties related to compatible Frobenius splitting. We first give the
definition of compatible splitting.

Definition 3.3. Let φ : F∗OX → OX be a Frobenius splitting of X and let Y ⊂ X be a closed
subscheme with sheaf of ideals IY . We say that φ compatibly splits Y , and that Y is compatibly split in
X, if

φ(F∗IY ) ⊆ IY . (3.3)

We say Y1, . . . , Ym are simultaneously compatibly split if there is a single, fixed φ which compatibly
splits each Yi.

We start with an essential lemma which allows us to show in many cases that closed subschemes of
a larger scheme are Frobenius split.

Lemma 3.4. Let Y ⊂ X be a closed subscheme. If φ compatibly splits Y , then φ induces a Frobenius
splitting φY of Y .
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Proof. Recall that for any affine U ⊂ X, we have that OY (U∩Y ) = OX(U)/IY (U). Thus if g+IY (U) ∈
F∗OY (U), we may define φY : F∗OY → OY by

φY (g + IY (U)) = φ(g) + IY (U) (3.4)

and since φ(F∗IY ) = IY , we have that φY is well defined. Further, we have that

φY ◦ F#(g + IY (U)) = φY (g
p + IY (U))

= g + IY (U) (3.5)

so φY is a Frobenius splitting of Y .

In particular, we have a commutative diagram with exact rows

0 IY OX OY 0

0 F∗IY F∗OX F∗OY 0

0 IY OX OY 0

F# F# F#

φ φ φY

with φ,φY Frobenius splittings of X and Y , respectively.
Compatible splittings have several nice properties. In particular, the following lemma tells us it is

sufficient to check compatible splitting on a dense open subset.

Lemma 3.5. Let X be a reduced scheme of finite type and U ⊂ X a dense open subset. Let φ ∈
HomOX

(F∗OX ,OX) be a morphism such that φ|U is a Frobenius splitting of U . Then

(i) φ is a Frobenius splitting of X.

(ii) If Y ⊂ X is a reduced closed subscheme such that U ∩ Y is dense in Y and φ|U compatibly splits
U ∩ Y , then φ compatibly splits Y .

Proof. (i): Since X is reduced and φ(1)|U = 1, we have that φ(1) = 1 since U is dense in X. Thus φ is
a Frobenius splitting by Lemma 3.1.

(ii): We have that φ(F∗IY ) is coherent and IY ⊂ φ(F∗IY ), so φ(F∗IY ) = IZ for some closed
subscheme Z ⊂ Y ⊂ X. Now, since U ∩ Y is compatibly split, we have that IY |U∩Y = IZ |U∩Y . We
can consider Z as a closed subscheme of Y , with associated ideal sheaf IZ/Y . Then IZ/Y |U∩Y = 0, so
IZ/Y = 0, so Z = Y , so φ(F∗IY ) = IY , so φ compatibly splits Y .

Instead of directly proving that Schubert varieties SP (w) are Frobenius split, we instead show that
the BSDH varieties Z(w) are split, and use the morphisms θw : Z(w) → S(w) and πP : S(w) → SP (w)
to relate the splitting of Z(w) with that of SP (w). This is made possible with the following lemma.

Lemma 3.6. Let f : X → Y be a quasicompact morphism of reduced schemes such that f# : OY →
f∗OX is an isomorphism. Let i : Z ↪→ X be a closed subscheme and let W = f(Z) denote the scheme-
theoretic image of Z in Y . Then

(i) Let IZ , IW denote the ideal sheaves of Z,W respectively. Then IW = f∗IZ .
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(ii) If X is Frobenius split, then Y is Frobenius split.

(iii) If Z is compatibly split in X, then W is compatibly split in Y .

Proof. (i): Since f is quasicompact, we have that (see [Sta25, Lemma 01R8])

IW = ker
(
(f ◦ i)# : OY → f∗i∗OZ

)
. (3.6)

Since OY
∼= f∗OX , we have that

IW = ker (f∗OX → f∗i∗OZ)

= f∗ ker (OX → i∗OZ)

= f∗IZ . (3.7)

(ii): Let φ : F∗OX → OX be a Frobenius splitting of X, and consider the direct image

f∗φ : f∗F∗OX → f∗OX . (3.8)

Since f∗F∗OX = F∗f∗OX and f∗OX
∼= OY , we have that f∗φ is a map F∗OY → OY , and since φ is a

Frobenius splitting we have that f∗φ(1) = 1, so f∗φ is a Frobenius splitting of Y by Lemma 3.1.
(iii): If Z is compatibly split by φ, then φ(F∗IZ) = IZ , and by part (i) IW = f∗IZ , so we have that

f∗φ(F∗IW ) = f∗φ(f∗F∗IZ)
= f∗(φF∗IZ)
= IW (3.9)

so W is compatibly split by f∗φ.

Lemma 3.7. Let Y,Z ⊂ X be closed subschemes of X which are simultaneously compatibly split. Then
Y ∩ Z and Y ∪ Z are compatibly split.

Proof. Let IY , IZ , IY ∩Z be the ideal sheaves of Y,Z, Y ∩ Z, respectively. Then IY ∩Z = IY + IZ and
IY ∪Z = IY ∩ IZ . Let φ be a Frobenius splitting of X compatible with Y and Z. Then

φ(F∗IY ∩Z) = φ(F∗(IY + IZ)) = φ(F∗(IY )) + φ(F∗(IZ)) = IY ∩Z (3.10)

as desired. The result for Y ∪ Z follows similarly.

3.2 Line bundles on Frobenius split schemes

We now derive some nice properties of line bundles on Frobenius split schemes.

Lemma 3.8. Let L be an invertible sheaf on a scheme X. Then

(i) F ∗L ∼= Lp

(ii) F∗(F
∗L) ∼= L ⊗OX

F∗OX

Proof. (i): Since F is the identity on X, we have that F ∗L ∼= L ⊗OX
OX , where OX acts on itself via

the pth power map f → fp. Thus we have a natural OX -linear isomorphism L⊗OX
OX → Lp given by

ℓ⊗ f → fℓp.
(ii): This follows immediately from the projection formula [Har77, Exercise III.8.3].
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Proposition 3.9. Let X be a proper Frobenius split scheme over k, and let L be an ample line bundle
on X. Then

(i) H i(X,L) = 0 for all i ≥ 1.

(ii) If Y ⊂ X is compatibly split, then the restriction map H0(X,L) → H0(Y,L) is surjective.

Proof. (i): Let φ be a splitting of X. Tensoring the Frobenius exact sequence by L gives a split exact
sequence

0 L L ⊗ F∗OX L 0.
id⊗F# id⊗φ

Since the above sequence splits, the map on cohomology is injective:

H i(X,L) ↪→ H i(X,L ⊗ F∗OX). (3.11)

But we have that
H i(X,L ⊗ F∗OX) ∼= H i(X,F∗(Lp)) (3.12)

by Lemma 3.8, and since F is affine, we have an isomorphism of sheaves of abelian groups (which is not
a k-morphism) H i(X,F∗(Lp)) ∼= H i(X,Lp). Thus we have an injection H i(X,L) ↪→ H i(X,Lp), and
iterating gives an injection

H i(X,L) ↪→ H i(X,Lpν ) (3.13)

for all ν. But since L is ample, by Serre’s vanishing theorem [Har77, Proposition III.5.3], there exists
n0 ∈ Z>0 such that H i(X,Ln) = 0 for all n ≥ n0. Thus for ν sufficiently large H i(X,L) injects into 0,
so H i(X,L) = 0.

(ii): Let Y ⊂ X be a closed subvariety compatibly split by φ. As with the Frobenius exact sequence,
iterating the splitting φ gives a split exact sequence

0 OX F ν
∗ OX OX 0

(F#)ν φν

Tensoring by L and taking global sections, we get a commutative diagram with surjective horizontal
maps

H0(X,Lpν ) H0(X,L)

H0(Y,Lpν ) H0(Y,L)

φν

res res

φν

We want to show that the restriction map on the right is surjective, and it suffices to show that the
restriction map on the left is surjective. We have an exact sequence

0 Lpν ⊗ IY Lpν Lpν |Y 0

and taking cohomology gives an exact sequence

H0(X,Lpν ) H0(Y,Lpν ) H1(X,Lpν ⊗ IY )

Since L is ample, by Serre’s vanishing theorem, H1(X,Lpν ⊗ IY ) = 0 for large ν, so H0(X,Lpν ) →
H0(Y,Lpν ) is surjective, so we are done.
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4 Criteria for splitting

In this section, we prove a criterion for a projective variety to be Frobenius split. The key result
is Proposition 4.11, which we use to show that Schubert varieties are Frobenius split in Section 5.
Throughout this section, k is an algebraically closed field of characteristic p > 0 and all schemes are
defined over k. The material in this section is adapted from [BK04, §1.3].

In Section 4.1, we study the De Rham complex of a regular affine k-algebra. In Section 4.2, we
“sheafify” the results of the previous section, proving results about the De Rham complex of a smooth
k-variety and defining the trace map. In Section 4.3, we relate the trace map to Frobenius splitting,
proving our splitting criterion Proposition 4.11.

By Lemma 3.1, in order to determine if a scheme X is Frobenius split, it suffices to understand the
evaluation map:

ϵ : HomOX
(F∗OX ,OX) → Γ(X,OX)

φ 7→ φ(1). (4.1)

We can “sheafify” this map:

ϵ : HomOX
(F∗OX ,OX) → OX

φ 7→ φ(1) (4.2)

In order to get a handle on the evaluation map, we utilize duality theory. In particular, we will construct
an isomorphism

HomOX
(ωX , F∗ωX) → HomOX

(F∗OX ,OX) (4.3)

where ωX is the canonical sheaf, defined below. We could give such an isomorphism non-explicitly using
duality theory (see [Sta25, §0ATZ] or [Har77, §III.8], for instance), but our explicit (if long-winded)
approach will allows us to give a concrete criterion for Frobenius splitting.

Now, let X/k be a smooth variety of dimension n. Then the Kahler differential Ω1
X/k is a locally

free OX -module of rank n, equipped with a k-derivation d : OX → Ω1
X/k. See [Har77, §II.8] for more

information on the Kahler differential. We can define the De Rham complex of X over k

Ω•
X/k =

∞⊕
i=0

∧iΩ1
X/k, (4.4)

which is an associative OX -algebra with ith graded part Ωi
X/k = ∧iΩ1

X/k and Ω0
X/k = OX . In particular,

we have that Ωn
X/k = ωX/k = ωX is the canonical sheaf of X. As Ω1

X/k is locally free of rank n, ωX will
be an invertible sheaf on X.

4.1 The affine De Rham complex

To better understand the De Rham complex, we first work locally over some open affine SpecA ⊂ X,
where A is a k-algebra. Then we can define the Kahler differential Ω1

A/k of A, which is an A-module
spanned by the symbols {da | a ∈ A} subject to the relations d(a+b) = da+db and d(ab) = a(db)+b(da).
Ω1
A/k is equipped with a k-linear derivation d = dA/k : A → Ω1

A/k sending a 7→ da. Since we work in
characteristic p, we have that dap = pap−1da = 0, so d is Ap-linear. This fact is essential and allows us
to develop our subsequent results.

The De Rham complex of A is

Ω•
A/k =

∞⊕
i=0

∧iΩA/k, (4.5)
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which is an associative algebra with product given by ∧ and additional relations da ∧ da = 0 and
da∧db = −db∧da for a, b ∈ A. We can naturally define the ith graded part of Ω•

A/k to be Ωi
A/k = ∧iΩA/k

(and set Ω0
A/k = A), so we have that

α ∧ β = (−1)ijβ ∧ α (4.6)

for α ∈ Ωi
A/k and β ∈ Ωj

A/k. Any graded ring satisfying (4.6) is said to be graded-commutative, so Ω•
A/k

is a graded-commutative A-algebra.
The derivation d extends to a map d : Ω•

A/k → Ω•
A/k given by

d(a0da1 ∧ · · · ∧ dai) = da0 ∧ da1 ∧ · · · ∧ dai (4.7)

In particular, we have that d maps Ωi
A/k → Ωi+1

A/k and d2 = 0, so we can define a cohomology complex
H•

A/k as follows.
Let

Z•
A/k := {α ∈ Ω•

A/k | dα = 0} = ker
(
d : Ω•

A/k → Ω•
A/k

)
(4.8)

be the complex of “cocycles” of Ω•
A/k. Let

B•
A/k := {dα | α ∈ Ω•

A/k} = im
(
d : Ω•

A/k → Ω•
A/k

)
(4.9)

be the complex of “coboundaries”. Since d is Ap-linear, we have that Z•
A/k is a graded Ap-subalgebra of

Ω•
A/k as if α ∈ Z•

A/k and ap ∈ Ap, then d(apα) = apdα = 0 so apα ∈ Z•
A/k. Likewise, B•

A/k is a graded
ideal of Z•

A/k as if dα ∈ B•
A/k and β ∈ Z•

A/k, then βdα = d(αβ) so βdα ∈ B•
A/k.

It follows that we can define the cohomology complex

H•
A/k := Z•

A/k/B
•
A/k (4.10)

which will be a grade-commutative Ap-algebra.

Lemma 4.1. If A is the localization of a finitely generated k-algebra, then Ω•
A/k is a finitely generated

A-module and Z•
A/k, B

•
A/k, H

•
A/k are finitely generated Ap-modules.

Proof. Let A′ be a finitely generated k-algebra, so that A′ = k[t1, . . . , tn]/I for some ideal I. If A is a
localization of A′, then Ω1

A/k is generated by dt1, . . . , dtn and it follows that Ω•
A/k is a finitely generated

A-module. Since A is a finitely generated Ap-module Ω•
A/k is finitely generated as an Ap-module, as are

the submodules Z•
A/k and B•

A/k, and the quotient module H•
A/k.

We will construct a homomorphism Ω•
A/k → H•

A/k by defining a k-derivation A → H1
A/k and using

the universal property of Ω•
A/k.

Lemma 4.2. Let δ : A → H1
A/k be given by δ(a) = ap−1da + B1

A/k. Then δ is a well-defined k-
derivation, where A is given the standard A-module structure, and A acts on H1

A/k via the Frobenius
morphism F : A→ Ap.

Proof. First, we have that ap−1da ∈ Z•
A/k so δ is a well-defined map.

Next, we have that

δ(ab) = ap−1bp−1d(ab) +B1
A/k

= apbp−1db+ bpap−1da+B1
A/k

= a · δ(a) + b · δ(b). (4.11)
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Lastly, we need to show that δ(a+b) = δ(a)+δ(b). Since 1
p

(
p
i

)
is not divisible by p for all 1 ≤ i ≤ p−1,

we have
1

p

(
p

i

)
d(aibp−i) =

(
p− 1

i− 1

)
ai−1bp−ida+

(
p− 1

i

)
aibp−i−1db. (4.12)

Summing over all 1 ≤ i ≤ p− 1 and reindexing gives

p−1∑
i=1

1

p

(
p

i

)
d(aibp−i) =

p−2∑
j=0

(
p− 1

j

)
ajbp−1−jda+

p−1∑
i=1

(
p− 1

i

)
aibp−i−1db

= (a+ b)p−1d(a+ b)− ap−1da− bp−1db. (4.13)

The left hand side lies in B1
A/k, so modding out gives δ(a + b) − δ(a) − δ(b) = 0 as desired, so δ is a

k-derivation.

By the universal property of Kahler differentials, δ induces an A-linear map

γ : Ω1
A/k → H1

A/k

adb 7→ a · δ(b) +B1
A/k = apbp−1db+B1

A/k. (4.14)

We can extend this to a map on the complexes given by

γ : Ω•
A/k → H•

A/k

a0da1 ∧ · · · ∧ dar 7→ ap0(a
p−1
1 da1) ∧ · · · ∧ (ap−1

r dar) mod B•
A/k (4.15)

where A acts on H1
A/k via F : A→ Ap.

If A is regular (so if the underlying variety is smooth), then γ is an isomorphism. This stems from
the fact that in characteristic p the derivation d is Ap-linear. Thinking of γ as a sort of pth power
map, the next theorem then tells us that every element of the cohomology complex can be represented
uniquely by a pth power.

Proposition 4.3. If A is regular, then γ : Ω•
A/k → H•

A/k is an isomorphism.

Proof. It suffices to prove the isomorphism locally, and as A is regular, we may assume that A =
k[[t1, . . . , tn]] (see Definition 4.5 below).

Let α ∈ Zi
A/k, so that dα = 0. We can decompose α as

α =

∞∑
j=0

tjn(αj + βj ∧ dtn) (4.16)

where αj ∈ Ωi
k[[t1,...,tn−1]]/k

and βj ∈ Ωi−1
k[[t1,...,tn−1]]/k

. Then taking the differential of both sides gives that

∞∑
j=0

(
j(−1)itj−1

n αj ∧ dtn + tjndαj + tjndβj ∧ dtn
)
= 0. (4.17)

Comparing coefficients gives dαj = 0 and (j + 1)(−i)iαj+1 + dβj = 0. Now, we have that

d(tj+1
n βj) = (j + 1)(−1)i+1tjnβj ∧ dtn + tj+1

n ∧ dβj , (4.18)
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so if p ∤ (j + 1), we have that

tj+1
n αj+1 + tjnβj ∧ dtn =

(−1)i+1

j + 1
d(tj+1

n βj) ∈ Bi−1
A/k. (4.19)

It follows that we can represent α in H i
A/k by terms with αj = 0 and βj−1 = 0 unless p | j. But in this

case, we have that dαj = dβj = 0, so αj ∈ Zi
k[[t1,...,tn−1]]/k

and βj ∈ Zi−1
k[[t1,...,tn−1]]/k

. Thus, repeating the
above argument for each αj , βj and iterating, we see that α can be represented in H i

A/k by

α′ =
∑

j=(j1,...,jn)

∑
ℓ=(ℓ1,...,ℓi)

1≤ℓ1<···<ℓi≤n

cj,ℓ(t
j1
1 · · · tjnn )p(tp−1

ℓ1
dtℓ1) ∧ · · · ∧ (tp−1

ℓi
dtℓi). (4.20)

This representation is unique, as α′ ∈ Bi
A/k if and only if cj,ℓ = 0 for all j, ℓ. Furthermore, we have that

γ(tj11 · · · tj1n dtℓ1 ∧ · · · ∧ dtℓi) = (tj11 · · · tjnn )p(tp−1
ℓ1

dtℓ1) ∧ · · · ∧ (tp−1
ℓi

dtℓi) (4.21)

so γ is an isomorphism.

4.2 Sheafification

Let us return to the situation where X/k is a smooth variety of dimension n. First, note that Ω•
X/k is

a graded-commutative OX -algebra. As in the affine case, we can extend the derivation d : OX → Ω1
X/k

to a derivation d : Ω•
X/k → Ω•

X/k. We have that d : F∗Ω
•
X/k → F∗Ω

•
X/k is OX -linear, which is analogous

to the property that the derivation on Ω•
A/k is Ap-linear.

Likewise, we can define cohomology sheaves HiF∗Ω
•
X/k which are locally equivalent to H iΩ•

A/k, and
by Lemma 4.1, HiF∗Ω

•
X/k is a coherent OX -module. We can take a direct sum to define

H•F∗Ω
•
X/k :=

∞⊕
i=0

HiF∗Ω
•
X/k (4.22)

which will be a graded-commutative OX -algebra. Then, by Lemma 4.2, we obtain a homomorphism

γ : Ω1
X/k → H1F∗Ω

•
X/k (4.23)

given by γ(fdg) = fpgp−1dg mod dOX . This extends uniquely to a homomorphism of graded-commutative
OX -algebras

γ : Ω•
X/k → H•

X/k. (4.24)

Since X is a smooth variety, γ is an isomorphism by Proposition 4.3. The Cartier operator is the
inverse isomorphism C = γ−1. Since C is an isomorphism of graded-commutative OX -algebras, it
induces isomorphisms of each graded part:

Ci : HiF∗Ω
•
X/k → Ωi

X/k. (4.25)

Recall the canonical sheaf ωX = Ωn
X/k and note that since ΩX/k is locally free of rank n, Ωi

X/k = 0 for

i > n so HnF∗Ω
•
X/k = F∗

(
Ωn
X/k/dΩ

n−1
X/k

)
. Thus we can define the projection

πn : F∗ωX = F∗Ω
n
X/k ↠ F∗

(
Ωn
X/k/dΩ

n−1
X/k

)
= HnF∗Ω

•
X/k. (4.26)
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Definition 4.4. The trace map τ : F∗ωX → ωX is given by Cn ◦ πn.

The isomorphism γ as defined in (4.15) can be seen as a sort of pth power map, so we can think of
the trace map as a pth root map on ωX . We make this precise in the next lemma, which describes the
trace map locally.

First, we give some background on systems of local coordinates and completion of local rings from
[Har77, §II.9] and [Vak24, §28.1]. In particular, we describe how to embed the stalk OX,x of a smooth
variety into a power series ring. This greatly simplifies subsequent calculations. We also introduce
multi-index notation. Given i = (i1, . . . , in) ∈ Qn, we write ti = ti11 · · · tinn , and if a ∈ Q, then we write
a = (a, . . . , a) ∈ Qn. We also write dt = dt1 ∧ · · · ∧ dtn.

Definition 4.5. Now, let x ∈ X be a closed point of a smooth variety X. By a system of local
coordinates for x, we mean a minimal set of generators t1, . . . , tn for the maximal ideal m ⊂ OX,x, or
equivalently, a basis for m/m2 as a OX,x/m-vector space. Let U = SpecA ⊆ X be an affine open of X
containing x, and let p ∈ SpecA be the prime ideal corresponding to x. Then we can interpret t1, . . . , tn
as elements of the localization Ap, and there exists an open neighborhood V ⊂ SpecA containing x
such that for each q ∈ V , t1, . . . , tn ∈ Aq and t1, . . . , tn are a system of local coordinates for q (hence
the name local coordinates).

If t1, . . . , tn is a system of local coordinates for x, then dt1, . . . , dtn is a basis for ΩX/k,x, and ωX,x

is spanned by dt1 ∧ · · · ∧ dtn. Let ÔX,x denote the completion of OX,x at the ideal m. We have that
ÔX,x

∼= k[x1, . . . , xn], with the injection OX,x ↪→ k[x1, . . . , xn] given by ti 7→ xi and k → k.

Lemma 4.6. Let X be a smooth variety of dimension n. Choose some closed point x ∈ X and let
t1, . . . , tn be a system of local coordinates for x at X. Then the trace map τ at x is given locally by

τ(fdt) = Tr(f)dt (4.27)

where

Tr

(∑
i

ait
i

)
:=
∑
i

bit
(i−p+1)/p, bi =

{
a
1/p
i (i− p+ 1)/p ∈ Zn

0 otherwise
(4.28)

Proof. Since ωX is locally free, we have that ωX,x
∼= OX,x so ω̂X,x

∼= k[[t1, . . . , tn]] via the mapping
fdt 7→ f . We then have that

̂ωX,x/dΩ
n−1
X/k,x

∼= k[[t1, . . . , tn]]/I (4.29)

where I ⊂ k[[t1, . . . , tn]] is the ideal consisting of all partial derivatives of formal power series. This is
true because if f ∈ k[[t1, . . . , tn]], then

d(fdt1 ∧ · · · ∧ d̂ti ∧ · · · ∧ dtn) =
∂f

∂dti
dt (4.30)

where d̂ti means we skip that particular index. Given g ∈ k[[t1, . . . , tn]], we have that g = ∂f
∂ti

for some
f ∈ k[[t1, . . . , tn]] if and only if

g =
∑
i

ait
i (4.31)

with ai = 0 if (i+ 1)/p ∈ Zn. Thus we can represent any element g + I ∈ k[[t1, . . . , tn]]/I by

∑
j

ajt
p−1+pj = tp−1

∑
j

ajt
j

p

= tp−1fp. (4.32)

where f =
∑

j ajt
j. By (4.15), we have that γ(fdt) = tp−1fpdt, so we are done as the maps i 7→

(i− p+ 1)/p and j 7→ (p− 1+ pj) are inverses of each other.
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4.3 The trace map and Frobenius splitting

Lemma 4.6 shows that the trace map looks like a pth root map on ωX , which gives us hope that
we may be able to relate it to Frobenius splittings of X, which themselves look like pth root maps.
Our explicit description of the trace allows us to give an explicit isomorphism HomOX

(ωX , F∗ωX) ∼=
HomOX

(F∗OX ,OX) which is compatible with the evaluation map defined in (4.2). Lemma 3.1 tells us
that understanding the evaluation map allows us determine the Frobenius splitting of X. Thus we can
use our explicit isomorphism to relate the Frobenius splitting of X to the existence of certain sections
of the canonical sheaf ωX , which we do in Proposition 4.11.

It follows from (4.28) that Tr ∈ HomOX
(F∗OX ,OX) since Tr(fpg) = f Tr(g). In fact, Tr(f) is

a generator for HomOX
(F∗OX ,OX) as a F∗OX -module under the action (g · Tr)(f) = Tr(fg) as any

element of HomOX
(F∗OX ,OX) is uniquely determined by its values on the monomials ti with i ≤ p−1.

Explicitly, if φ ∈ HomOX
(F∗OX ,OX), then setting

h =
∑

i≤p−1

φ(ti)tp−1−i, (4.33)

we have that φ = h · Tr.

Lemma 4.7. Let X be a smooth variety. We have an explicit isomorphism of F∗OX-modules

ι : HomOX
(ωX , F∗ωX) → HomOX

(F∗OX ,OX) (4.34)

given locally at x ∈ X with local coordinates t1, . . . , tn by the equality in ωX

ι(ψ)(f)dt = τ(fψ(dt)) (4.35)

where ψ ∈ HomOX
(ωX , F∗ωX)x, f ∈ OX,x. Further, defining τ̂ : HomOX

(ωX , F∗ωX) → HomOX
(ωX , ωX)

by τ̂(ψ) = τ ◦ ψ, we have that the diagram

HomOX
(ωX , F∗ωX) HomOX

(F∗OX ,OX)

HomOX
(ωX , ωX) OX

ι

τ̂ ϵ

∼

commutes where ϵ is the evaluation homomorphism defined in (4.2).

Proof. First we show that ι is well-defined. Let ψ ∈ HomOX
(ωX , F∗ωX)x and set ψ(dt) = gdt. Then

ι(ψ)(f) = Tr(fg), so ι(ψ) ∈ HomOX
(F∗OX ,OX)x.

If s = (s1, . . . , sn) is another set of local coordinates for x, then there exists u ∈ O×
X,x such that

ds = udt. If ι(ψ)(f)dt = τ(fψ(dt)), then

ι(ψ)(f)ds = uτ(fψ(dt)) = τ(upfψ(dt)) = τ(fψ(udt)) = τ(fψds). (4.36)

If g ∈ OX,x, we have that

ι(gψ)(f)dt = τ(f(gψ)(dt)) = τ(fgψ(dt)) = ι(ψ)(fg)dt (4.37)

so ι is F∗OX -linear. Additionally, we have that ϵ(i(ψ)) = ι(ψ)(1) = ι(ψ)(1)dt = τ(ψ(dt)) so the
diagram commutes.

In order to show that ι is an isomorphism, we need to show that it maps a generator for HomOX
(ωX , F∗ωX)x

to a generator for HomOX
(F∗OX ,OX)x. We can define a generator ψ0 for HomOX

(ωX , F∗ωX)x by set-
ting ψ0(dt) = dt, and then extending linearly to get ψ0(fdt) = fpdt. We then have that ι(ψ0) = Tr,
and Tr is a generator of HomOX

(F∗OX ,OX)x so we are done.
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The properties of the Frobenius morphism allows us to restate the previous lemma in a pleasant
way.

Lemma 4.8. We have an isomorphism ι̂ : F∗(ω
1−p
X ) → HomOX

(F ∗OX ,OX) which gives an isomorphism
of global sections ι̂ : H0(X,ω1−p

X ) → HomOX
(F ∗OX ,OX).

Proof. By the adjunction of F∗ and F ∗, we have that

HomOX
(ωX , F∗ωX) ∼= F∗HomOX

(F ∗ωX , ωX). (4.38)

By Lemma 3.8, we have that

HomOX
(F ∗ωX , ωX) ∼= HomOX

(ωp
X , ωX) ∼= HomOX

(ωp−1
X ,OX) ∼= ω1−p

X (4.39)

which gives the result after noting that H0(X,ω1−p
X ) ∼= H0(X,F∗(ωX)1−p) as sheaves of abelian groups.

Thus we have finally characterized HomOX
(F∗OX ,OX) as promised at the beginning of the section.

We say that φ ∈ H0(X,ω1−p
X ) splits X if its image ι̂(φ) is a Frobenius splitting of X. The next result

allows us to characterize Frobenius splitting using the trace map τ .

Lemma 4.9. Let X be a smooth variety. Then

(i) φ ∈ H0(X,ω1−p
X ) splits X if and only if τ̂(φ) = 1.

(ii) If X is proper, then φ splits X if and only if at some closed point x ∈ X with local coordinates
t1, . . . , tn, we have that

φx =
∑
i

ait
i (4.40)

with ap−1 = 1.

Proof. (i): By Lemma 3.1, φ splits X if and only if ϵ(ι̂(φ)) = 1. By Lemma 4.7, we have that
ϵ(ι̂(φ)) = τ̂(φ). Let x ∈ X and φx = f(dt)1−p for some f ∈ OX,x and some system of local coordinates
t1, . . . , tn. By Proposition 4.6, we have locally around x that τ̂(φ) = Tr(f). If X is proper, then
the global functions on X are constant, so this means we have τ̂(f(dt)1−p) = Tr(f) ∈ k globally, so
φ = ctp−1 and Tr(f) = c, so φ is a splitting if and only if c = 1.

The above proposition tells us that in order to prove that a proper smooth variety X is Frobenius
split, it suffices to show that there is a section φ ∈ H0(X,ω1−p

X ) which locally “looks like” tp−1. This
is equivalent to finding a section of φ ∈ H0(X,ω−1

X ) which locally “looks like” t1 · · · tn. Such a section
will have “order of vanishing” equal to 1 in the ti direction for each i. We make this precise with the
following proposition. First we introduce some terminology.

Definition 4.10. Let X be a smooth variety of dimension n and let Y1, . . . , Yr be prime divisors of X
(closed subvarieties of codimension 1) with ideal sheaves IY1 , . . . , IYr . We say that Y1, . . . , Yr intersect
transversely at some x ∈ X if there exists a system of local coordinates t1, . . . , tn for x such that in some
neighborhood U ⊂ X containing x, we have that IYi |U ∼= ˜(ti), so Yi is locally defined by the equation
ti = 0.
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Proposition 4.11. Let X be a proper smooth variety of dimension n. Suppose there exists σ ∈
H0(X,ω−1

X ) with divisor of zeros and poles

div(σ) = Y1 + · · ·+ Yn + Z (4.41)

where Y1, . . . , Yn are prime divisors intersecting transversely at some x ∈ X and Z is an effective divisor
not containing x. Then σp−1 ∈ H0(X,ω1−p

X ) splits X, and Y1, . . . , Yn and simultaneously compatibly
split.

Proof. Choose a system of local coordinates for x ∈ X such that there exists an open neighborhood
U ⊂ X of x such that the ideal sheaf IYi satisfies IYi |U ∼= ˜(ti). Then as Z is effective and does not
contain x, we have that

σx = t1 · · · tng(t1, . . . , tn)dt−1 (4.42)

where g(t1, . . . , tn) ∈ k[[t1, . . . , tn]] is such that g(0, . . . , 0) ̸= 0 (as otherwise Z would not be an effective
divisor not containing x). Normalize so that g(0, . . . , 0) = 1. Thus the coefficient of tp−1 in σp−1

x is 1,
so σp−1 is a splitting of X by Lemma 4.9.

Now, let φ = ι̂(σp−1) be the Frobenius splitting associated with σp−1. Then by Lemma 4.7, we have
that

φ(tif(t1, . . . , tn)) = Tr(tif(t1, . . . , tn)t
p−1g(t1, . . . , tn)

p−1)

= tiTr(t
1−p
i tp−1f(t1, . . . , tn)g(t1, . . . , tn)

p−1). (4.43)

Since IYi |U ∼= ˜(ti), we have that φ(F∗IYi |U ) ⊆ F∗IYi |U so Yi ∩ U is compatibly split by φ|U , so by
Lemma 3.5, Yi is compatibly split by φ.

5 Frobenius splitting of Schubert varieties

We combine the results from the previous sections to prove our main theorem.

Proposition 5.1. There exists a section σ ∈ H0(Z(w), ω−1
Z(w)) such that σp−1 splits Z(w), and compat-

ibly splits Z(w(J)) for all J .

Proof. Let σ1 ∈ H0(Z(w),OZ(w)(∂Z(w))) be the canonical section, so that

div(σ1) = ∂Z(w). (5.1)

Since ρ is dominant, we have that H0(G/B,L(ρ)) ̸= 0, so there exists a section σ2 ∈ H0(G/B,L(ρ))
such that (σ2)1·B ̸= 0 as G/B is homogeneous. We then have that θ∗wσ2 ∈ H0(Z(w),Lw(ρ)), and
div(θ∗wσ2) = Z for some effective divisor Z not containing Z(ĵ) for all j. Thus by Proposition 2.28 we
have that

σ = σ1 ⊗ θ∗wσ2 ∈ H0
(
Z(w), ω−1

Z(w)

)
. (5.2)

and
div σ = ∂Z(w) + Z = Z(w(1̂)) + · · ·+ Z(w(r̂)) + Z. (5.3)

By (2.30) it follows that Z(w(1̂)), . . . , Z(w(r̂)) intersect transversely at [1, . . . , 1]. As Z is an effective
divisor not containing [1, . . . , 1], we may apply Proposition 4.11, so we have that Z(w) compatibly splits
Z(w(̂i)) for all i. Now applying Lemma 3.7 and using (2.30) gives the result.
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The Frobenius splitting for Schubert varieties now follows readily from the splitting of the BSDH
varieties.

Proof of Theorem 1.1. We first prove the theorem for P = B. Let w0 ∈W be the longest element. We
want to apply Lemma 3.6 using the map θw0 : Z(w0) → G/B, since we know Z(w0) is Frobenius split
by the previous proposition. Since θw0 is a birational projective morphism and G/B is normal (it is
smooth), we have that (θw0)∗OZ(w0) = OG/B by [Har77, Corollary III.11.4]. Let w0 = si1 · · · siN be a
reduced expression for w0. For all w ∈ W , we have that w = sij1 · · · sijm is a reduced expression for w
for some subsequence j1 < · · · < jm. Setting J = {j1, . . . , jm},we have that Z(w0(J)) ⊂ Z(w0) and

θw0(Z(w0(J))) = S(w). (5.4)

Thus by Proposition 5.1 and Lemma 3.6, S(w) is Frobenius split.
Now, for an arbitrary parabolic subgroup P , recall that the natural projection map πP : G/B → G/P

is a locally trivial P/B-fibration and P/B is a projective variety (so its global sections are constant), so

(πP )∗OG/B = OG/P . (5.5)

Given any Schubert variety SP (w) in G/P , we have that πP (S(w)) = SP (w), and we know that S(w)
is Frobenius split, so applying Lemma 3.6 gives the result.

6 Consequences of splitting

We need the following result, which allows us to translate our results from characteristic p to charac-
teristic 0.

Lemma 6.1. Let G/k be a semisimple algebraic group over an algebraically closed field k of charac-
teristic 0, P a parabolic subgroup, SP (w) ⊂ G/P a Schubert variety, and L a line bundle on SP (w).
Then

(i) There exists a scheme X which is flat over SpecZ, and a line bundle L ∈ Pic(X) such that
Xk

∼= SP (w), and Lk = L, where the subscript denotes the base change to k.

(ii) There exists an open subset U ⊂ SpecZ such that for all closed points p ∈ U , the geometric fiber
of X over p (the base change to Fp) is a Schubert variety over Fp, and LFp

is a line bundle on
XFp

.

Proof. (i): This is a standard application of the theory of Chevalley group schemes. See [MR85, §3,
Lemma 3] and [Ses83, Theorem 2] for more details.

(ii): This follows from the fact that for any prime p, the reduced induced structure on the geometric
fiber (XFp

)red is a Schubert variety over Fp. But being integral is an open condition (see [Gro66, Theorem
12.2.1 (x)]) and XQ is a Schubert variety, hence integral, so there exists an open set U ⊂ SpecZ such
that for every closed p ∈ U , (XFp

)red = XFp
is a Schubert variety.

Using this Lemma and the result in characteristic p (Proposition 3.9), Theorem 1.2 follows from a
straightforward semicontinuity argument.

Proof of Theorem 1.2. Parts (i) and (ii) for k of characteristic p > 0 follow from Theorem 1.1 and
Proposition 3.9, so assume that char k = 0.
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(i): Assume the same setup as Lemma 6.1 and let i ≥ 1. Since field extensions are flat, by flat base
change [Har77, Theorem III.12.11] we have that

H i(XQ,LQ)⊗Q k ∼= H i(SP (w),L) (6.1)

Then by Lemma 6.1, there exists some prime p for which XFp
is a Schubert variety over Fp, so

H i(XFp
,LFp

) = 0 by Theorem 1.1. By flat base change, we have that

H i(XFp
,LFp

) = H i(XFp ,LFp
)⊗Fp Fp = 0 (6.2)

so H i(XFp ,LFp
) = 0. By semicontinuity [Har77, Theorem III.12.8] we have that H i(XQ,LQ) = 0, so

H i(SP (w),L) = 0.
(ii): Let Y ⊂ X be a closed subvariety with sheaf of ideals IY and let L be a line bundle on X such

that H1(X,L) = 0. By the long exact sequence of cohomology applied to the exact sequence

0 IY ⊗ L L L|Y 0

we have that H0(X,L) → H0(Y,L) is surjective if and only if H1(X, IY ⊗ L) = 0. Since IY ⊗ L is
coherent, we can apply the same semicontinuity argument as in part (i) to get the result for Schubert
varieties in characteristic 0.

6.1 Schubert varieties are normal

In this section we prove Theorem 1.3. We first prove a relative criterion for the normality of a Frobenius
split scheme.

Lemma 6.2. Let f : Z → X be a proper morphism of varieties over an algebraically closed field k of
characteristic p > 0. If Z is normal, the fibers of f are connected, and X is Frobenius split, then X is
normal.

Proof. Let ν : X̃ → X be the normalization of X. Then f : Z → X factors through ν. Since f has
connected fibers, so does ν. But ν is a finite morphism as it is a normalization, so the fibers are discrete,
and hence ν is a bijection on the underlying topological spaces.

In order to show that ν is an isomorphism, it suffices to check the claim locally, so we may assume
that X = SpecA, X̃ = SpecB. Then B is the integral closure of A in its field of fractions K = FracA,
so we have that A ⊂ B ⊂ K. Now, since X is Frobenius split, the splitting φ is a map φ : A → A
satisfying φ(a1a

p
2) = a2φ(a1) and φ(1) = 1 for all a1, a2 ∈ A. The key idea is that we can uniquely

extend φ to a map φ : K → K satisfying φ(x+ y) = φ(x) + φ(y) and φ(xyp) = yφ(x) for all x, y ∈ K
by setting φ(r/s) = s−1φ(rsp−1) for r/s ∈ K with r, s ∈ A. In particular, φ is a splitting of SpecB and
of the localizations of A and B at all prime ideals. Now, let

I := {a ∈ A | aB ⊂ A} (6.3)

be the conductor of B/A. I is an ideal of B contained in A (so it is also an ideal of A).
Suppose for the sake of contradiction that B ̸= A, so that I ̸= A and SpecA/I and SpecB/I are

closed subschemes of SpecA and SpecB. Then f restricts to a bijective map SpecB/I → SpecA/I.
However, f is not an isomorphism on any of the stalks by the definition of I.

We have that I ⊂ φ(I) as if i ∈ I, then φ(ip) = i. Also, if i ∈ I and b ∈ B, then φ(i)b =
φ(ibp) ∈ φ(A) = A as φ(A) = A by definition, so φ(I) ⊂ I. Thus φ(I) = I, so φ is a splitting of A
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and B compatible with A/I and B/I, respectively, so the closed subschemes SpecA/I and SpecB/I
are reduced by Lemma 3.2. Let p ∈ SpecA/I be a minimal prime ideal of A containing I. Then
since A/I and B/I are reduced, (A/I)p is a field, and (B/I)p is a field extension. This extension is
nontrivial and purely inseparable (see [Sta25, Lemma 0BRA]). Thus there exists x ∈ Bp such that
xp ∈ (A/I)p but x /∈ (B/I)p, where x is the image of x in (B/I)p ∼= Bp/Ip. So then xp ∈ Ap, but then
x = φ(xp) ∈ φ(Ap) = Ap. This is a contradiction as then x ∈ (B/I)p. So we must have that B = A, so
X = X̃ is normal.

The normality of Schubert varieties now follows from a simple inductive argument which crucially
uses Lemma 2.26.

Proof of Theorem 1.3. First, let k be of characteristic 0 and assume the same setup as Lemma 6.1. Now,
the geometric fibers of X being normal is an open condition (see [Gro66, Theorem 12.2.4 iv]). Thus if
XFp

is normal for some prime p then XQ = SP (w) is normal. This shows that it suffices to prove the
theorem in characteristic p > 0.

So let k have characteristic p > 0. First, the morphism πP : G/B → G/P is a locally trivial fibration
with smooth fiber P/B, so π−1

P (SP (w)) is normal if and only if SP (w) is normal. But π−1
P (SP (w)) is a

Schubert variety, so it suffices to prove the result for the Schubert varieties S(w) in G/B.
We proceed by induction on ℓ(w) = n. If n = 1, then S(w) ∼= P1 is smooth. So suppose that

ℓ(w) = n > 1 and the claim holds for all Schubert varieties S(w′) with ℓ(w′) < n. Let si ∈ W be a
simple reflection such that ℓ(wsi) = ℓ(w)−1. By Lemma 2.26, S(w) is a locally trivial P1-fibration over
SP (si)(w). Additionally, πP (si)(S(wsi)) = SP (si)(w), and the map πP (si)|S(wsi) : S(wsi) → SP (si)(w) is
birational with connected fibers.

By induction, S(wsi) is normal. SP (si)(w) is Frobenius split by Theorem 1.1, so X is normal by
Lemma 6.2. Then since S(w) is a locally trivial P1-fibration over SP (si)(w), it is also normal.

6.2 Schubert varieties are Cohen-Macaulay

In this section we prove Theorem 1.4. To do so, we define the notion of a rational resolution, and show
that the existence of a rational resolution implies Cohen-Macaulayness in Lemma 6.6. We then prove
Theorem 1.4 assuming the key Proposition 6.7, which we prove in Section 6.3. The material in this
section is adapted from [Ram85] and [BK04, §3.2-3.4]. Throughout this section we utilize the higher
direct image sheaf and the Leray spectral sequence. See [Har77, §III.8] for information on the higher
direct image sheaf and [Sta25, Section 01EY] for information on the Leray spectral sequence.

We first define the notion of a rational morphism, which is referred to as a trivial morphism in
[Ram85] and [Kem76] (our notation follows [BK04]).

Definition 6.3. Let f : X → Y be a morphism of schemes. Then f is a rational morphism if
OY = f∗OX and Rif∗(OX) = 0 for all i ≥ 1.

The composition of two rational morphisms is rational, and the base change of a rational morphism
by a flat morphism is a rational morphism (see [Kem76, §3]).

A rational resolution is now just a resolution of singularities which is a rational morphism, and such
that the higher direct images of ωX vanish.

Definition 6.4. Let f : X → Y be a proper, birational, rational morphism of varieties. If X is smooth
and for all i ≥ 1,

Rif∗(ωX) = 0, (6.4)

then f is a rational resolution.
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The vanishing of higher direct images interacts nicely with cohomology.

Lemma 6.5. Let f : X → Y be a morphism of schemes, F an OX-module and G a locally free sheaf
on Y . Then

(i) If Rif∗(F) = 0 for all i ≥ 1, then Hp(X,F) ∼= Hp(Y, f∗F) for all p ≥ 0.

(ii) If Rif∗(OX) = 0 for all i ≥ 1, then H i(X, f∗G) ∼= H i(Y,G).

Proof. (i): This follows easily from the Leray spectral sequence for f : X → Y (almost all the terms in
the spectral sequence are 0).

(ii): By the projection formula [Har77, Exercise III.8.3], we have that

Rif∗(f
∗G) ∼= Rif∗(OX ⊗ f∗G) ∼= Rif∗(OX)⊗ G = 0. (6.5)

By part (i) and the projection formula again, we have that

H i(X, f∗G) ∼= H i(Y, f∗f
∗G) ∼= H i(Y,G) (6.6)

as desired.

Using this lemma and Serre duality, we are able to relate rational resolutions to Cohen-Macaulayness.

Lemma 6.6. Let f : X → Y be a rational resolution. Then Y is Cohen-Macaulay.

Proof. By [Har77, Theorem III.7.6], Y it suffices to show that for any ample line bundle L on Y we
have that H i(Y,L−n) = 0 for i < dimY and n sufficiently large. By Lemma 6.5 (i), we have that
H i(Y,L−n) ∼= H i(X, f∗L−n). By Serre duality [Har77, Theorem III.7.6], we have that H i(X, f∗L−n) is
dual to HdimX−i(X,ωX ⊗ f∗Ln), so it suffices to show that the latter vanishes. Now, by the projection
formula and the fact that Rif∗(ωX) = 0 because f is a rational resolution, for i ≥ 1 we have that

Rif∗(ωX ⊗ f∗Ln) ∼= Rif∗ωX ⊗ Ln = 0. (6.7)

Applying Lemma 6.5 (i) and the projection formula again gives

Hj(X,ωX ⊗ f∗Ln) ∼= Hj(Y, f∗ωX ⊗ f∗f
∗Ln) ∼= Hj(Y, f∗ωX ⊗ f∗OX ⊗ Ln) (6.8)

for all j ≥ 0. As L is ample, by Serre’s vanishing theorem this is 0 for j ≥ 1 and n sufficiently large.

Thus we have essentially reduced the proof of Theorem 1.4 to showing that the BSDH resolutions
are rational resolutions.

Proposition 6.7. Let k have characteristic p. Then the BSDH resolution θw : Z(w) → S(w) is a
rational resolution.

The proof of Theorem 1.4 follows easily from this proposition, as we now detail. We prove Proposition
6.7 in the following section, as it requires a significant amount of extra work. We extensively use the
Frobenius splitting of Schubert varieties in the proof. In particular, we utilize Lemma 3.2, Lemma 3.7,
and Proposition 3.9.

Proof of Theorem 1.4. By [Gro66, Theorem 12.2.1 (vii)], Cohen-Macaulayness is an open condition, so
arguing as in the proof of Theorem 1.3, we may assume that k has characteristic p > 0.

Again arguing as in the proof of Theorem 1.3, the morphism πP : G/B → G/P is a locally trivial
fibration with smooth fiber P/B, so π−1

P (SP (w)) is Cohen-Macaulay if and only if SP (w) is Cohen-
Macaulay. But π−1

P (SP (w)) is a Schubert variety, so it suffices to prove the result for the Schubert
varieties S(w) in G/B. Then the result follows immediately from Lemma 6.6 and Proposition 6.7.
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6.3 Proof of Proposition 6.7

In this section, we prove Proposition 6.7, thereby completing the proof of Theorem 1.4. First we give
two rationality criteria.

Lemma 6.8. Let f : X → Y be a morphism of projective varieties such that f∗OX = OY , Z ⊂ X a
closed subvariety, and L an ample line bundle on Y . Let W = f(Z) be the scheme theoretic image of Z
under f , and let g = f |Z be the restriction of f to Z. Suppose for all sufficiently large n and all p ≥ 1,
Hp(Z, g∗Ln) = 0. Then g is a rational morphism.

Proof. We use the Leray spectral sequence applied to the morphism f and the sheaf OZ ⊗Ln. We have
that the (p, q) term of the second page of the Leray spectral sequence is

Ep,q
2

∼= Hp(Y,Rqf∗(OZ ⊗ Ln)) ∼= Hp(Y, (Rqf∗OZ)⊗ Ln) (6.9)

where the second equivalence is by the projection formula. Thus by Serre’s vanishing theorem, if n is
sufficiently large we have that Ep,q

2 = 0 for all p > 0. Then by the Leray spectral sequence we have that

Hq(X,OZ ⊗ f∗Ln) ∼= Hq(Z, g∗Ln) ∼= H0(Y, (Rqg∗OZ)⊗ Ln). (6.10)

By assumption, this is 0 for all q > 0 and all n sufficiently large. But since L is ample, for n sufficiently
large Ln is generated by global sections, so we must have that Rqg∗OZ = 0 for all q > 0.

Lemma 6.9. Let f : X → Y be a proper morphism of schemes, and let Z ⊂ X be a closed subscheme
with ideal sheaf IZ . Suppose f is a rational morphism. The following are equivalent:

(i) For all i ≥ 1, Rif∗IZ = 0.

(ii) f |Z : Z → f(Z) is a rational morphism.

If either of these conditions holds, then f∗IZ is the ideal sheaf of f(Z).

Proof. Applying the higher direct image long exact sequence gives

0 f∗IZ f∗OX f∗OZ R1f∗IZ R1f∗OX · · ·

As f is a rational morphism we have that Rif∗OX = 0 for all i ≥ 1, so Ri−1f∗OZ
∼= Rif∗IZ for all

i ≥ 1, which gives the claim.

We are now ready to complete the proof.

Proof of Proposition 6.7. Let w = si1 · · · sin be a reduced expression for w ∈ W , so that v = si2 · · · sin
is a reduced expression for v ∈ V . Let f : Z(w) → Z(v) be the projection [p1, . . . , pn] 7→ [p2, . . . , pn]
and let σ = iw(1) : Z(v) → Z(w) mapping [p2, . . . , pn] 7→ [1, p2, . . . , pn] be a section for f . Let
π : G/B → B/P (si1) be the projection. We first show the following claim.
Claim. θw and θw|f−1(∂Z(v)) are rational morphisms.
Proof. We proceed by induction on n = ℓ(w). The base case n = 1 is trivial as θw is an isomorphism.
Assume the claim holds up to n− 1. We have the pullback diagram

Z(w) S(w)

Z(v) π(S(w))

θw

f πσ

π◦θv
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Thus θw and θw|f−1(∂Z(v)) are the respective base changes of π|S(v) ◦ θv and π|∂S(v) ◦ θv by π. Since π
is flat, rationality is preserved under flat base change, θv is rational by the inductive hypothesis, and
the composition of two rational morphisms is rational, it suffices to show that π|S(v) and π|∂S(v) are
rational morphisms.

Let L be an ample line bundle on G/P (si1). Then π∗L is an ample line bundle on G/B, as is the
restriction of π∗L to S(v) and ∂S(v). Then since Schubert varieties are Frobenius split, the unions
of Schubert varieties are Frobenius split by Lemma 3.7. Then by Proposition 3.9, π∗L has vanishing
higher cohomology when restricted to S(v) and ∂S(v) as ∂S(v) is a union of Schubert varieties. Thus
we can apply Lemma 6.8, so π|S(v) and π|∂S(v) are rational morphisms, which completes the proof of
the claim.

By the claim, to complete the proof of the proposition we just need to show that Ri(θw)∗(ωX) = 0
for i ≥ 1. By Proposition 2.28, we have that

ωZ(w)
∼= OZ(w)(−∂Z(w))⊗ θ∗wL(−ρ). (6.11)

Applying the projection formula gives

Ri(θw)∗ωZ(w)
∼= Ri(θw)∗OZ(w)(−∂Z(w))⊗ L(−ρ) (6.12)

so it suffices to show that Ri(θw)∗OZ(w)(−∂Z(w)) = 0 for all i ≥ 1. Now, OZ(w)(−∂Z(w)) is the ideal
sheaf of ∂Z(w) in Z(w). Thus by Lemma 6.9 it suffices to show that (θw)|∂Z(w) is a rational morphism.
We proceed by induction on n = ℓ(w). The base case n = 1 is trivial as ∂Z(w) is just a point.

So assume the claim holds up to n− 1. We have the closed immersion exact sequence

0 OZ(w)(−σ(Z(v))) OZ(w) σ∗OZ(v) 0

Taking the tensor product by f∗OZ(v)(−∂Z(v)) gives (recall that σ is a section of f)

0 OZ(w)(−∂Z(w)) f∗OZ(v)(−∂Z(v)) σ∗OZ(v)(−∂Z(v)) 0

By the claim and Lemma 6.9, the middle term has vanishing higher direct images. As θv = θw ◦ σ, the
last term has higher vanishing direct images by the inductive hypothesis. Thus taking the long exact
sequence of higher direct images we find that Ri(θw)∗OZ(w)(−∂Z(w)) = 0 for i ≥ 2.

It remains to show that i = 1 case. It suffices to show that

(θw)∗f
∗OZ(v)(−∂Z(v)) → (θw)∗σ∗OZ(v)(−∂Z(v)) (6.13)

is surjective. Since θw is a rational morphism, by Lemma 6.9 we have that (θw)∗f
∗OZ(v)(−∂Z(v)) is

the ideal sheaf of X := θwf
−1(∂Z(v)) =

⋃
r ̸=1 S(w(r̂)) in S(w). Likewise, Y := (θw)∗σ∗OZ(v)(−∂Z(v))

is the ideal sheaf of ∂S(v) in S(v) as θw ◦σ = θv. As X and Y are both the unions of Schubert varieties,
by Lemma 3.7 they are Frobenius split, so by Lemma 3.2 they are reduced. Since X ∩ S(v) = Y is
also reduced by Lemmas 3.7 and 3.2, it follows that (6.13) is surjective, as it is the restriction of the
surjective map OS(w) → OS(v) to the ideal sheaf (θw)∗f∗OZ(v)(−∂Z(v)) = IX , and the image will be
the ideal sheaf (θw)∗σ∗OZ(v)(−∂Z(v)) = IY .
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7 Conclusion

In this essay we proved several nice geometric properties about Schubert varieties using their Frobenius
splitting, but we have not exhausted all applications. For instance, we can introduce the notion of
splitting relative to a divisor, which is essentially a Frobenius splitting φ which factors through a
section of F∗OX(D), where D is an effective Cartier divisor [RR85]. With a bit more work, we can show
that the splittings of Schubert varieties given in Theorem 1.1 are splitting relative to a divisor, which
implies the vanishing of cohomology for all semi-ample line bundles (a line bundle L is semi-ample
if Ln is generated by global sections for some n). While we showed that they are Cohen-Macaulay,
the Frobenius splitting of Schubert varieties also implies that they are arithmetically Cohen-Macaulay
[Ram85]. There is also the notion of a diagonal splitting of a variety X, which is a splitting of X ×X
which is compatible with the diagonal [Ram87]. The flag varieties G/P are diagonally split, but it is
an open question if the Schubert varieties SP (w) are as well. The existence of a diagonal splitting of X
implies that all ample line bundles on X are very ample. For information on all these applications and
more, see [BK04].

The Frobenius splitting of other types of schemes is also a topic of study, and one can derive similar
geometric consequences as a result. For instance, Brion and Inamdar [BI94] study the Frobenius splitting
of spherical varieties, which are generalizations of Schubert varieties. Brion and Kumar’s book [BK04]
contains many other examples, such as the Frobenius splitting of the Hilbert scheme of a nonsingular
Frobenius split surface.

The geometry of Schubert varieties has applications in other areas as well. In representation theory,
the Weyl character formula gives an elegant formula for the dimensions of the weight spaces of an
irreducible representation V (λ) of a semisimple group G. A Demazure module is a submodule of Vw(λ)
whose construction can be seen as an analogue of a Schubert variety S(w) ⊂ G/B. The Demazure
character formula gives a description of the character of a Demazure module analogous to the Weyl
character formula. Demazure’s original proof [Dem74] was found to have serious gaps, and Anderson
[And85] proved the formula using the geometric properties of Schubert varieties developed in this paper
(in particular, as a consequence of their Frobenius splitting).

As a final application, Schubert varieties play an important role in the study of Shimura varieties.
Shimura varieties can be thought of as generalizations of modular curves, and are widely studied for
their role in the Langlands program and other areas of number theory. In many cases, the special fiber of
these local models is isomorphic to a union of affine Schubert varieties [PZ13]. Affine Schubert varieties
are generalizations of the classical Schubert varieties studied in this essay, which arise from the affine
Grassmannian. By studying the tangent spaces of these of these Schubert varieties, one can classify the
reduction type of Shimura varieties at a prime. For more information, see [PRS13].
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