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Silverman and Cassels are good books, we mostly go with Silverman and if not probably from
Cassels. Cassel’s book is based on lectures that he gave in Part III many years ago.

1 Fermat’s Method of Infinite Descent

1.1 Pythagorean triples
Let △ be a right triangle with side lengths a, b, c, so a2 + b2 = c2 and the area A(△) = ab/2.

Definition 1.1. We say that △ is rational if a, b, c ∈ Q. We say that △ is primitive if a, b, c ∈ Z
and (a, b) = 1.

Lemma 1.2. Every primitive triangle is of the form (u2 − v2, 2uv, u2 + v2) for some u > v > 0.

Proof. WLOG let a be odd, b even, c odd. Then(
b

2

)2

=
c+ a

2
· c− a

2
. (1.1)

Since (a, c) = 1, ((c+ a)/2, (c− a)/2) = 1, so (c+ a)/2 = u2, (c− a)/2 = v2 are squares, and then
a = u2 − v2, c = u2 + v2.

Definition 1.3. D ∈ Q>0 is a congruent number if there exists a rational triangle △ with A(△) =
D. Multiplying by a square gives another congruent number (equivalent to rescaling the sides by a
factor), so we may assume that D is a squarefree positive integer.

Example 1.4. 5 and 6 are congruent numbers, 6 with (3, 4, 5) and 6 with (9/6, 40/6, 41/6).

Lemma 1.5. D ∈ Q>0 is congruent if and only if Dy2 = x3−x has a solution for x, y ∈ Q, y ̸= 0.

Proof. Lemma 1.2 shows that D is congruent if and only if Dw2 = uv(u2−v2) for some u, v, w ∈ Q,
u, v, w ̸= 0. We set x = u/v and y = w/v2.

Fermat showed that 1 is not a congruent number, so the area of a right triangle is never a perfect
square. This is equivalent to the following theorem.

Theorem 1.6. There is no solution to w2 = uv(u2 − v2) = uv(u − v)(u + v) with u, v, w ∈ Z,
w ̸= 0.

Proof. We may assume that (u, v) = 1, u,w > 0. This is because if v < 0, then we can replace
(u, v, w) by (−v, u, w). If v ≥ 0, then w > v > 0.

Now, if u, v are both odd, we can replace (u, v, w) by (u+v2 , u−v2 , w2 ), and then u and v will have
the opposite parity.

Thus since (u, v) = 1 and u and v have opposite parity, u, v, (u+v), (u−v) are pairwise coprime
positive integers, so they are all squares. Thus u = a2, v = b2, u + v = c2, u − v = d2 for some
positive integers.

Since u and v have opposite parity, c, d are both odd, so c2+d2

2 = (u+v)+(u−v)
2 = u = a2. Thus we

have a new primitive triangle with side lengths ( c−d2 , c+d2 , a), which has area c2−d2
8 = v/4 = (b/2)2.

Now, set w1 = b/2. Then by the previous lemmas there exists u1, v1 such that w2
1 = u1v1(u1 +

v1)(u1 − v1), so w1 is a new solution to our equation. But we have that 4w2
1 = b2 = v|w2, so

w1 ≤ w/2. But this is impossible, since w1 is a positive integer, so iterating gives a decreasing
infinite sequence of positive integers.
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1.2 A variant for polynomials
Let K be a field with charK ̸= 2, and let K be the algebraic closure.

Lemma 1.7. Let u, v ∈ K[t] be coprime. If αu + βv is a square for 4 distinct (αi, βi) ∈ P1, then
u, v ∈ K.

Proof. WLOG we may assume K = K as if the result holds over K it will hold over K.
Changing coordinates on P1 using Möbious transformations, we may assume that the (αi, βi)s

are (1, 0), (0, 1), (1,−1), (1, λ) for some λ ∈ K\{0, 1}. Then u = a2, v = b2, u− v = (a+ b)(a− b),
u−λv = (a+µb)(a−µb) where µ =

√
λ. Then a+ b, a− b, a+µb, a−µb are all coprime, and since

they are all squares, this yields a new solution. But since this new solution has

max(deg a,deg b) ≤ 1

2
max(deg u,deg v), (1.2)

and if max(deg u,deg v) > 0, then max(deg a,deg b) > 0, we have infinite descent unless u, v ∈
K.

Definition 1.8. An elliptic curve E/K is the projective closure of the plane affine curve y2 = f(x)
where f ∈ K[x] is a monic cubic separable polynomial. y2 = f(x) is known as the Weierstrass
equation.

For L/K any field extension, we have that

E(L) = {(x, y) ∈ L2|y2 = f(x)} ∪ {0}, (1.3)

where {0} is the point at infinity.

E(L) is naturally an abelian group. In this course we study E(K) for K a finite field, local field,
or number field.

Lemma 1.5 and Theorem 1.6 show that if E is the elliptic curve given by y2 = x3 − x2, then
E(Q) = {0, (0, 0), (±1, 0)}.

Corollary 1.9. Let E/K be an elliptic curve. Then E(K(t)) = E(K).

Proof. WLOG K = K. By a change of coordinates, we may assume y2 = x(x− 1)(x− λ) for some
λ /∈ {0, 1}. Suppose (x, y) ∈ E(K(t)).

We can write x = u/v with u, v ∈ K[t] coprime. Then w2 = uv(u−v)(u−λv) for some w ∈ K[t].
Since K[t] is a UFD, u, v(u− v), (u− λv) are all squares. Then by Lemma 1.7, u, v ∈ K so x ∈ K,
so y ∈ K.

2 Some remarks on plane curves
In this course, curves are always irreducible. For this section we work over K = K.

Definition 2.1. A plane affine curve C = {f(x, y) = 0} ⊂ A2 is rational if it has a rational
parametrization, so that ∃ϕ(t), ψ(t) ∈ K(t) such that

1. The map A1 → A2 given by t → (ϕ(t), ψ(t)) is injective on A1 except for only finitely many
points.
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2. f(ϕ(t), ψ(t)) = 0.

Example 2.2. 1. Any nonsingular plane conic is rational. Consider the conic C : x2 + y2 = 1.
Let y = t(x + 1) be the line with slope t through (−1, 0). The second intersection point
(x0, y0) will satisfy x20 + t2(x0 + 1)2 = 1, which has solution x0 = (1− t2)/(1 + t2), so

(x0, y0) =

(
1− t2

1 + t2
,

2t

1 + t2

)
. (2.1)

This gives a rational parametrization for C.

2. Any singular plane cubic is rational. Let P be the singular point, then the line through P
with slope t has only 1 more point of intersection, the coordinates of this point in t gives a
rational parametrization.

3. Corollary 1.9 shows that elliptic curves are not rational.

Remark 2.3. The genus g(C) ∈ Z≥0 is an invariant of a smooth projective curve C.
If K = C, then g(C) is the genus as a Riemann surface.
A smooth plane curve C ⊂ P2 of degree d has genus g(C) = (d−1)(d−2)

2 .

Proposition 2.4. Let C be a smooth projective curve over K = K. Then

1. C is rational if and only if g(C) = 0.

2. C is an elliptic curve if and only if g(C) = 1.

Proof. The proof of 1. is omitted. If C is an elliptic curve, we can check that C is a smooth plane
curve, and then use the genus formula in the previous remark.

2.1 Orders of vanishing
If C is an algebraic curve with function field K(C), and P (C) is a smooth point, we write ordP (f)
to be the order of vanishing of f ∈ K(C)× at P .

Formally this means the valuation of f , when considered as an element of the fraction field of
the stalk at P , which is a DVR.

Definition 2.5. t ∈ K(C)× is a uniformizer at P if ordP (t) = 1.

Example 2.6. Let C = {g(x, y) = 0} ⊂ A2 for some g ∈ K[x, y] irreducible. Then K(C) =
Frac(K[x, y]/(g)). We can write g = g0 + g1 + · · · as a sum of homogeneous polynomials. Suppose
that P = (0, 0) ∈ C, so that g0 = 0 and g1 = αx+ βy with α, β both not zero. Then any γx+ δy
is a uniformizer, as long as αδ − βγ ̸= 0

Example 2.7. Let C0 = {y2 = x(x− 1)(x− λ)} ⊂ A2, with λ /∈ {0, 1}. We homogenize to get the
projective variety {Y 2Z = X(X − Z)(X − λZ)} ⊂ P2. P = (0, 1, 0) is the unique point at infinity.
We want to compute ordP (x) and ordP (y). We look at the affine piece Y ̸= 0, and set w = Z/Y
and t = X/Y . We then have that

w = t(t− w)(t− λw) (2.2)

and P is (t, w) = (0, 0). This is a smooth point, and ordp(t) = ordp(t − w) = ordp(t − λw) = 1
by the previous example. So then ordp(w) = 3, and ordp(x) = ordp(t/w) = 1 − 3 = −2 and
ordp(y) = ordp(1/w) = −3.
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2.2 Riemann-Roch spaces
Let C be a smooth projective curve over K = K.

Definition 2.8. A divisor D is a formal sum of points on C, D =
∑
P∈C nPP where nP ∈ Z, and

nP = 0 for all but finitely many P ∈ C.
The degree of a divisor is degD =

∑
nP

D is effective, written as D ≥ 0, if nP ≥ 0 for all P . We write D1 ≥ D2 if D1 −D2 ≥ 0.
If f ∈ K(C)×, write div(f) =

∑
P∈C ordP (f)P .

The Riemann-Roch space of D ∈ Div(C) is

L(D) = {f ∈ K(C)×|div(f) +D ≥ 0} ∪ {0} (2.3)

This is the k-vector space of rational functions on C with poles and zeros prescribed by D.

The next theorem is a specialized version of Riemann-Roch for genus 1 curves.

Theorem 2.9. Let C be a smooth projective curve of genus 1 and let D ∈ Div(C). Then

dimL(D) =


degD degD > 0

∈ {0, 1} degD = 0

0 degD < 0.

(2.4)

Example 2.10. In Example 2.7, we have

L(2P ) = ⟨1, x⟩
L(3P ) = ⟨1, x, y⟩ (2.5)

This follows from checking that the generators are in the Riemann-Roch space, are linearly inde-
pendent, and comparing dimensions on both sides.

Proposition 2.11. Let C ⊂ P2 be a smooth plane cubic and P ∈ C a point of inflection. Then we
may change coordinates so that C is defined by Y 2Z = X(X − Z)(X − λZ) for some λ ̸= 0, 1 and
so that P = (0 : 1 : 0) in the new coordinate system.

Proof. We change coordinates and send P → (0 : 1 : 0) and so that the tangent line of C at P is
TP (C) = {z = 0}. Then C is defined by some cubic F (X,Y, Z) = 0. Since P ∈ C is a point of
inflection, we have that F (P ) = 0, and on the tangent line z = 0 we further have that the order of
vanishing is 2, and since P is further a point of reflection, we have that the order of vanishing is 3.
Thus it follows that F (t, 1, 0) = ct3 (see also the remark below).

Thus F has no terms of the formX2Y,XY 2, Y 3. So F consists of terms of the form {Y 2Z,XY Z, Y Z2, X3, XZ2, XZ2, Z3.
We need the coefficient of Y 2Z to be nonzero otherwise P will be a singular point (the Jacobian
will vanish). We need the coefficient of X3 to be nonzero otherwise Z|F , which will mean F is not
irreducible. We can rescale X,Y, Z and F such that C is given by

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
6 + a6Z

3. (2.6)

Substituting Y −a1X/2−a3Z/2 into Y, we may assume that a1 = a3 = 0. So Y 2Z = Z3f(X/Z) with
f monic, and since C is smooth the roots of f will be distinct. So then we can change coordinates
again so that the roots are 0, 1, λ. We then have C in the desired form, which is sometimes called
Legendre form.
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Remark 2.12. The points of inflection of a smooth curve C = {F (X1, X2, X3) = 0} ⊂ P2 are
given by those points where F = 0 and where the Hessian matrix vanishes:

det

(
∂2F

∂xi∂xj

)
ij

= 0. (2.7)

2.3 Degree of a morphism
Let ϕ : C1 → C2 be a non-constant morphism of smooth projective curves. Then ϕ induces a map
ϕ∗ : K(C2)→ K(C1) sending f → f ◦ ϕ. Thus K(C1) is a field extension of ϕ∗K(C2).

Definition 2.13. The degree of ϕ is deg ϕ = [K(C1) : ϕ
∗K(C2)].

ϕ is separable if K(C1)/ϕ
∗K(C2) is separable.

Suppose P ∈ C1, Q ∈ C2, and ϕ : P → Q, and let t ∈ K(C2) be a uniformizer at Q, so
ordQ(t) = 1 and t is a uniformizer in the DVR K(C2)Q.

Definition 2.14. The ramification index of ϕ at P is eϕ(P ) = ordP (ϕ
∗t). This will always be ≥ 1,

and is independent of the choice of t.

Theorem 2.15. Let ϕ : C1 → C2 be a nonconstant morphism of smooth projective curves. Then
for all Q ∈ C2, we have ∑

P∈ϕ−1(Q)

eϕ(P ) = deg ϕ. (2.8)

Moreover if ϕ is separable, then eϕ(P ) = 1 for all but finitely may P ∈ C1. This is equivalent to
saying that if L/K is a separable extension of fields, then only finitely many primes ramify. In
particular:

1. ϕ is surjective on K-points.

2. #ϕ−1(Q) ≤ deg ϕ.

3. If ϕ is separable, then #ϕ−1(Q) = deg ϕ for all but finitely many Q.

Remark 2.16. Let C be an algebraic curve. A rational map is given C → Pn, P → (f0(P ) :
f1(P ) : · · · : fn(P )) where f0, . . . , fn ∈ K(C) are not all zero. In particular, if for some P ∈ C
we have fi(P ) = 0 for all i, we can multiply by some gP such that (fi · gP )(P ) ̸= 0 to define the
rational map at C. We do the same procedure if fi has a pole at P .

If C is smooth, then ϕ is a morphism.

3 Weierstrass equations
Throughout this section, we will assume that K is a perfect field.

Definition 3.1. An elliptic curve E/K is a smooth projective curve of genus 1, defined over K,
with a specified K-valued point 0E ∈ E(K).

Example 3.2. The last part of the definition ensures that E/K has a point at all. For instance,
{X3 + pY 3 + p2Z3 = 0} ⊂ P2 is not an elliptic curve over Q because it has no Q-rational points.
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Theorem 3.3. Every elliptic curve E/K is isomorphic over K to a curve in Weierstrass form via
an isomorphism taking 0E → (0, 1, 0).

Remark 3.4. Proposition 2.11 treated the case where E is a smooth plane cubic and 0E is a point
of inflection.

Remark 3.5. If D ∈ Div(E) is defined over K (so it is fixed by the natural action of Gal(K/K),
then L(D) has a basis consisting of functions in K(E) (as opposed to the general case where the
basis is functions in K(E)).

Theorem 3.3. Let E/K be an elliptic curve, so a smooth projective curve of genus 1. By Theorem
2.9, we have that

L(2(0E)) ⊆ L(3(0E)) (3.1)

with bases {1, x}, {1, x, y}, where x, y ∈ K(E) are some rational functions. We have that ord0E (x) =
−2 and ord0E (y) = −3 because the dimension of L(1(0E)) is 1, so it is spanned by constant functions.

Now, L(6(0E)) is a 6-dimensional vector space, and contains the 7 elements {1, x, y, x2, xy, x3, y2}.
So these 7 elements are not linearly independent, so we can find a relation between them over K.
Furthermore, since the functions x3 and y2 have order of vanishing 6, the relation necessarily
contains these two elements. Thus after rescaling x, y, we get that

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (3.2)

for some ai ∈ K. Let E′ be the projective curve defined by this equation (the projective closure of
the affine curve defined by this equation). There is a morphism

ϕ : E → E′ ⊂ P2

P → (x(P ), y(P ), 1) (3.3)

Further, since ord0E (x) = −2 and ord0E (y) = −3, we have that 0E → ((x/y)(0E), 1, (1/y)(0E)) =
(0, 1, 0). We also have that ϕ∗K(E′) = K(x, y). We want to show that K(x, y) = K(E), as then
we will have E ∼= E′ as curves.

Now, we have a map x : E → P1, which induces a field extensionK(E)/x∗K(P1) = K(E)/x∗K(T ) =
K(E)/K(x). Now, since x has a pole of order -2 at 0E . Thus we have that

deg x =
∑

P∈x−1(∞)

ex(P )

= ex(0E)

= ord0E (x
∗(1/t))

= ord0E (1/x)

= 2 (3.4)

so [K(E) : K(x)] = 2. Similarly, [K(E) : K(y)] = 3. Now, since K(x),K(y) ⊆ K(x, y) ⊆ K(E)
and (2, 3) = 1, we have that K(x, y) = K(E). Thus K(E) = K(x, y) = ϕ∗K(E′), so deg ϕ = 1, so
ϕ is birational (bijective and rational).

Now, rational maps are morphisms if they are between smooth curves. If E′ is singular, then
E,E′ are rational, which is not the case as they are elliptic curves. So E′ is smooth, so ϕ−1 is a
morphism, and thus ϕ is an isomorphism.

8



Proposition 3.6. Let E,E′ be elliptic curves over K in Weierstrass form. Then E ∼= E′ (an
isomorphism of curves sending OE → OE′ if and only if the equations are related by a change of
variables

x = u2x′ + r, y = u3y′ + u2sx′ + t, u, r, s, t ∈ K,u ̸= 0. (3.5)

Proof. We examine the Riemann-Roch spaces in the previous proof. We have that ⟨1, x⟩ = ⟨1, x′⟩,
so x = λx′ + r. Likewise, y = µy′ + σx′ + t. We did some rescaling to get Weierstrass form. This
forces λ3 = µ2, so λ = u2, µ = u3, and we can put s = σ/u2.

A Weierstrass equation defines an elliptic curve if and only if it defines a smooth curves, as we
already have from the equation that the curve is of genus 1 and has the point at infinity. E is
smooth if and only if ∆(a1, . . . , a6) ̸= 0, where ∆ is a certain polynomial. If charK ̸= 2, 3, we may
reduce to the case y2 = x3 + ax+ b, and then we have ∆ = −16(4a3 + 27b2).

Corollary 3.7. Assume charK ̸= 2, 3. Then given elliptic curves

E : y2 = x3 + ax+ b

E′ : y2 = x3 + a′x+ b′ (3.6)

we have that E ∼= E′ over K if and only if a′ = u4a and b′ = u6b with u ∈ K×

Proof. Look at the previous proposition, and see that we need r = s = t = 0 so that no xy, y, x2
terms appear in our equation.

Definition 3.8. The j-invariant of an elliptic curve E : y2 = x3 + ax+ b is

j(E) =
1728(4a3)

4a3 + 27b2
. (3.7)

The weird scaling factors are due to the j-invariant’s connection with modular forms.

Corollary 3.9. E ∼= E′ =⇒ j(E) = j(E′) and the converse holds if K = K.

Proof. Follows from the previous corollary.

4 The group law
Let E ⊂ P2 be a smooth plane cubic with a point 0E ∈ E(K). E meets any line in 3 points
(counting multiplicities). The chord and tangent process is not worth texing.

Let’s prove associativity though.

Definition 4.1. Let D1, D2 ∈ Div(E). D1 and D2 are linearly equivalent if ∃f ∈ K(E)∗ such that
(f) = D1 −D2 and we write D1 ∼ D2 and [D1] for the equivalence class.

Definition 4.2. Pic(E) = Div(E)/ ∼, and Pic0(E) = Div0(E)/ ∼. Note that (f) always has
degree zero, since f is the ratio of polynomials of the same degree.

Proposition 4.3. Let ψ : E → Pic0(E) be the map P → [(P ) − (0E)]. Then ψ(P + Q) =
ψ(P ) + ψ(Q) and ψ is a bijection.
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In particular this shows that E is a group.

Proof. Let ℓ = 0, m = 0 be lines in projective space (linear forms), such that ℓ passes through E
as P, S,Q and m passes through E at 0E , S, P + Q. Then ℓ/m is a rational function on E. We
have that (ℓ/m) = (P ) + (S) + (Q)− (0E)− (S)− (P +Q) = (P ) + (Q)− (0E)− (P +Q). Thus
(P ) + (Q) ∼ (P +Q)− (0E) so ψ(P ) + ψ(Q) = ψ(P +Q).

To show ψ is injective, suppose that ψ(P ) = ψ(Q), for some P ̸= Q. Then there exists
f ∈ K(E)∗ such that (f) = (P ) − (Q). So f : E → P1 has degree 1 (there is only 1 zero), so
E ∼= P1, a contradiction. Thus ψ is injective.

To show surjectivity, let [D] ∈ Pic0(E). Then D + (0E) has degree 1, so by Riemann-Roch we
have that dimL(D+(0E)) = 1, so there exists f ∈ K(E)∗ such that (f)+D+(0E) ≥ 0. But since
(f) has degree 0, this divisor has degree 1, so it equals (P ) for some point P . So D ∼ (P ) − (0E)
and ψ(P ) = [D].

4.1 Formulae for E in Weierstrass form
We can write out formulae for P + Q,−P using the chord and tangent process. In particular, if
P = (x, y) and E : y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6 we have that

−P = (x,−(a1x+ a3)− y) (4.1)

The rest is bash, and we get linear equations for P +Q.

Corollary 4.4. E(K) is an abelian group for any field K.

Proof. By the formulas for −P and P +Q and the fact that 0E ∈ E(K), we have that E(K) is a
subgroup of E = E(K).

Theorem 4.5. Elliptic curves are group varieties, so that multiplication and inversion are mor-
phisms of varieties.

Proof. We just showed that these are rational maps of varieties. But E × E is a surface, not a
curve, so we still need to show that the map E × E → E given by addition of points is smooth.

We have that + : E × E → E is regular on

U = {(P,Q) ∈ E × E | P,Q, P +Q,P −Q ̸= 0E} (4.2)

For P ∈ E, let τP : E → E be the translation morphism Q→ P +Q. Taking A,B ∈ E, we factor
+ as

E × E E × E E E
τ−A×τ−B + τA+B

So + is regular on all {τA × τB(U)}A,B∈E , which cover E × E so + is regular on E × E, so + is a
morphism.

4.2 Statement of results
We will prove some things in this course.
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4.3 Torsion
Definition 4.6. The n-multiplication operator if [n] : E → E sending P → nP = P + · · ·+P . We
also have [−n]P = −[n]P .

Definition 4.7. The n-torsion subgroup of E is E[n] = ker([n] : E → E). If K = C, then
E(C) = C/Λ and

E[n] ∼= (Z/nZ)2 (4.3)

and [n] has degree n2. We’ll show the second fact holds for any K, and the first fact holds if
charK ∤ n.

Lemma 4.8. Assume charK ̸= 2. If E : y2 = f(x) = (x− e1)(x− e2)(x− e3), e1, e2, e3 ∈ K, then
E[2] = {0E , (e1, 0), (e2, 0), (e3, 0)} ∼= (Z/2Z)2.

Proof. If (x, y) = P ∈ E[2], then P = −P , so we must have y = 0.

5 Isogenies
Let E1, E2 be elliptic curves.

Definition 5.1. An isogeny ϕ : E1 → E2 is a nonconstant morphism with ϕ(0E1
) = 0E2

.
We say that E1, E2 are isogenous.

Note that ϕ being a nonconstant morphism implies that ϕ is surjective on K points.

Definition 5.2. Let Hom(E1, E2) = {isogenies E1 → E2}∪{0} be the set of homomorphisms from
E1 → E2.

Then ϕ ∈ Hom(E1, E2) is a group homomorphism, and Hom(E1, E2) is an abelian group under
(ϕ+ψ)(P ) = ϕ(P )+ψ(P ). In particular, we have that ϕ+ψ is the composition of E → E×E → E
sending P → (ϕ(P ), ψ(P ))→ ϕ(P ) + ψ(P ).

If ϕ : E1 → E2 and ψ : E2 → E3 are isogenies then ψ ◦ ϕ is an isogeny, and by the tower law
deg(ψ ◦ ϕ) = deg(ψ) deg(ϕ).

We can also consider the constant map E1 → 0E2
to be an isogeny (the zero isogeny), but I

guess we don’t do this.

Proposition 5.3. If 0 ̸= n ∈ Z then [n] : E → E is an isogeny.

Proof. Addition and hence [n] is a morphism by Theorem 4.5, and 0E → N0E = 0E . We must
show [n] ̸= [0]. Assume that charK ̸= 2.

If n = 2, then by Lemma 4.5, E[2] ̸= E, so [2] ̸= [0].
If n is odd, then there exists a nonzero T ∈ E[2], so nT = T ̸= 0, so [n] ̸= [0]. Then since

[mn] = [m] ◦ [n], we are done.
If charK = 2, we could replace Lemma 4.8 by a similar result about E[3].

Corollary 5.4. Hom(E1, E2) is a torsion-free Z-module.

Proof. Z acts on Hom(E1, E2) by nϕ = [n] ◦ ϕ. But since [n] ̸= [0], there is no torsion.

Theorem 5.5. Let ϕ : E1 → E2 be an isogeny. Then ϕ is a group homomorphism, so ϕ(P +Q) =
ϕ(P ) + ϕ(Q).
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Proof. ϕ induces a map on divisors:

ϕ∗ : Div0(E1)→ Div0(E2)∑
nPP 7→

∑
nPϕ(P ) (5.1)

Recall that we have an inclusion of function fields ϕ∗ : K(E2) → K(E1), and K(E1)/K(E2) is
a finite extension, so we have a norm map NK(E1)/K(E2) : K(E1) → K(E2). It is a fact that if
f ∈ K(E1)

∗, then
div(NK(E1)/K(E2)f) = ϕ∗(div f) (5.2)

so ϕ∗ sends principal divisors to principal divisors.
Since ϕ(0E1

) = 0E2
, the following diagram commutes:

E1 E2

Pic0(E1) Pic0(E2)

ϕ

∼= ∼=

ϕ∗

So since ϕ∗ is a group homomorphism, ϕ is a group homomorphism.

Lemma 5.6. Let ϕ : E1 → E2 be an isogeny. Then there exists a morphism ξ making the following
diagram commute:

E1 E2

P1 P1

ϕ

x1 x2

ξ

where xi is the coordinate function sending P = (x, y) 7→ x for P ∈ Ei.
Moreover, if ξ(t) = r(t)/s(t), r(t), s(t) ∈ K[t] coprime, then deg ϕ = deg ξ = max(deg r, deg s).

Proof. For i = 1, 2, we have that K(Ei)/K(xi) is a degree 2 Galois extension, where K(Ei) =
K(xi, yi) is the function field of Ei. To see, this we just need to exhibit a nontrivial element of the
Galois group. We have that [−1]∗ sending yi → −yi is such a morphism. Furthermore, by Theorem
5.5, we have that ϕ ◦ [−1] = [−1] ◦ ϕ, so if f ∈ K(x2), then

[−1]∗ϕ∗f = ϕ∗[−1]∗f = ϕ∗f (5.3)

so ϕ∗f is fixed by the Galois group, so ϕ∗f ∈ K(x1). Thus in particular, we can set ϕ∗x2 = ξ(x1)
for some rational function ξ. Then by the tower law, we have that deg ϕ = deg ξ.

Now K(x2) ↪→ K(x1) via x2 7→ ξ(x1) = r(x1)/s(x1). We claim that the minimal polynomial of
x1 over x2 is F (t) = r(t)− s(t)x2 ∈ K(x2)[t]. We have F (x1) = 0, and F is irreducible in K[x2, t]
because r, s are coprime. Then F is irreducible in K(x2)[t] by Gauss’s lemma. Thus we have that

deg ξ = [K(x1) : K(x2)] = degF = max(deg r, deg s). (5.4)

12



Lemma 5.7. deg[2] = 4.

Proof. Assume charK ̸= 2, 3, so that E : y2 = x3 + ax+ b = f(x).
If P = (x, y) ∈ E, then x(2P ) = g(x)/4f(x) where deg g = 4 (direct calculation). So by Lemma

5.6, we have that deg[2] = max(deg g,deg f) = 4.

Definition 5.8. Let A be an abelian group. Then q : A→ Z is a quadratic form if

1. q(nx) = n2q(x) for all n ∈ Z, x ∈ A.

2. (x, y) 7→ q(x+ y)− q(x)− q(y) is Z-bilinear.

Lemma 5.9. q : A→ Z is quadratic form if and only if it satisfies the parallelogram law:

q(x+ y) + q(x− y) = 2q(x) + 2q(y). (5.5)

Proof. Bash/Sheet 2.

Theorem 5.10. We have that the degree map deg : Hom(E1, E2)→ Z is a quadratic form, where
we set deg 0 = 0.

We will assume that charK ̸= 2, 3 for simplicity. Write

E2 : y2 = x3 + ax+ b (5.6)

and assume that P,Q, P +Q,P −Q ̸= 0 with respective x-coordinates x1, x2, x3, x4.

Lemma 5.11. There exist polynomials W0,W1,W2 ∈ Z[a, b][x1, x2] of degree at most 2 in x1 and
degree at most 2 in x2 such that

(1 : x3 + x4 : x3x4) = (W0 :W1 :W2). (5.7)

Proof. Let y = λx+ ν be the line through P and Q. Then

x3 + ax+ b− (λx+ ν)2 = (x− x1)(x− x2)(x− x3) = x3 − s1x2 + s2x− s3 (5.8)

where s1, s2, s3 are the respective symmetric polynomials in x1, x2, x3. Comparing coefficients gives

λ2 = s1

−2λν = s2 − a
ν2 = s3 + b (5.9)

Eliminating λ and ν gives

F (x1, x2, x3) = (s2 − a)2 − 4s1(s3 + b) = 0 (5.10)

which has degree less than 2 in x1, x2 x3 as s1, s2, s3 have degree 1 in x1, x2 x3. Now x3 is a root
of W (t) = F (x1, x2, t), and F is a quadratic polynomial in t.

As Q and −Q have the same x-coordinate, if we repeat the above process with the line through
P and −Q, we find that x4 is the other root of F (x1, x2, t) (which is quadratic in t). Thus writing
F (x1, x2, t) =W0(t− x3)(t− x4) for some W0(x1, x2, a, b), we have that

W0(t− x3)(t− x4) =W0t
2 −W1t+W2 (5.11)
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where W0, W1, W2 all have degree less than 2 in x1, x2. Now comparing coefficients gives

x3 + x4 =
W1

W0
, x3x4 =

W2

W0
(5.12)

Proof of Theorem 5.10. We show that if ϕ, ψ ∈ Hom(E1, E2), then

deg(ϕ+ ψ) + deg(ϕ− ψ) ≤ 2 deg ϕ+ 2degψ. (5.13)

When we have show this, we can replace ϕ by ϕ+ψ and ψ by ϕ−ψ to get the inequality going the
other way.

We may assume ϕ, ψ, ϕ+ψ, ϕ−ψ ̸= 0. Otherwise the proof is trivial, or we use that deg[−1] = 1,
deg[2] = 4.

Let ϕ, ψ, ϕ + ψ, ϕ − ψ have respective coordinate functions ξ1, ξ2, ξ3, ξ4. Then by Lemma 5.11,
we have that

(1 : ξ3 + ξ4 : ξ3ξ4) = (W0(ξ1, ξ2),W1(ξ1, ξ2),W2(ξ1, ξ2)). (5.14)

Put ξi = ri/si with ri, si ∈ K[t] coprime. So

(1 : ξ3 + ξ4 : ξ3ξ4) = (s3s4 : r3s4 + r4s3 : r3r4) = (W0(r1s2, r2s1) :W1(r1s2, r2s1) :W2(r1s2, r2s1))
(5.15)

and the LHS is coprime as ri, si are coprime. We then have that

deg(ϕ+ ψ) + deg(ϕ− ψ) = max(deg r3,deg s3) + max(deg r4,deg s4)

= max(deg(s3s4),deg(r3s4 + r4s3),deg(r3r4))

≤ 2max(deg r1,deg s1) + 2max(deg r2,deg s2)

= 2 deg ϕ+ 2degψ. (5.16)

Replacing ϕ by ψ + ψ and ψ by ϕ− ψ gives

deg 2ϕ+ deg 2ψ ≤ 2 deg(ϕ+ ψ) + 2 deg(ϕ− ψ). (5.17)

Applying Lemma 5.7 gives the reverse inequality, which shows the parallelogram law holds, so we
have a quadratic form.

Corollary 5.12. We have that deg nϕ = n2 deg ϕ for all n ∈ Z, ϕ ∈ Hom(E1, E2). In particular,
we have that deg[n] = n2.

Now we will finally give an example of an isogeny which is not [n].

Example 5.13. Let E/K an elliptic curve, and assume charK ̸= 2, so there exists nonzero
T ∈ E(K)[2]. WLOG we have that

E : y2 = x(x2 + ax+ b), a, b ∈ K, b(a2 − 4b) ̸= 0 (5.18)

and we can take T = (0, 0) to be our 2-torsion point. We want to quotient out by ⟨0, T ⟩. If
P = (x, y), then we have that P ′ = P + T = (x′, y′) with

x′ =
b

x
, y′ = − by

x2
. (5.19)
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We want to send (x, y) and (x′, y′) to the same place. A natural choice for a map is then

ξ = x+ x′ + a =
(y
x

)2
, η = y + y′ =

y

x

(
x− b

x

)
. (5.20)

Then we have that

η2 = ξ(ξ2 − 2aξ + a2 − 4b) (5.21)

Let E′ : y2 = x(x2 + a′x + b′) with a′ = −2a, b′ = a2 − 4b. This is an elliptic curve because
b′ = a2 − 4b ̸= 0 and a′2 − 4b′ = 16b ̸= 0. There’s an isogeny

ϕ : E → E′

(x, y) 7→
((y

x

)2
:
y(x2 − b)

x2
: 1

)
. (5.22)

At 0E = (0 : 1 : 0), we can compare orders of vanishing to find that 0E → 0E′ .
To compute the degree of this map we write(y

x

)2
=
x2 + ax+ b

x
(5.23)

and the numerator and denominator are coprime as b ̸= 0, so deg ϕ = 2. We say that ϕ is a 2-isogeny
because of its degree.

6 The invariant differential
Let C be an algebraic curve over K = K.

Definition 6.1. The space of differential ΩC is a K(C)-vector space generated by df for f ∈ K(C),
subject to the relations

1. d(f + g) = df + dg.

2. d(fg) = gdf + fdg.

3. da = 0 for a ∈ K.

Since C is a curve, ΩC is a 1-dimensional vector space. This is the cotangent space at the generic
point of C I think, which is T ∗

C/K,η = ΩC/K(η) or something, for η the generic point of C. Since
C is a variety, by a Theorem from Abelian varieties, C is smooth at its generic point, so ΩC is a
1-dimensional K(C)-vector space because C is 1-dimensional.

Let 0 ̸= ω ∈ ΩC , P ∈ C be a smooth point, t ∈ K(C) a uniformizer at P . Then it is a fact that
ω = fdt for some f ∈ K(C)×), and we define

ordP (ω) = ordP (f), (6.1)

and this definition is independent of the choice of t.
Now, assume C is a smooth projective curve.
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Definition 6.2. The divisor of 0 ̸= ω ∈ ΩC is

div(ω) =
∑
P∈C

ordP (ω)P ∈ Div(C). (6.2)

This is a well-defined divisor because ordP (ω) = ordP (f) is zero for all but finitely many P .
A differential ω ∈ ΩC is regular if div(ω) ≥ 0, so it has no poles.
The regular differentials form a K-vector space, and its dimension is the genus g(C) of the curve.
In the case of elliptic curves, this is 1-dimensional K-vector space. Note that the space of all

differentials on a curve is a 1-dimensional K(C)-vector space, and don’t confuse these two vector
spaces or think that the fact that they have the same dimension means anything.

As a consequence of the Riemann-Roch theorem, we have that

deg(divω) = 2g − 2 (6.3)

Suppose that f ∈ K(C)×, and ordP (f) = n ̸= 0. If char k ∤ n, then ordP (df) = n− 1.

Lemma 6.3. Assume charK ̸= 2, and let

E : y2 = (x− e1)(x− e2)(x− e3), (6.4)

with e1, e2, e3 distinct. Then ω = dx/y is a differential on E with no zeros or poles.
As a consequence, we have that g(E) = 1 by (6.3).
In particular, the k-vector space of regular differentials on E is 1-dimensional, and spanned by

ω.

Proof. Let Ti = (ei, 0), so that E[2] = {0, T1, T2, T3}. Then div y = (T1) + (T2) + (T3) − 3(0).
This follows from the fact that y has a pole of order 3 at 0, and zeros of order 1 at Ti, and
since y is principal, has no other poles, and is degree 0, these are all the zeros and poles. For
P = (xP , yP ) ∈ E \{0}, a similar calculation gives div(x−xP ) = (P )+(−P )−2(0). If P ∈ E \E[2],
then ordP (x − xP ) = 1, so ordP (dx) = 0. If P = Ti, then ordP (x − xP ) = 2, so ordP (dx) = 1. If
P = 0, then ordP (x) = −2, so ordP (dx) = −3. Thus we have that

div dx = (T1) + (T2) + (T3)− 3(0) = div y, (6.5)

so div(dx/y) = 0.

Definition 6.4. For ϕ : C1 → C2 a nonconstant morphism we define

ϕ∗ : ΩC2 → ΩC1

fdg 7→ (ϕ∗f)d(ϕ∗g). (6.6)

Lemma 6.5. For P ∈ E, let τP : E → E be the translation map X 7→ X + P , and ω = dx/y as
above. Then τ∗Pω = ω, so ω is an invariant differential.

Proof. τ∗Pω is a regular differential on E (by some divisor pushforward stuff), so τ∗Pω = λpω for
some λP ∈ K× since the space of regular differentials in 1-dimensional.

Now the map E → P1 sending P 7→ λP is a morphism of projective curves, but it is not
surjective, because 0 and ∞ are not in its image, for instance. So it is constant by Theorem 2.15.
Thus τ∗Pω = λω, but taking P = 0 we see that λ = 1.
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Remark 6.6. If K = C, then C/Λ ∼= E(C) via the map z → (℘(z), ℘′(z)), and under this map we
have dx/y = ℘′(z)dz/℘(z) = dz which is clearly translation-invariant.

Lemma 6.7. Let ϕ, ψ ∈ Hom(E1, E2). Let ω an be invariant differential on E2. Then (ϕ+ψ)∗ω =
ϕ∗ω + ψ∗ω.

Proof. Write E = E2, and define the following maps E × E → E:

µ : (P,Q) 7→ P +Q

pr1 : (P,Q) 7→ P

pr2 : (P,Q) 7→ Q. (6.7)

It is a fact that ΩE×E is a 2-dimensional K(E ×E)-vector space with basis pr∗1 ω,pr
∗
2 ω. Therefore

µ∗ω = f pr∗1 ω + g pr∗2 ω (6.8)

for some f, g ∈ K(E×E). We want to show that f = g = 1. For Q ∈ E let ιQ : E → E×E be the
mapping P 7→ (P,Q). Applying ι∗Q to (6.8) gives

(µιQ)
∗ω = (ι∗Qf)(pr1 ιQ)

∗ω + (ι∗Qg)(pr2 ιQ)
∗ω. (6.9)

Now, we have that τQ = µ ◦ ιQ, pr1 ◦ιQ = id, and pr2 ◦ιQ = Q, so simplifying the above gives

τ∗Qω = (ι∗Qf)ω + 0 = ω (6.10)

by Lemma 6.5. Thus ι∗Qf = 1 for all Q ∈ E, so f(P,Q) = 1 for all P,Q ∈ E. Similarly g(P,Q) = q
for all P,Q ∈ E. Thus we have that

µ∗ω = pr∗1 ω + pr∗2 ω. (6.11)

Now, we pull back by E1 → E × E sending P → (ϕ(P ), ψ(P )) to get

(ϕ+ ψ)∗ω = ϕ∗ω + ψ∗ω (6.12)

as desired.

Lemma 6.8. Let ϕ : C1 → C2 be a non-constant morphism. Then ϕ is separable if and only if
ϕ∗ : ΩC2

→ ΩC1
is nonzero.

Proof. Omitted.

Example 6.9. Let Ĝm = A1 \ {0} be the multiplicative group variety of units. Let ϕ : Ĝm → Ĝm
be the morphism x 7→ xn, for n ≥ 2 an integer. Then clearly deg ϕ = n.

We have that ϕ∗(dx) = d(xn) = nxn−1dx so if charK ∤ n then ϕ is separable.
In this case, by Theorem 2.15 we have that #ϕ−1(Q) = deg ϕ for all but finitely many points

Q ∈ Ĝm. But ϕ is a group homomorphism, so #ϕ−1(Q) = #kerϕ for all Q ∈ Ĝm. Thus we have
that #kerϕ = deg ϕ = n.

Therefore K = K has exactly n nth roots of unity.

Theorem 6.10. If charK ∤ n, then E[n] ∼= (Z/nZ)2.
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Proof. By Lemma 6.7, we have that [n]∗ω = nω. Since char k ∤ n, [n] is separable because [n]∗ is
nonzero by Lemma 6.8. Thus #[n]−1Q = deg[n] for all but finitely many Q ∈ E. But since [n] is
a group homomorphism, [n]−1Q = #E[n] for all points. Thus deg[n] = #E[n] = n2 by Corollary
5.12.

By group theory, we have that E[n] ∼= Z/d1Z × · · · × Z/dtZ for 1 < d1| · · · |dt|n all dividing
each other. Also, we have that di|n because E[n] has n-torsion. Let p be a prime, p|d1, then
E[p] ∼= (Z/pZ)t, and so t = 2. Since E[p] ⊆ E[n2], we have that E[n] ∼= Z/d1Z × Z/d2Z with
d1|d2|n, and d1d2 = n2, so we must have d1 = d2 = n so E[n] ∼= (Z/nZ)2 as desired.

Remark 6.11. If char k = p, then [p] is separable. It can be shown that either E[pr] ∼= Z/prZ for
all r ≥ 1, which is the “ordinary” case, or that E[pr] = 0, which is the “supersingular” case.

7 Elliptic curves over finite fields
Lemma 7.1. Let A be an abelian group, q : A→ Z a positive definite quadratic form. So q(x) ≥ 0,
with equality iff x = 0. Then

|q(x+ y)− q(x)− q(y)| ≤ 2
√
q(x)q(y) (7.1)

for all x, y ∈ A.

Proof. We may assume that x ̸= 0, otherwise the result is obvious, so q(x) ̸= 0. Let m,n ∈ Z.
Then

0 ≤ q(mx+ ny)

=
1

2
⟨mx+ ny,mx+ ny⟩

= m2q(x) + n2q(y) +mn⟨x, y⟩

= q(x)

(
m+

⟨x, y⟩
2q(x)

n

)2

+

(
q(y)− ⟨x, y⟩

4q(x)

)
n2. (7.2)

Take m = −⟨x, y⟩, n = 2q(x). So q(y)−⟨x, y⟩2/4q(x) ≥ 0, so ⟨x, y⟩2 ≤ 4q(x)q(y), and taking square
roots gives the results.

Theorem 7.2 (Hasse). Let E/Fq be an elliptic curve. Then |#E(Fq)− (q + 1)| ≤ 2
√
q.

Proof. Recall Gal(Fqr/Fq) is cyclic of order r, generated by Frobq : x 7→ xq.
Let E have Weierstrass equation with coefficients a1, . . . , q6 ∈ Fq. Note that aqi = ai since

ai ∈ Fq. Define the Frobenius endomorphism ϕ : E → E sending (x, y) 7→ (xq, yq). This is an
isogeny of degree q (look at the function fields).

Then E(Fq) = {P ∈ E|ϕ(P ) = P} = ker(ϕ− 1).
Also, ϕ∗ω = ϕ∗(dx/y) = dxq/yq = qxq−1dx/yq = 0. Thus by Lemma 6.8, since (1 − ϕ)∗ω =

ω ̸= 0, 1− ϕ is separable.
By the same argument as in the proof of 6.10, we then have that #(1−ϕ)−1(Q) = #ker(1−ϕ) =

deg(1− ϕ) = #E(Fq).
Since the degree map is a positive definite quadratic form, we have that

|deg(1− ϕ)− deg ϕ− deg 1| = |#E(Fq)− (q + 1)| ≤ 2
√
q. (7.3)
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Definition 7.3. For ϕ, ψ ∈ End(E) = Hom(E,E), we put ⟨ϕ, ψ⟩ = deg(ϕ + ψ) − deg ϕ − degψ.
and tr(ϕ) = ⟨ϕ, 1⟩.

Corollary 7.4. Let E/Fq be an elliptic curve. Then #E(Fq) = q+1− tr(Frobq) and | tr(Frobq)| ≤
2
√
q.

7.1 Zeta functions
For K a number field, set

ζK(s) =
∑

a⊆OK

(Na)−s =
∏

p∈SpecOK closed

(
1− (Np)−s

)−1
. (7.4)

For K a function field, in other words K = Fq(C) where C/Fq is a smooth projective curve, set

ζK(s) =
∏
x∈|C|

(1− (Nx)−s)−1 (7.5)

where the product is over all the closed points of C. These are the orbits for the action of Gal(Fq/Fq)
acting on C(F q), and we set Nx = qdeg x, where deg x is the size of the orbit. In other words, the
closed points are the points over Fq modulo equivalence under the Galois group. This is the same
as the closed points of the scheme, or the maximal ideals of the underlying rings.

We have that ζK(s) = F (q−s) for some F ∈ Q[[T ]]:

F (T ) =
∏
x∈|C|

(1− T deg x)−1. (7.6)

Taking logarithms, doing some manipulation, and taking exponents, we get

F (T ) = exp

( ∞∑
n=1

#C(Fqn)
n

Tn

)
(7.7)

because x ∈ C(Fqn) if and only if x is in the orbit of Gal(Fqr/Fq) with r|n.

Definition 7.5. The zeta function ZC(T ) of a smooth projective curve C/Fq is the F (T ) defined
above.

Theorem 7.6. Let E/Fq be an elliptic curve, and let #E(Fq) = q + 1− a. Then

ZE(T ) =
1− aT + qT 2

(1− T )(1− qT ).
(7.8)

Proof. We use a convenient formula for #E(Fqn). Let Frobq = ϕ. By Hasse, #E(Fq) = q+1−tr(ϕ),
and we have that tr(ϕ) = a, deg ϕ = q.

From sheet 2, we have that ϕ2 − aϕ+ q = 0 in End(E). Iterating ϕ gives

ϕn+2 − aϕn+1 + qϕn = 0 (7.9)
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Taking traces gives an+2 − a1an+1 + qan = 0, where an = tr(ϕn). This is a recurrence relation
which we can solve to find an = αn + βn where α, β are roots of X2 − aX + q = 0. In particular,
we have |α|, |β| ≤ √q. Then

#E(Fqn) = qn + 1− an. (7.10)

Thus

ZE(T ) = exp

( ∞∑
n=1

qn + 1− an
n

Tn

)

=
1− a1T + qT 2

(1− T )(1− qT )
(7.11)

after some derivation.

8 Formal Groups
Definition 8.1. Let R be a ring equipped with the I-adic topology R is complete with respect to
I if

1. Hausdorff:
⋂
n≥0 I

n = 0.

2. Every Cauchy sequence converges.

Remark 8.2. If x ∈ I, then 1/(1−x) = 1+x+x2+· · · in the completion of R, so U (1) = 1+I ⊆ R×.

We care about the rings Zp,Fq[[t]],Z[[t]].

Lemma 8.3 (Hensel). Let R be complete in the I-adic topology, F ∈ R[x], and s ∈ Z>0. Suppose
a ∈ R satisfies F (a) ∼= 0 mod Is, F ′(a) ∈ R×. Then there exists a unique b ∈ R such that F (b) = 0
and b ∼= a mod Is.

Proof. After renormalizing, can assume a = 0 and F ′(0) ∈ U (1).
Take x0 = 0, xn+1 = xn − F (xn), and the limit satisfies our conditions.
Uniqueness: exercise, change u.

Let E be our elliptic curve with its ugly projective Weierstrass equation. We look at the affine
piece Y ̸= 0, setting t = −X/Y and w = −Z/Y :

w = t3 + a1tw + a2t
2w + a3w

2 + a4tw
2 + a6w

3 = f(t, w). (8.1)

Out goal is to solve this equation for a general w(t) ∈ Z[a1, . . . , a6][[t]] = R with maximal ideal
I = (t). We want to find a root of F (X) = X − f(t,X) ∈ R[X]. We can do this with Hensel’s
lemma. Take s = 3, a = 0, then F (0) ≡ 0 mod t3, and F ′(0) = 1 mod t. So we get a solution w(t)
such that w(t) = f(t, w(t)) and w(t) ≡ 0 mod t3.

Remark 8.4. Taking u = 1 in the proof of Lemma 8.3 gives w(t) = limn→∞ wn(t), with w0(t) = 0
and wn+1(t) = f(t, wn(t)).

We in fact have that
w(t) = t3(1 +A1t+A2t

2 + · · · ) (8.2)

where A1 = a1, and the other Ais involve the coefficients ai.
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Lemma 8.5. Let R be an integral domain, complete with respect to I. Let E be an elliptic curve
with ai ∈ R, K = FracR. Then

Ê(I) := {(t, w) ∈ E(K) | t, w ∈ I} (8.3)

is a subgroup of E(K).

Remark 8.6. We have that

Ê(I) = {(t, w(t)) ∈ E(K) | t ∈ I}. (8.4)

This is because (t, w(t)) ∈ I because if t ∈ I, then w(t) ∈ I by completeness. Also, if (t, w) ∈ E(K)
and t ∈ I, then the uniqueness part of Hensel’s lemma forces w = w(t).

Proof of Lemma 8.5. Taking (t, w) = (0, 0), we have that 0E ∈ Ê(I). So it suffices to show that if
P1, P2 ∈ Ê(I), then −P1 − P2 ∈ Ê(I). We do this by calculating that the coefficients of −P1 − P2

are in I. A lot of bash.

Taking R = Z[a1, . . . , a6][[t]], I = (t), Lemma 8.5 gives that (t, w(t)) ∈ Ê(I) has an inverse in
I, so that there exists ι ∈ R with ι(0) = 0 and

[−1](t, w(t)) = (ι(t), w(ι(t))). (8.5)

Similarly, taking R = Z[a1, . . . , a6][[t1, t2]] and I = (t1, t2), Lemma 8.5 gives that there exists F ∈ R
with F (0, 0) = 0 and

(t1, w(t1)) + (t2, w(t2)) = (F (t1, t2), w(F (t1, t2))). (8.6)

We have that F (X,Y ) = X + Y − a1XY − a2(X2Y +XY 2) + · · · . F is a formal group law, and
satisfies the properties below.

Definition 8.7. Let R be a ring. A (1-dimensional, commutative) formal group over R is a power
series F (X,Y ) ∈ R[[X,Y ]] satisfying

(i) Commutativity: F (Y,X) = F (X,Y ).

(ii) Identity: F (X, 0) = X, F (0, Y ) = Y .

(iii) Associativity: F (X,F (Y,Z)) = F (F (X,Y ), Z).

(iv) Inverse: there exists ι(X) ∈ R[[X]] such that ι(0) = 0 and F (X, ι(X)) = 0.

Property (iv) follows from (i)-(iii).

Example 8.8. The additive formal group Ĝa(X,Y ) = X + Y associated with the group variety
Ga.

The multiplicative group law Ĝm = X + Y + XY = (1 + X)(1 + Y ) − 1 associated with the
group variety Gm.

The power series associated to an elliptic curve.
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Definition 8.9. Let F ,G be formal groups over R given by power series F and G. A morphism
f : F → G is a power series f(X) ∈ R[[X]] such that f(0) = 0, and f(F (X,Y )) = G(f(X), f(Y )).
F and G are isomorphic if there exist f : F → G and g : G → F such that f ◦g(X) = g ◦f(X) =

X.

Theorem 8.10. If charR = 0 then any formal group F over R is isomorphic to Ĝa over R⊗Z Q.
More precisely:

(i) There is a unique power series

log T = T +
a2
2
T 2 +

a3
3
T 3 + · · · (8.7)

with ai ∈ R such that
log(F (X,Y )) = logX + log Y (8.8)

(ii) There is a unique power series

exp(T ) = T +
b2
2!
T 2 +

b3
3!
T 3 + · · · (8.9)

with bi ∈ R such that exp(log(T )) = log(exp(T )) = T

Proof. (i) We write F1(X,Y ) = ∂F
∂X (X,Y ).

First we show uniqueness. Let p(T ) = (log T )′ = 1 + a2T + a3T
2 + · · · . Differentiating (8.8)

with respect to X gives
p(F (X,Y ))F1(X,Y ) = p(X) + 0. (8.10)

Putting X = 0 gives p(Y )F1(0, Y ) = 1. So p(Y ) = F1(0, Y )−1.
p is uniquely determined, so ai is uniquely determined, so log T is uniquely determined.
Now to show existence. Let p(T ) = F1(0, T )

−1 = 1 + a2T + a3T
2 + · · · , for some ai ∈ R. Set

log T = T + a2/2T
2 + · · · . Then

F (F (X,Y ), Z) = F (X,F (Y,Z)) (8.11)

by associativity. Taking partial derivatives by X gives

F1(F (X,Y ), Z)F1(X,Y ) = F1(X,F (Y,Z)). (8.12)

Setting X = 0 gives
F1(Y,Z)F1(0, Y ) = F1(0, F (Y,Z)) (8.13)

Thus we have that
F1(Y,Z)p(Y )−1 = p(F (Y,Z))−1 (8.14)

so p(Y ) = F1(Y, Z)p(F (Y,Z)). Taking anti-derivatives/integrating gives

log(F (Y,Z)) = log(Y ) + h(Z) (8.15)

for some power series h(Z) ∈ R[[Z]]. But since F (Y,Z) = F (Z, Y ), we have that h(Z) = logZ,
proving (8.8).

Part (ii) follows immediately from Lemma 8.11 below, with the exact calculation of exp being
doing in Sheet 2, question 12.
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Lemma 8.11. Let f(T ) = aT + · · · ∈ R[[T ]] with a ∈ R×. Then there exists a unique g(T ) =
a−1T + · · ·R[[T ]] such that g(f(T )) = f(g(T )) = T .

Proof. We construct a series of polynomials gn(T ) such that lim gn(T ) = g(T ) satisfies f(g(T )) = T .
In particular, we have f(gn(T )) = T mod Tn+1, so f(gn−1(T )) = T + bTn mod Tn+1. We put
gn(T ) = gn−1(T ) − b/aTn, and we can check that this works. We can then find h(T ) such that
g(h(T )) = T , and then we have that f(g(h(T ))) = f(T ) = h(T ), so g(f(T )) = T as well. If g′(T )
is another inverse, we have that g′(f(g(T ))) = g(T ) = g′(T ).

Example 8.12. If F = Ĝm the multiplicative group law, then log, exp are the usual power series
but shifted by 1:

log(T ) = log(T + 1)

exp(T ) = exp(T )− 1 (8.16)

where the LHS is the formal group law functions and the right hand side is the ordinary Taylor
series.

Definition 8.13. Let F be a formal group law given by the power series F (X,Y ) ∈ R[[X,Y ]].
Suppose R is a ring, complete with respect to the ideal I. For x, y ∈ I, we set x⊕F y = F (x, y) ∈ I.
It is easy to verify using the formal group law axioms that

F(I) := (I,⊕F ) (8.17)

is an abelian group.

Example 8.14. Ĝa(I) = (I,+) and Ĝm(I) = (1 + I,×) = (U (1),×) and Ê(I), the subgroup of
E(K) defined in Lemma 8.5.

Corollary 8.15. Let F be a formal group over R and n ∈ Z. Suppose n ∈ R×. Then

(i) [n] is an isomorphism of formal groups.

(ii) If R is complete with respect to I, then the multiplication by n map F(I) → F(I) sending
x 7→ nx is an isomorphism of groups. In particular, F(I) has no n-torsion.

Proof. (i) We have that [1](T ) = T , so [n](T ) = F ([n − 1]T, T ) for n > 0, and for n < 0, we use
[−1](T ) = ι(T ), and we can set [−n](T ) = F ([−n+ 1](T ), ι(T )).

Since F (X,Y ) = X + Y mod deg 2, we have that [n]T = nT mod deg 2 by induction, and by
Lemma 8.11 we have that [n]T is invertible so it is an isomorphism.

(ii) It is easy to see that a morphism of formal groups F → G is a morphism of groups F(I)→
G(I), and an isomorphism of formal groups is an isomorphism of groups.

9 Elliptic curves over local fields
Let K be a field which is complete with respect to the discrete valuation v : K× → Z. We define
the ring of integers OK with maximal ideal πOK and the residue field k = OK/πOK in the usual
way. Assume that charK = 0 and char k = p > 0. For instance, take K = Qp, OK = Zp and
k = Fp.

Let E/K be an elliptic curve.
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Definition 9.1. A Weierstrass equation for E with coefficients a1, . . . , a6 is integral if ai ∈ OK .
The equation is minimal if v(∆) is minimal among all integral Weierstrass equations.

Remark 9.2. 1. Rescaling any Weierstrass equations appropriately gives an integral one.

2. If a1, . . . , a6 ∈ OK , then we easily see that ∆ ∈ OK , so v(∆) ≥ 0.

3. If char k ̸= 2, 3 then there exists a minimal Weierstrass equation of the form y2 = x3+ax+ b.
This is because we need 1/2 and 1/3 ∈ OK , so 2, 3 ∈ OK×, so 2, 3 ∈ k×.

Lemma 9.3. Let E/K have integral Weierstrass equation y2 + a1xy+ a3y = x3 + a2x
2 + a4x+ a6

and let 0 ̸= P = (x, y) ∈ E(K). Then either x, y ∈ OK or v(x) = −2s and v(y) = −3s for some
s ≥ 1.

Compare this with Sheet 1, Question 5.

Proof. Just do some valuation calculations.

Since K is complete, OK is complete with respect to any ideal I = πrOK for r ≥ 1. Let E/K
be an elliptic curve and fix a minimal Weierstrass equation for E. We then get a formal group Ê,
and taking I = πrOK , we get a group

Ê(πrOK) = {(x, y) ∈ E(K) |
(
−x
y
,−1

y

)
∈ πrOK} ∪ {0}

= {(x, y) ∈ E(K) | v
(
x

y

)
, v

(
1

y

)
≥ r} ∪ {0}

= {(x, y) ∈ E(K) | v(x) = −2s, v(y) = −3s, s ≥ r} ∪ {0}
= {(x, y) ∈ E(K) | v(x) ≤ −2r, v(y) ≤ −3r} ∪ {0}

(9.1)

so Ê(πrOK) is the subgroup of E(K) with valuations sufficiently negative, and we can set Ê(πrOK) =
Er(K). We have a filtration

E(K) ⊃ E1(K) ⊃ E2(K) ⊃ · · · (9.2)

More generally, for F a formal group over OK , we have a filtration

F(πOK) ⊃ F(π2OK) ⊃ · · · (9.3)

We claim that for r sufficiently large, F(πrOK) ∼= (OK ,+) and F(πrOK)/F(πr+1OK) ∼= (k,+) for
all r ≥ 1.

Theorem 9.4. Let F be a formal group over OK . Let e = eK/Qp
= v(p) be the absolute ramification

index. If r > e/(p− 1), then we have an isomorphism

log : F(πrOK)→ Ĝa(πrOK) (9.4)

with inverse isomorphism
exp : Ĝa(πrOK)→ F(πrOK) (9.5)

It follows that F(πrOK) ∼= (πrOK ,+) ∼= (OK ,+)
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Proof. For x ∈ πrOK , we must show the power series log x and expx converge to elements in πrOK .
We do this by straightforward calculation and the integer trick.

Lemma 9.5. The definition of a formal group gives F (X,Y ) = X+Y +XY (· · · ). So if x, y ∈ OK ,
then F (πrx, πry) = πr(x+ y) mod πr+1.

Therefore we have a surjective group homomorphism F(πrOK) → (k,+) by πrx 7→ x mod π
which has kernel F(πr+1OK).

Corollary 9.6. If |k| <∞, then F(πOK) has a subgroup of finite index isomorphic to (OK ,+).

Notation: We write x for the image of x under the reduction mod π map OK → OK/πOK = k.

Proposition 9.7. Let E/K be an elliptic curve. Then the reduction mod π of any 2 minimal
Weierstrass equations for E defines isomorphic curves over k.

Proof. Suppose the Weierstrass equations are related by transformation [u; r, s, t] with u ∈ K×,
r, s, t ∈ K. Then ∆1 = u12∆2, and since both are minimal we have that u ∈ O×

K . The transforma-
tion formula for ai and bi and the fact that OK is integrally closed implies that r, s, t ∈ OK as well.
Then the Weierstrass equations for the reduction modulo π are related by [u; r, s, t] and u ∈ k×
and r, s, t ∈ k.

Definition 9.8. The reduction E/k of E/K is defined by the reduction of a minimal Weierstrass
equations.

The reduction is well-defined, but is it an elliptic curve?
We say that E has good reduction if E is nonsingular (so it is an elliptic curve).
We say that E has bad reduction otherwise.

For an integral Weierstrass equation, if v(∆) = 0, then the equation is minimal, and ∆ ̸= 0, so
we have good reduction.

If 0 < v(∆) < 12, then the equation is minimal, so we have bad reduction.
If 12 ∤ v(∆), then we always have bad reduction. But if 12|v(∆), then the equation might not

be minimal.
There is a well defined map

P2(K)→ P2(k)

(x : y : z) 7→ (x : y : z) (9.6)

where we choose representatives (x : y : z) such that x, y, z ∈ OK and at least one of x, y, z is in
O×
K .

So we can restrict to get a map E(K) → E(K) by sending P → P . If P = (x, y) ∈ E(K),
then by Lemma 9.3 either x, y ∈ OK so P = (x, y) or v(x) = −2s, v(y) = −3s for some s ≥ 1, so
P = (x : y : 1) = (π3sx : π3sy : π3s) = (0 : 1 : 0), the point at infinity.

So Ê(πOK) = E1(K) = {P ∈ E(K)|P = 0}, the “kernel of reduction”.

Definition 9.9. Let Ẽ be the reduction of E mod π. We set

Ẽns =

{
Ẽ E has good reduction
Ẽ\{∗} E has bad reduction

(9.7)

where ∗ is the singular point of Ẽ.
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The chord and tangent process still defines a group law on Ẽns. The main idea is that the chord
and tangent process will never hit a singular point.

In the case of bad reduction, we have that either Ẽns
∼= Ĝm, in which the isomorphism of

varieties is defined K or over a quadratic extension of K. Or, we have that Ẽns
∼= Ĝa, in which the

isomorphism is defined over K.
For simplicity, assume that char k ̸= 2. Then we have that Ẽ : y2 = f(x), and deg f = 3. Then

f(x) either has a double root, which is a node, and we say that E has multiplicative reduction, or
f(x) has a triple root, which is a cusp, and we say that E has additive reduction.

If E has multiplicative reduction and the isomorphism Ẽns
∼= Ĝm is defined over K, then we

say that E has split multiplicative reduction.
In the case of additive reduction, we have that our curve looks like y2 = x3. We have an

isomorphism

Ẽns → Ĝa
(t−2, t−3)← t

∞← 0

(x, y) 7→ x/y (9.8)

Now, let ax + by = 1 be a line not going through the origin, and write Pi = (xi, yi) for the three
points of intersection with Ẽns and ti = xi/yi. Then x3i = y2i = y2i (axi + byi). Dividing out by y3i ,
we get t3i − ati − b = 0, so t1, t2, t3 are roots of T 3 − aT − b, and the root all sum to zero. Since
t1 + t2 + t3 = 0 and P1 + P2 + P3 = 0, we have a valid chord and tangent process, which defines a
group homomorphism. We can check that it is an isomorphism.

In the node case: removing a node is like removing 2 points because the curve passes through
the node twice, so Ẽns

∼= P1 \ {0,∞} ∼= Ĝm. Details on example sheet 3.

Definition 9.10. Define E0(K) = {P ∈ E(K) | P̃ ∈ Ẽns(K)}. If E has good reduction, then
E0(K) = E(K).

Proposition 9.11. E0(K) is a subgroup of E(K) and reduction mod π is a surjective group ho-
momorphism E0(K)→ Ẽns(K).

Note that if E/K has good reduction, then this is a surjective group homomorphism E(K) →
Ẽ(K).

Proof. First we will show that we have a group homomorphism E0(K) → Ẽns(K). A line in P2

defined over K has equation ℓ : aX + bY + cZ = 0, with a, b, c ∈ K. We may assume that
min(v(a), v(b), v(c)) = 0, so reduction mod π gives a line

ℓ̃ : ãX + b̃Y + c̃Z = 0. (9.9)

If P1, P2, P3 ∈ E(K) with P1 + P2 + P3 = 0, then these points line on a line ℓ. Thus P̃1, P̃2, P̃3 line
on ℓ̃. If P̃1, P̃2 ∈ Ẽns(K), then p̃3 ∈ Ẽns(K) as the third point of intersection cannot be singular
(as then the line would intersect the cubic at “4” points). So if P1, P2 ∈ E0(K), then P3 ∈ E0(K)
and P̃1 + P̃2 + P̃3 = 0. We can check that this still works when one of the reductions is the point
at infinity. Thus we have a group homomorphism.

Now to check surjectivity. Let f(x, y) = y2 + a1xy+ a3y− (x3 + · · · ) and let P̃ ∈ Ẽns(K) \ {0},
so P̃ = (x̃0, ỹ0) for some (x0, y0) ∈ OK . Since P̃ is nonsingular, either (i) ∂f

∂x (x0, y0) ̸= 0 mod π or
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(ii) ∂f
∂y (x0, y0) ̸= 0 mod π. WLOG assume (i), case (ii) follows similarly. We put g(t) = f(t, y0) ∈

OK [t]. Then g(x0) ≡ 0 mod π, and g′(x0) ∈ O×
K by assumption (i). By Hensel’s lemma, then

there exists b ∈ OK such that g(b) = 0 and b ≡ x0 mod π. Then (b, y0) ∈ E(K), and has reduction
mod π equal to P̃ .

Recall that for r ≥ 1, we put

Er(K) = Ê(πrOK) = {(x, y) ∈ E(K) | v(x) ≤ −2r, v(y) ≤ −3r} ∪ {0}. (9.10)

Then we have a filtration
E(K) ⊃ E0(K) ⊃ E1(K) ⊃ · · · (9.11)

where for r > e/(p−1) we have that Er(K) ∼= (OK ,+). We also have that Ei(K)/Ei+1(K) ∼= (k,+)
for i ≥ 1 by Proposition 9.11, we have that

E0(K)/E1(K) ∼= Ẽns(K). (9.12)

The question remains: what is E(K)/E0(K). In general, this requires a lot of algebraic geometry
to calculate, but we can prove it is finite fairly easily.

Lemma 9.12. If |k| <∞, then E0(K) ⊂ E(K) has finite index.

Proof. If E has good reduction, we are done as E(K) = E0(K). So assume E(K) has bad reduction.
If |k| <∞, then OK/πrOK is finite for all r ≥ 1. So

OK ∼= lim
→
OK/πrOK (9.13)

is a profinite group, and hence compact. Then since Pn(K) is the union of the standard open
affines, it is compact for the π-adic topology (as the affines are themselves compact).

Then E(K) ⊂ P2(K) is a closed subset, and hence compact. So E(K) is a compact topological
group, so if E0(K) is open, then it is of finite index.

If Ẽ has singular point (x̃0, ỹ0), then

E(K)\E0(K) = {(x, y) ∈ E(K) | v(x− x0) ≥ 1, v(y − y0) ≥ 1}. (9.14)

This is a closed set, so E0(K) is open.

Definition 9.13. Set cK(E) = [E(K) : E0(K)], this is called the Tamagawa number.

If we have good reduction, then cK(E) = 1. On sheet 3, we will show the converse is false.

Remark 9.14. It can be shown that if E has split multiplicative reduction, then cK(E) = v(∆).
Otherwise, cK(E) ≤ 4. The proofs of these facts work with the minimal Weierstrass equation.

Summing up all the results up to this point, we deduce the following.

Theorem 9.15. If [K : Qp] < ∞, then E(K) contains a subgroup of finite index isomorphic to
(OK ,+).

We next recall some facts about local fields. Let L/K be p-adic fields with [L : K] = n, with
residue fields kL/k of degree [kL : k] = f . If x ∈ K×, we have that vL(x) = evK(x). This gives a
commutative diagram
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K× Z

L× Z

vK

L× e

vL

We have that [L : K] = ef , and if L/K is Galois, then we have a reduction

Gal(L/K) ↠ Gal(kL/k) (9.15)

with kernel I(L/K) of size e. We have an exact sequence.

1→ I(L/K)→ Gal(L/K)→ Gal(kL/k)→ 1 (9.16)

If L/K is unramified, then it is Galois, and we have a classification using roots of unity, Frobenius,
etc. because L/K is determine pretty much uniquely by the isomorphic extension kL/k. In partic-
ular, if km/k is the unique degree m extension of k, then Km/K is a unique degree m unramified
extension of K, where uniqueness is determined in some separable closure.

We have
Kur = ∪m≥1Km ⊆ Ksep (9.17)

which is the maximal unramified extension. Unfortunately, Kur is not complete.

Theorem 9.16. Let K be a p-adic field. Let E/K be an elliptic curve with good reduction. If
P ∈ E(K), and p ∤ n, then

K([n]−1P )/K (9.18)
is unramified, where K([n]−1P ) is the smallest field containing x, y for each (x, y) ∈ [n]−1P . We
consider the n-torsion points points [n]−1P over K.

Proof. For each m ≥ 1, since E has good reduction, there exists a short exact sequence

0→ E1(Km)→ E(Km)→ Ẽ(km)→ 0. (9.19)

Taking the union over all m (we avoid completing Kur this way) gives a commutative diagram with
exact rows

0 E1(K
ur) E(Kur) Ẽ(k) 0

0 E1(K
ur) E(Kur) Ẽ(k) 0

·n ·n ·n

The first vertical arrow is an isomorphism by Corollary 8.15 because n ∈ O×
Kur , as n ∈ O×

Km for
m large, because p ∤ n.

The last vertical arrow is a nonconstant morphism of smooth projective curves, so it is surjective.
The kernel is (Z/nZ)2 by Theorem 6.10 because p ∤ n. Thus by the snake lemma, we have that the
middle term is surjective and the kernel is (Z/nZ)2. Thus we have an exact sequence

0→ (Z/nZ)2 → E(Kur)→ E(Kur)→ 0 (9.20)

Therefore if P ∈ E(K), then there exists Q ∈ E(Kur) such that [n]Q = P and by the group law we
have that

[n]−1P = {Q+ T | T ∈ E[n] = E[Kur](n)} (9.21)
so the extension is unramified because all the coordinates lie in an unramified extension.
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10 Elliptic curves over number fields I: The torsion subgroup
Let K be a number field, and p a prime of K (so a prime ideal of OK . Then completing at K gives
a local field Kp with ring of integers Op, and residue field kp = Op/p. We say that p is a prime of
good reduction for E/K if E/Kp has good reduction.

Lemma 10.1. There exists only finitely many primes of bad reduction, and the all divide ∆(E).

Proof. Take a Weierstrass equation for E/K with a1, . . . a6 ∈ OK . Since E is nonsingular, we have
that ∆ ̸= 0 and ∆ ∈ OK . Thus we can factor

(∆) = pα1
1 · · · pαr

r . (10.1)

If p ∤ ∆, then vp(∆) = 0, so our Weierstrass equation is minimal over Kp and E has good reduction
at p.

Note that the converse is not true: there could be primes dividing the discriminant which have
good reduction. The problem is OK might not be a PID, so you can’t get minimality at all the
different places. But if OK is a PID, you can.

Jack notes that you should be able to do this if you work with two different Weierstrass equations,
which feels right. This is sort of the result that any ideal in a Dedekind domain can be generated
by 2 elements.

Definition 10.2. Let A be a finitely generated abelian group. Then A ∼= T × Zr, where T is the
finite torsion group, and r is the rank of A.

Lemma 10.3. Let E(K)tors be the torsion subgroup of E. Then E(K)tors is finite.

Proof. For all primes p, E(Kp) has a subgroup A of finite index isomorphic to (Op,+). Since A is
torsion free, we have an inclusion of finite groups

E(K)tors ⊆ E(Kp)tors ⊆ E(K)/A (10.2)

so E(K)tors is finite.

If we take p a prime of good reduction, we can determine E(K)tors explicitly.

Lemma 10.4. Let p be a prime of good reduction for E/K, and let p ∤ n. Then reduction mod p
gives an injective group homomorphism

E(K)[n] ↪→ Ẽ(kp) (10.3)

Proof. By Proposition 9.11, E(Kp) → Ẽ(kp) is a group homomorphism with kernel E1(Kp). But
since p ∤ n, by Corollary 8.15, E1(Kp) has no n-torsion because ×n is an isomorphism. Thus we
have injections

E(K)[n] ↪→ E(Kp)[n] ↪→ E(Kp)/E1(Kp) ∼= Ẽ(kp) (10.4)

as desired.

Example 10.5. Let E/Q have equation y2 + y = x3 − x2, ∆ = −11. So E has good reduction at
p ̸= 11, and we can calculate

29



p 2 3 5 7 11 13
Ẽ(Fp) 5 5 5 5 ? 10

and Lemma 10.4 gives that #E(Q)tors|5, and in fact the point (0, 0) has nontrivial 5-torsion, so
E(Q)tors = Z/5Z.

Example 10.6. Let E/Q has equation y2 + y = x3 + x2, ∆ = −43. So we have good reduction at
p ̸= 43. We calculate

p 2 3 5 7 11 13
Ẽ(Fp) 5 6 10 8 9 19

and thus the torsion is trivial. Thus P = (0, 0) must be a point of infinite order, so #E(Q) = ∞,
so we have found an elliptic curve with infinitely many rational points.

Example 10.7. Let ED be the congruent number elliptic curve given by y2 = x3 −D2x = f(x),
and let D ∈ Z be squarefree. Then ∆ = 26D6, and if p ∤ 2D (so we have good reduction), then

#ẼD(Fp) = 1 +
∑
x∈Fp

((
f(x)

p

)
+ 1

)
(10.5)

where
(•
•
)

is the Legendre symbol. If p ≡ 3 mod 4, then since f is odd, #ẼD(Fp) = p + 1 since(
−1
p

)
= −1. We have that ED(Q)[2] ∼= (Z/2Z)2, so if m = #ED(Q)tors, then 4|m|p + 1 for all

sufficiently large primes p (for all p ∤ 2mD). Then m = 4 by the PNTAP.
Thus rankED(Q) ≥ 1 if and only if ∃x, y ∈ Q with y ̸= 0 such that y2 = x3 −D2x as in this

case ED(Q) has a point which is not 2-torsion, so it must have infinite order. Further, this is the
case if and only if D is a congruent number (see Lecture 1).

Lemma 10.8. Let E/Q be given by a Weierstrass equation with a1, . . . , a6 ∈ Z. Suppose 0 ̸= T =
(x, y) ∈ E(Q)tors. Then

(i) 4x, 8y ∈ Z

(ii) If 2|a1 or 2T ̸= 0, then x, y ∈ Z.

Proof. The Weierstrass equation defines a formal group law Ê over Zp. For r ≥ 1, we have that

Ê(prZp) = {(x, y) ∈ Qp|vp(x) ≤ −2r, vp(y) ≤ −3r} ∪ {0E} (10.6)

Theorem 9.4 implies that Ê(prZp) ∼= (Zp,+) if r > 1
p−1 since the ramification index is 0 because

we are working over Q. Then if p = 2, we can take r = 2, otherwise we can take r = 1. Thus if
0 ̸= T = (x, y) ∈ E(Q)tors, then v2(x) ≥ −2, v2(y) ≥ −3, and vp(x), vp(y) ≥ 0 if p > 2. This prove
(i).

For (ii), if T ∈ Ê(2Z2), then we must have v2(x) = −2, v2(y) = −3 exactly by (i). Since
Ê(2Z2)/Ê(4Z2) ∼= (F2,+) and Ê(4Z2) is torsion free, we get that 2T = 0. Also, since (x, y) =
T = −T = (x,−y − a1x − a3), we have that y − (−y − a1x − a3) = 2y + a1x + a3 = 0, so
8y + a1(4x) + 4a3 = 0, so a1 is odd. So if 2T ̸= 0 or a1 is even, then T /∈ Ê(2Z2), so x, y ∈ Z.

Example 10.9. Part (i) is not completely vacuous. Take y2+xy = x3+4x+1. Then (−1/4, 1/8) ∈
E(Q)[2], and we can see that a1 is odd and the point has 2-torsion.
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Theorem 10.10 (Lutz-Nagell). Let E/Q be an elliptic curve with equation y2 = x3 + ax + b,
a, b ∈ Z. Suppose 0 ̸= T = (x, y) ∈ E(Q)tors. Then x, y ∈ Z and either y = 0 or y2 | (4a3 + 27b2)

Proof. By Lemma 10.8, x, y ∈ Z. If 2T = 0, then y = 0. Otherwise 2T ̸= 0 so 2T = (x2, y2) ∈
E(Q)tors. By Lemma 10.8, x2, y2 ∈ Z.

Since x2 =
(
f ′(x)
2y

)2
− 2x, we have that y|f ′(x) since x2 ∈ Z. Since E is nonsingular, f(x) and

f ′(x) are coprime, so f(x), f ′(x)2 are coprime. Pulling a rabbit out a hat, we have the identity

(3x2 + 4a)f ′(x)2 − 27(x3 + ax− b)f(x) = 4a3 + 27b2. (10.7)

Since y|f ′(x) and y2 = f(x) we get that y2 | (4a3 + 27b2).

Remark 10.11. Mazur showed that if E/Q is an elliptic curve, then

E(Q)tors ∈ {Z/nZ | 1 ≤ n ≤ 12, n ̸= 11} ∪ {Z/2Z× Z/2nZ | 1 ≤ n ≤ 4} (10.8)

and in fact, all of these torsion subgroups occur.

11 Kummer theory
K a field, charK ∤ n. Let µn be the group of nth roots of unity and assume µn ⊂ K.

Lemma 11.1. Let ∆ ⊂ K×/(K×)n be a finite subgroup. Let L = K( n
√
∆). Then L/K is Galois,

and Gal(L/K) ∼= Hom(∆, µn).

Proof. Since µn ⊂ K, L/K is normal. Since charK ∤ n, L/K is separable. Thus L/K is Galois.
Define the Kummer pairing (a bilinear form)

⟨·, ·, ⟩ : Gal(L/K)×∆→ µn

(σ, x) 7→ σ( n
√
x)/ n
√
x (11.1)

First we will show it is well-defined. If α, β ∈ L with αn = βn = x, then (α/β)n = 1, so
α/β ∈ µn ⊂ K, so σ(α/β) = α/β, so σ(α)/α = σ(β)/β.

To show it is bilinear, we have

⟨στ, x⟩ = στ( n
√
x)

n
√
x

=
στ n
√
x

τ n
√
x
· τ

n
√
x

n
√
x

= ⟨σ, x⟩⟨τ, x⟩ (11.2)

since (τ n
√
x)n = x, so τ n

√
x is also an nth root of x. We can also calculate that ⟨σ, xy⟩ = ⟨σ, x⟩⟨σ, y⟩.

To show it is nondegenerate, let σ ∈ Gal(L/K). If ⟨σ, x⟩ = 1 for all x ∈ ∆, then σ n
√
α = n

√
α

for all x ∈ ∆, so σ = id.
If x ∈ K× and ⟨σ, x⟩ = 1 for all σ ∈ Gal(L/K), then σ n

√
α = n

√
α for all σ ∈ Gal(L/K), so

n
√
x ∈ K, so x ∈ (K×)n is the identity in ∆. Then we get injective group homomorphisms

Gal(L/K) ↪→ Hom(∆, µn) (11.3)
∆ ↪→ Hom(Gal(L/K), µn). (11.4)
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We want to show that these are isomorphisms. By (11.3), Gal(L/K) is abelian and of exponent
dividing n.

Recall that the exponent of an abelian group G is the least common multiple of the orders of all of
its elements. It is a fact that if G is a finite abelian group of exponent dividing n, then Hom(G,µn) ∼=
G, although this isomorphism is non-canonical. Thus we have injections Gal(L/K) → ∆ and
∆→ Gal(L/K), so these are isomorphisms.

Example 11.2. We have that Gal(Q(
√
2,
√
3,
√
5)/Q) ∼= (Z/2Z)3.

Theorem 11.3 (Main theorem of Kummer theory). There is a bijection

{finite subgroups ∆ ⊂ K×/(K×)n} ↔ {finite abelian extensions L/K of exponent dividing n}
(11.5)

where we send ∆ 7→ K( n
√
∆) with inverse L/K 7→ ((L×)n ∩K×) /(K×)n.

Proof. Let ∆ ⊂ K×/(K×)n be a finite subgroup. Let L = K( n
√
∆) and ∆′ = ((L×)n ∩K×) /(K×)n.

Clearly, ∆ ⊂ ∆′, so K( n
√
∆) ⊂ K( n

√
∆′) ⊂ L, so K( n

√
∆) = K( n

√
∆′) by Lemma 11.1, so ∆ = ∆′.

Now let L/K be a finite abelian extension of exponent dividing n. Let ∆ = ((L×)n ∩K×) /(K×)n.
Then K( n

√
∆) ⊆ L, and we want to show equality. Let G = Gal(L/K). Then the Kummer pairing

gives an injection ∆ ↪→ Hom(G,µn), and we want to show that it is surjective.
Suppose that it is. By Lemma 11.1, we have that [K( n

√
∆) : K] = |∆| = |G| = [L : K], so since

K( n
√
∆) ⊆ L, it follows that K( n

√
∆) = L so we are done.

Now to show that it is surjective. Let χ : G → µn be a group homomorphism, so χ ∈
Hom(G,µn). Then since elements of the Galois group are linearly independent, we have that
there exists a ∈ L× such that

y :=
∑
τ∈G

χ(τ)−1τ(a) ̸= 0. (11.6)

Let σ ∈ G. Then
σ(y) = χ(σ) · y (11.7)

since µn ⊂ K. Thus σ(yn) = yn, so x := yn ∈ K×, so x(K×)n ∈ ∆. We have that

χ : σ → σ(y)

y
=
σ n
√
x

n
√
x
, (11.8)

so the injection ∆ ↪→ Hom(G,µn) sends x 7→ χ by the definition of the Kummer pairing.

Proposition 11.4. Let K be a number field, and µn ⊂ K. Let S be a finite set of primes of K.
There are only finitely many extension L/K such that

(i) L/K is a finite abelian extension of exponent dividing n.

(ii) L/K is unramified at all p /∈ S.

Proof. By Theorem 11.3, L = K( n
√
∆) for some ∆ ⊂ K×/(K×)n a finite subgroup. Let p be a

prime of K Then pOL = Pe1
1 · · ·Per

r , and if x ∈ K× represents an element of ∆, then

nvPi(
n
√
x) = vPi(x) = eivp(x). (11.9)
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If p /∈ S, then ei = 1 for all i, so
vp(x) ≡ 0 mod n (11.10)

Then ∆ ⊂ K(S, n), where

K(S, n) = {x ∈ K×/(K×)n | vp(x) ≡ 0 mod n ∀p /∈ S} (11.11)

So if K(S, n) is finite, we are done. We prove this in the next lemma.

Lemma 11.5. Let

K(S, n) = {x ∈ K×/(K×)n | vp(x) ≡ 0 mod n ∀p /∈ S} (11.12)

Then K(S, n) is finite.

Proof. The map

K(S, n)→ (Z/nZ)|S|

x 7→ (vp(x) mod n)p∈S (11.13)

is a group homomorphism because vp is a group homomorphism, and the kernel is K(∅, n). Since
|S| <∞, it suffices to prove the lemma with S = ∅.

If x ∈ K× represents an element of K(∅, n), then (x) = an for some fractional ideal a, because
vp(x) ≡ 0 mod n for all p. There is a short exact sequence

0→ O×
K/(O

×
K)n → K(∅)→ Clk[n]→ 0

x(K×)n 7→ [a] (11.14)

Since |Clk | <∞ and O×
K is a finitely generated abelian group by Dirichlet’s unit theorem, K(∅, n)

is finite.

12 Elliptic curves over number fields II: The Weak Mordell-
Weil Theorem

Lemma 12.1. Let E/K be an elliptic curve and L/K a finite Galois extension. The natural map

E(K)/nE(K)→ E(L)/nE(L)

P + nE(K) 7→ P + nE(L) (12.1)

has finite kernel.

Proof. For each element of the kernel, pick a coset representative P ∈ E(K), and then P ∈ nE(L)
so there exists Q ∈ E(L) such that nQ = P . For any σ ∈ Gal(L/K), we have that

n(σQ−Q) = σP − P = 0, (12.2)

so σQ−Q ∈ E[n]. Since Gal(L/K) and E[n] are finite, the set of maps from Gal(L/K) to E[n] is
finite. We can define a map from our kernel to this set of maps by

P + nE(K) 7→ (σ 7→ σQ−Q). (12.3)
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If we show that this map is injective, then the kernel is finite. Suppose P1, P2 ∈ E(K), and Pi = nQi
for Qi ∈ E(L). Then if σ(Q1)−Q1 = σQ2 −Q2 or all σ ∈ Gal(L/K), then σ(Q1 −Q2) = Q1 −Q2

so Q1 −Q2 ∈ E(K), so P1 − P2 ∈ nE(K) so P1 + nE(K) = P2 + nE(K).

Theorem 12.2 (Weak Mordell-Weil Theorem). Let K be a number field, E/K an elliptic curve,
and n ≥ 2 an integer. Then E(K)/nE(K) is finite.

Proof. By Lemma 12.1, we may replace K by a finite Galois extension. So WLOG we may assume
µn ⊂ K and E[n] ⊂ E(K). Let

S = {p|n} ∪ {primes of bad reduction for E/K}. (12.4)

For each P ∈ E(K), the extension K([n]−1P/K) is unramified outside S by Theorem 9.16. Since
Gal(K/K) acts on [n]−1P , it follows that Gal(K/K([n]−1P )) is a normal subgroup of Gal(K/K)
and hence K([n]−1P )/K is a Galois extension. Let Q ∈ [n]−1P . Since E[n] ⊂ E(K), K(Q) =
K([n]−1P ). We have a map

Gal(K(Q)/K)→ E[n] ∼= (Z/nZ)2

σ 7→ σQ−Q (12.5)

This is a group homomorphism, as

στQ−Q = σ(τQ−Q) + (σQ−Q)

= (τQ−Q) + (σQ−Q) (12.6)

because τQ−Q ∈ E[n] ⊂ E(K). It is injective because if σQ = Q, then σ fixes K(Q), so σ = 1.
So K(Q)/K is an abelian extension of exponent dividing n, unramified outside S.
Proposition 11.4 shows that as we vary P ∈ E(K), there are only finitely many possibilities for

K(Q). Let L be the compositum of all such extensions K(Q)/K. Then L/K is finite and Galois
and E(K)/nE(K)→ E(L)/nE(L) is the zero map. So by Lemma 12.1, |E(K)/nE(K)| <∞.

Remark 12.3. If k = R,C, or [K : Qp] <∞, then E(K)/nE(K) is finite yet E(K) is uncountable,
so not finitely generated.

Remark 12.4. If K is a number field, then there exists a quadratic form, the canonical height
ĥ : E(K)→ R≥0 with the property that for any B ≥ 0, {P ∈ E(K)|ĥ(P ) ≤ B} is finite.

We will study the height later and prove these properties, but first assume them and prove the
Mordell-Weil Theorem.

Theorem 12.5 (Mordell-Weil Theorem). Let K be a number field, E/K an elliptic curve. Then
E(K) is finitely generated.

Proof. Fix an integer n ≥ 2. Then the weak Mordell-Weil theorem implies that |E(K)/nE(K)| <
∞. Pick coset representatives P1, . . . , Pm. Let Σ = {P ∈ E(K) | ĥ(P ) ≤ maxi ĥ(Pi)} which is
finite. We claim that Σ generates E(K). If note, then there exists P ∈ E(K)\⟨Σ⟩ of minimal
height (the things with smaller height then a given P are a finite set). Then P = Pi + nQ for
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1 ≤ i ≤ m, Q ∈ E(K). Note that Q ∈ E(K)\⟨Σ⟩. But the minimal choice of P and the fact that ĥ
is a quadratic form gives

4ĥ(P ) ≤ 4ĥ(Q)

≤ n2ĥ(Q)

= ĥ(nQ)

= ĥ(P − Pi)

≤ ĥ(P − Pi) + ĥ(P + Pi)

= 2ĥ(P ) + 2ĥ(Pi) (12.7)

which is a contradiction.

13 Heights
For simplicity, K = Q. These results generalize to K, but let’s not worry for now. We will remark
about this later.

For a given P ∈ PN (Q), we can write P = (a0 : a1 : · · · : an) with a0, . . . , an ∈ Z and
gcd(a0, . . . , an) = 1. We define the height of P to be

H(P ) = max
0≤i≤n

|ai| (13.1)

Lemma 13.1. Let f1, f2 ∈ Q[x1, x2] be coprime homogeneous polynomials of degree d. Let

F : P1 → P2

(x1 : x2) 7→ (f1(x1, x2) : f2(x1, x2)) (13.2)

Then there exists c1, c2 > 0 depending on f1, f2, such that for all P ∈ P1(Q),

c1H(P )d ≤ H(F (P )) ≤ c2H(P )d (13.3)

Proof. WLOG we may assume f1, f2 ∈ Z[x1, x2] because H(NF (P )) = H(F (P )).
For the upper bound, write P = (a1 : a2), a1, a2 ∈ Z with (a1, a2) = 1. Then

H(F (P )) ≤ max(|f1(a1, a2)|, |f2(a1, a2)|) ≤ c2 max(|a1|d, |a2|d) (13.4)

where c2 is the sums of the absolute values of the coefficients of fi. This is pretty much just the
triangle inequality.

For the lower bound, we need to work harder. We claim there exists gij ∈ Z[x1, x2] homogeneous
of degree d− 1 and κ ∈ Z>0 such that

2∑
j=1

gijfj = κx2d−1
i (13.5)

for i = 1, 2. Indeed, applying the Euclidean algorithm to f1(x, 1) and f2(x, 1) gives r, s ∈ Q[x] of
degree d − 1 such that r(x)f1(x, 1) + s(x)f2(x, 1) = 1. Homogenizing and clearing denominators
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gives (13.5) for i = 2 (just multiply through by some κ2. Repeat this with fi(1, x) to get (13.5) for
i = 1, and then multiply out and set κ = lcm[κ1, κ2] to get the full result.

Write P = (a1 : a2), a1, a2 ∈ Z coprime. Then (13.5) implies that

2∑
j=1

gij(a1, a2)fj(a1, a2) = κa2d−1
i . (13.6)

So gcd(f1(a1, a2), f2(a1, a2) divides gcd(κa2d−1
1 , κa2d−1

2 ) so it divides κ. Then

|κa2d−1
i | ≤ max

j=1,2
|fj(a1, a2)|

2∑
j=1

|gij(a1, a2)| (13.7)

and the first term is less than κH(F (P )) and second is less than γiH(P )d−1 where γ is the sum of
the absolute value of the coefficients of the gijs. So

κH(P )2d−1 ≤ κH(F (P )) ·max(γ1, γ2)H(P )d−1 (13.8)

so
c1H(P )d =

1

max(γ1, γ2)
H(P )d ≤ H(F (P )). (13.9)

Definition 13.2. For x ∈ Q, let H(x) = H((x : 1)) = max(|a|, |b|), where x = a/b with (a, b) = 1.

Let E/Q be an elliptic curve with equation y2 = x3 + ax+ b.

Definition 13.3. The height H : E(Q)→ R≥1 of a point P is H(x) is P = (x, y) or 1 if P = 0E .
The logarithmic height h : E(Q)→ R≥0 is h(P ) = logH(P ).

Lemma 13.4. Let E,E′ be elliptic curves over Q, and ϕ : E → E′ an isogeny defined over Q.
Then there exists c > 0 depending on E,E′, ϕ such that for all P ∈ E(Q)

|h(ϕ(P ))− (deg ϕ)h(P )| ≤ c. (13.10)

Proof. Recall by Lemma 5.6 we have a commuting diagram

E E′

P1 P1

ϕ

x x

ξ

such that deg ϕ = deg ξ = d. Then by Lemma 13.1, there exists c1, c2 such that c1H(P )d ≤
H(ϕ(P )) ≤ c2H(P )d for all P ∈ E(Q). Taking logs gives

|h(ϕ(P ))− dh(P )| ≤ max(log c2,− log c2) = c. (13.11)

Example 13.5. We have that |h(2P )− 4h(P )| ≤ c for all P ∈ E(Q).
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Definition 13.6. The canonical height is

ĥ(P ) = lim
n→∞

1

4n
h(2nP ) (13.12)

We check that this limit converges by checking that it is Cauchy. We have that∣∣∣∣ 1

4m
h(2mP )− 1

4n
h(2nP )

∣∣∣∣ ≤ 1

3 · 4n
→ 0 (13.13)

so ĥ(P ) exists.

Lemma 13.7. For all P ∈ E(Q), |h(P )− ĥ(P )| is bounded uniformly.

Proof. Put n = 0 in the above calculation.

Lemma 13.8. For any B > 0, we have that #{P ∈ E(Q) | ĥ(P ) ≤ B} <∞.

Proof. If ĥ(P ) is bounded, then h(P ) is bounded by Lemma 13.7. So there are only finitely many
choices of x-coordinate, so only finitely many choices for (x, y).

Lemma 13.9. Let ϕ : E → E′ be an isogeny defined over Q. Then for all P ∈ E(Q),

ĥ(ϕ(P )) = (deg ϕ)ĥ(P ). (13.14)

Proof. By Lemma 13.4, there exists c > 0 such that

|h(ϕ(P ))− (deg ϕ)h(P )| < c (13.15)

for all P ∈ E(Q). Replacing P by 2nP , dividing and taking n→∞ gives the lemma.

Corollary 13.10. ĥ is independent of choice of Weierstrass equation.

Proof. Change Weierstrass equation is an isomorphism.

Corollary 13.11. For all P ∈ E(Q) and all n ∈ Z, ĥ(nP ) = n2ĥ(P ).

Proof. Trivial.

Lemma 13.12. Let E/Q be an elliptic curve. Then there exists c > 0 depending on E such that
for all P,Q ∈ E(Q) with P,Q, P +Q,P −Q ̸= 0 ,

H(P +Q)H(P −Q) ≤ cH(P )2H(Q)2. (13.16)

Proof. The above result holds even if some of P,Q, P + Q,P − Q = 0, but we leave this as an
exercise.

Let E have Weierstrass equation y2 = x3 + ax+ b with a, b ∈ Z. Let P,Q, P +Q,P −Q have x
coordinates x1, . . . , x4. By Lemma 5.11, there exists W0,W1,W2 of degree less than 2 in x1 and x2
separately such that

(1 : x3 + x4 : x3x4) = (W0 :W1 :W2). (13.17)
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Write xi = ri/si, with ri, si ∈ Z coprime. Then

(s3s4 : r3s4 + r4s3 : r3r4) = ( : : ) (13.18)

where the LHS are all coprime and the RHS are the homogenizations of the Wis. In particular,
after homogenizing, the degree of Wi in rj plus the degree of Wi in sj is 2. We have that

H(P +Q)H(P −Q) = max(|r3|, |s3|)max(|r4|, |s4|)
≤ cmax(|s3s4|, |r3s4 + r4s3|, |r3r4|)
≤ cmax( , , )

≤ cmax(|r1|2, |s1|2)max(|r2|2, |s2|2)
≤ cH(P )2H(Q)2 (13.19)

for some c depending on E.

Theorem 13.13. ĥ is a quadratic form.

Proof. By Lemma 13.12 and the fact that |h(2P ) − 4h(P )| is bounded, we have that there exists
c ∈ R such that

h(P +Q) + h(P −Q) ≤ 2h(P ) + 2h(Q) + c (13.20)

for all P,Q ∈ E(Q). Replacing P,Q by 2nP, 2nQ, dividing and taking the limit gives

ĥ(P +Q) + ĥ(P −Q) ≤ 2ĥ(P ) + 2ĥ(Q). (13.21)

Replacing P,Q by P +Q,P −Q and using that ĥ(2P ) = 4ĥ(P ) gives the reverse inequality.

Note that Lemma 13.1 was essential in all this.

Remark 13.14. For K a number field and P = (a0 : a1 : · · · : an) ∈ Pn(K), define

H(P ) =
∏
v

max
0≤i≤n

|ai|v (13.22)

where the product is over all places v, and the absolute values are normalized so that∏
v

|λ|v = 1 (13.23)

for all λ ∈ K×.
All results in this section generalize to K, with the height function given as above.

14 Dual isogenies and the Weil pairing
Let K be a perfect field, and E/K an elliptic curve.

Proposition 14.1. Let Φ ⊂ E(K) be a finite subgroup stable under the action of Gal(K/K). Then
there exists E′/K and a separable isogeny ϕ : E → E′ defined over K with kernel Φ such that for
every isogeny ψ : E → E′′ with Φ ⊂ kerψ, ψ factors uniquely through ϕ. In diagram form:
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E E′

E′′

ϕ

ψ
∃!

Proof. This was omitted in class, see Silverman Prop III.4.12.

Proposition 14.2. Let ϕ : E → E′ be an isogeny of degree n. Then there exists a unique isogeny
ϕ̂ : E′ → E such that ϕ̂ϕ = [n].

Proof. If ϕ is separable, let Φ = kerϕ, | kerϕ| = n. Then kerϕ ⊂ E[n], and we can apply Proposition
14.1 with ψ = [n].

If ϕ is inseparable, see Silverman Theorem III.6.1.
For uniqueness, suppose ψ1ϕ = ψ2ϕ = [n]. Then ψ1 and ψ2 agree on imϕ, and since ϕ is

surjective, ψ1 = ψ2.

Remark 14.3. 1. In general, given an isogeny ϕ : E → E′ and isogenies ψ1, ψ2 : E′ → E′′ such
that ψ1 ◦ ϕ = ψ2 ◦ ϕ, we have that ψ1 = ψ2 by the same reasoning as above.

2. Write E1 ∼ E2 if E1 and E2 are isogenous. The previous proposition verifies that ∼ is an
equivalence relation by showing it is symmetric.

3. We have that deg[n] = n2, so [̂n] = [n] and deg ϕ̂ = deg ϕ.

4. We have that ϕϕ̂ϕ = ϕ[n]E = [n]E′ϕ, so ϕϕ̂ = [n]E′ , so ̂̂ϕ = ϕ.

5. If E ψ−→ E′ ϕ−→ E′′, then ϕ̂ψ = ψ̂ϕ̂.

6. If ϕ : E → E, then ϕ2 − [trϕ]ϕ+ [deg ϕ] = 0, so ([trϕ]− ϕ)ϕ = [deg ϕ], so [trϕ] = ϕ+ ϕ̂.

Lemma 14.4. If ϕ, ψ ∈ Hom(E,E′), then ϕ̂+ ψ = ϕ̂+ ψ̂.

Proof. If E = E′, then ϕ̂ = [trϕ]− ϕ, so ϕ̂+ ψ = [tr(ϕ+ ψ)]− ϕ− ψ = ϕ̂+ ψ̂.
In general, let α : E′ → E be any isogeny. Then

̂αϕ+ αψ = α̂ψ + α̂ϕ, (14.1)

so ϕ̂+ ψα̂ = (ϕ̂+ ψ̂)α̂, so ϕ̂+ ψ = ϕ̂+ ψ̂.

Remark 14.5. In Silverman’s book, he proves Lemma 14.4 much earlier, and then uses this to
show that the degree is a quadratic form.

Here is some notation. Define

sum : Div(E)→ E∑
nP (P ) 7→

∑
nPP (14.2)
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where the LHS is a formal sum of divisors and the RHS is a group element of E. Recall that we
have an isomorphism

σ : E
∼−→ Pic0(E)

P 7→ [(P )− (0E)] (14.3)

Given D =
∑
nP [(P ) − (0E)] ∈ Pic0(E), we have that sumD =

∑
nPP , and this gets mapped

back to D under σ. Thus sum is the inverse of σ, and we have that ker sum is the divisors such
that

∑
nPP = 0E , so we deduce the following lemma.

Lemma 14.6. Let D ∈ Div(E). Then D ∼ 0 if and only if both degD = 0 and sumD = 0E.

Now, let ϕ : E → E′ be an isogeny of degree n with dual ϕ̂. Assume charK ∤ n, so that ϕ, ϕ̂ are
separable. Set kerϕ = E[ϕ] and ker ϕ̂ = E′[ϕ̂] We define the Weil pairing

eϕ : E[ϕ]× E′[ϕ̂]→ µn (14.4)

where µn ∼= Z/nZ is the group of nth roots of unity. Let T ∈ E′[ϕ̂]. Then nT = 0, so there exists
f ∈ K(E′)× such that div(f) = n(T ) − n(0E) by Lemma 14.6. Pick T0 ∈ E(K ′) with ϕ(T0) = T ,
and pull back:

ϕ∗(T )− ϕ∗(0E) =
∑

P∈E[ϕ]

(P + T0)− (P ). (14.5)

By Lemma 14.6, this divisor is principal because

sum (ϕ∗(T )− ϕ∗(0E)) = nT0 = ϕ̂ϕT0 = ϕ̂T = 0. (14.6)

Thus there exists g ∈ K(E)× such that div(g) = ϕ∗(T ) − ϕ∗(0). Now, div(ϕ∗f) = ϕ∗(div f) =

n(ϕ∗(T ) − ϕ∗(0)) = div(gn), so ϕ∗f = cgn for some c ∈ K×
, and we can normalize so that c = 1,

so ϕ∗f = gn. For any s ∈ kerϕ, we have that τ∗S(div g) = div g because

τ∗S(g
n) = τ∗S(ϕ

∗f)

= (ϕ ◦ τS)∗f
= ϕ∗f = gn (14.7)

so

nτ∗S div g = τ∗S div g
n

= div(τ∗Sg
n)

= div gn

= ndiv g. (14.8)

So τ∗Sg = ζg for some ζ ∈ K×
, so we have that ζ = g(X + S)/g(X) for any X ∈ E(K). But

ζn =
g(X + S)n

g(X)n

=
f ◦ ϕ(X + S)

f ◦ ϕ(X)

= 1, (14.9)
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so ζ = µn. So we define

eϕ(S, T ) :=
g(X + S)

g(X)
. (14.10)

Proposition 14.7. eϕ is linear and nondegenerate.

Proof. (i) First we show linearity in the first argument:

eϕ(S1 + S2, T ) =
g(X + S1 + S2)

g(X + S1)
· g(X + S1)

g(X)

= eϕ(S1, T )eϕ(S2, T ). (14.11)

(ii) Next we show linearity in the second argument: Let T1, T2 ∈ E′[ϕ̂]. Then there exists
f1, f2, g1, g2 such that

div(f1) = n(T1)− n(0), ϕ∗f1 = gn1

div(f2) = n(T2)− n(0), ϕ∗f2 = gn2 (14.12)

as in the construction of the pairing. Then there exists h ∈ K(E′) such that

div h = (T1) + (T2)− (T1 + T2)− (0). (14.13)

Then put f = f1f2
hn and g = g1g2

ϕ∗h . We can check that div f = n(T1 + T2)− n(0). So then

ϕ∗f =
ϕ∗f1ϕ

∗f2
(ϕ∗h)n

=

(
g1g2
ϕ∗h

)n
= gn, (14.14)

so

eϕ(S, T1 + T2) =
g(X + S)

g(X)

=
g1(X + S)

g1(X)
· g2(X + S)

g2(X)
· h(ϕ(X))

h(ϕ(X + S))

= eϕ(S, T1)eϕ(S, T2) (14.15)

since S ∈ E[ϕ].
(iii) Lastly we will show that eϕ is nondegenerate. Fix T ∈ E′[ϕ̂]. Suppose eϕ(S, T ) = 1 for all

S ∈ E[ϕ]. Then τ∗Sg = g for all S ∈ E[ϕ] since g(X+S)
g(X) = 1 for all X, so g(X+S) = τ∗Sg(X) = g(X)

for all X.
We have that K(E) is a Galois extension of ϕ∗K(E′) with Galois group E[ϕ] as S ∈ E[ϕ] acts on

K(E) via τ∗S . Since τ∗Sg = g for all S, we have that g ∈ ϕ∗K(E′), so g = ϕ∗h for some h ∈ K(E′),
so ϕ∗f = gn = ϕ∗(hn), so f = hn because ϕ is surjective, so div h = (T ) − (0), so (T ) − (0) is a
principal divisor, so T = 0.

We shown that E′[ϕ̂] is in bijection with Hom(E[ϕ], µn), and the reverse bijection holds by some
counting argument involving #E[ϕ] = #E′[ϕ̂] = n.
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Remark 14.8. 1. If E,E′, ϕ are all defined over K, then eϕ is Galois equivariant, so

eϕ(σS, σT ) = σ(eϕ(S, T )) (14.16)

for all σ ∈ Gal(K/K), S ∈ E[ϕ], T ∈ E′[ϕ̂].

2. Taking ϕ = [n] : E → E, so that ϕ̂ = [n], we have that en : E[n]×E[n]→ µn2 , but since E[n]
has exponent n, the image lies in µn.

Corollary 14.9. If E[n] ⊂ E(K), then µn ⊂ K.

Proof. Let T ∈ E[n] have order n. The nondegeneracy of en implies that there exists S ∈ E[n]
such taht en(S, T ) = ζn, where ζn is some primitive nth root of unity. Then

σ(ζn) = σ(en(S, T ))

= en(σS, σT )

= en(S, T )

= ζn (14.17)

for all σ ∈ Gal(K/K), so ζn ∈ K.

Example 14.10. Since Q does not contain µ3, there is no elliptic curve E/Q with E(Q)tors ∼=
(Z/3Z)2.

Remark 14.11. In fact, en is alternating, so en(T, T ) = 1 for all T ∈ E[n], so en(S, T ) = en(T, s)
−1.

15 Galois cohomology
Let G be a group (a Galois group in all further applications), and let A be a G-module, so A is an
abelian group with an action of G, or A is a Z[G]-module.

Definition 15.1. We set

H0(G,A) := AG = {a ∈ A | σ(a) = a∀σ ∈ G} (15.1)

We have a filtration of sets

C1(G,A) = {maps G→ A} “cochains”
∪

Z1(G,A) = {(aσ)σ∈G | aστ = σ(aτ ) + aσ ∀σ, τ ∈ G} “cocycles”
∪

B1(G,A) = {(σb− b)σ∈G | b ∈ A} “coboundaries” (15.2)

and we set
H1(G,A) = Z1(G,A)/B1(G,A) (15.3)

Remark 15.2. If G acts trivially on A then H1(G,A) = Hom(G,A).
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Lemma 15.3. Given a short exact sequence of G-modules

0→ A
ϕ−→ B

ψ−→ C → 0 (15.4)

we have a long exact sequence of abelian groups

0→ AG
ϕ−→ BG

ψ−→ CG
δ−→ H1(G,A)

ϕ∗−→ H1(G,B)
ψ∗−−→ H1(G,C). (15.5)

Proof. Omitted.

Definition 15.4. The connecting homomorphism δ is given as follows. Let c ∈ CG. Then there
exists b ∈ B such that ψ(b) = c. Then ψ(σb − b) = σc − c = 0 for all σ ∈ G, so σb − b ∈ kerψ, so
σb− b = ϕ(aσ) for some aσ ∈ A and we set

δ(c) = [(aσ)σ∈G] ∈ Z1(G,A)/B1(G,A). (15.6)

Theorem 15.5. Let A be a G-module, and H ≤ G a normal subgroup. There is an “inflation-
restriction” exact sequence

0→ H1(G/H,AH)
inf−−→ H1(G,A)

res−−→ H1(H,A). (15.7)

Proof. Omitted.

Let K be a perfect field. Then Gal(K/K) is a topological group with basis of open subgroups
Gal(K/L) with [L : K] <∞. IF G = Gal(K/K), we modify the definition of H1(G,A) by insisting
that

1. The stabilizer of each a ∈ A is an open subgroup of G.

2. All cochains G→ A are continuous, where A is given the discrete topology.

We then have that

H1(Gal(K/K), A) = lim−→
L/K finite, Galois

H1(Gal(L/K), AGal(K/L)) (15.8)

where the direct limit is with respect to the inflation maps.

Theorem 15.6 (Hilbert’s Theorem 90). Let L/K be a finite Galois extension. Then

H1(Gal(L/K), L×) = 0. (15.9)

Proof. Let G = Gal(L/K), and let (aσ)σ∈G ∈ Z1(G,L×). Then there exists y ∈ L such that

x :=
∑
τ∈G

a−1
τ τ(y) ̸= 0 (15.10)

as the elements of Gal(L/K) are linearly independent. Then (note the switch from additive to
multiplicative notation)

σ(x) =
∑
τ∈G

σ(aτ )
−1στ(y)

= aσ
∑
τ∈G

a−1
στ στ(y). (15.11)

Thus aσ = σ(x)
x for all σ ∈ G, so (aσ)σ∈G ∈ B1(G,L×), so H1(G,L×) = 0.
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Corollary 15.7. Taking direct limits, we have that

H1(Gal(K/K),K
×
) = 0. (15.12)

As an application, assume charK ∤ n. Then there is a short exact sequence of Gal(K/K)-
modules

0→ µn → K
× xn

−−→ K
× → 0 (15.13)

and we get a long exact sequence

K× → K× → H1(Gal(K/K), µn)→ 0 (15.14)

so H1(Gal(K/K), µn) ∼= (K×)/(K×)n. If µn ⊂ K, then Gal(K/K) acts trivially on µn, so

Homcts(Gal(K/K), µn) ∼= K×/(K×)n. (15.15)

The finite subgroups of the LHS are of the form Hom(Gal(L/K), µn) for L/K a finite abelian
extension of K with exponent dividing n. Compare to class field theory. This gives another proof
of Theorem 11.3.

From now on, we write H1(K, ) to mean H1(Gal(K/K), ).
Let ϕ : E → E′ be an isogeny of elliptic curves over K. We have a short exact sequence of

Gal(K/K)-modules:
0→ E[ϕ]→ E

ϕ−→ E′ → 0 (15.16)

which gives a long exact sequence

E(K)
ϕ−→ E′(K)

δ−→ H1(K,E[ϕ])→ H1(K,E)
ϕ∗−→ H1(K,E′) (15.17)

and at the central term we get a short exact sequence

0→ E′(K)/ϕE(K)→ H1(K,E[ϕ])→ H1(K,E)[ϕ∗]→ 0. (15.18)

Now take K a number field, and for each place v fix an embedding K ⊂ Kv. Then Gal(Kv/Kv) ⊂
Gal(K/K). At each place we get a short exact sequence (and a commutative diagram)

0 E′(K)/ϕE(K) H1(K,E[ϕ]) H1(K,E)[ϕ∗] 0

0 E′(Kv)/ϕE(Kv) H1(Kv, E[ϕ]) H1(Kv, E)[ϕ∗] 0

δ

resv resv

δv

Taking the product over all places, we get a commutative diagram

0 E′(K)/ϕE(K) H1(K,E[ϕ]) H1(K,E)[ϕ∗] 0

0
∏
v E

′(Kv)/ϕE(Kv)
∏
vH

1(Kv, E[ϕ])
∏
vH

1(Kv, E)[ϕ∗] 0

δ

∏
resv

∏
resv∏

δv
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The ϕ-Selmer group S(ϕ)(E/K) is the kernel of the dashed line. It equals (by going through the
diagram and using exactness)

S(ϕ)(E/K) = ker

(
H1(K,E[ϕ])→

∏
v

H1(Kv, E)[ϕ∗]

)
= {α ∈ H1(K,E[ϕ]) | resv(α) ∈ im δv∀v}. (15.19)

Definition 15.8. The Tate-Shafarevich group is defined as

X(E/K) := ker

(
H1(K,E)→

∏
v

H1(Kv, E)

)
. (15.20)

This gives a short exact sequence (the Selmer and X term are just subgroups of the terms in the
previous exact sequence)

0→ E′(K)/ϕE(K)→ S(ϕ)(E/K)→X(E/K)[ϕ∗]→ 0 (15.21)

Taking ϕ = [n] gives

0→ E(K)/nE(K)→ S(n)(E/K)→X(E/K)[n]→ 0 (15.22)

We can reorganize the proof of weak Mordell-Weil to instead prove the following stronger result.

Theorem 15.9. S(n)(E/K) is finite.

Proof. For L/K a finite Galois extension, we have the inflation/restriction exact sequence

0 H1(Gal(L/K), E(L)[n]) H1(K,E[n]) H1(L,E[n])

S(n)(E/K) S(n)(E/L)

res

We have that H1(Gal(L/K), E(L)[n]) is finite because Gal(L/K) and E(L)[n] are finite. Thus
S(n)(E/K) is finite if and only if S(n)(E/L) is finite, so we can extend to a finite extension L.
In particular, we may assume E[n] ⊂ E(K) and hence by the Weil pairing that µn ⊂ K. So
E[n] ∼= µn × µn as Gal(K/K)-modules, as they are both trivial under the action of Gal(K/K). So

H1(K,E[n]) ∼= H1(K,µn)×H1(K,µn)

∼= K×/(K×)n ×K×/(K×)n. (15.23)

Let S be the set of primes of bad reduction as well as all the places v with v | n∞. Then S is a
finite set of places.

Definition 15.10. The subgroup of H1(K,A) unramified outside of S is

H1(K,A;S) = ker

(
(H1(K,A)→

∏
v/∈S

H1(Kur
v , A)

)
(15.24)
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There is a commutative diagram with exact rows

H1(K,E[n])

E(Kv) E(Kv) H1(Kv, E [n])

E(Kur
v ) E(Kur

v ) H1(Kur
v , E [n])

resv

[n] δv

resur

[n] 0

If v /∈ S, then the morphism [n] on the lower row is surjective by Theorem 9.16, so the next morphism
will be 0. Recall that if α ∈ H1(K,E[n]), then α ∈ S(n)(E/K) if and only if resv(α) ∈ im δv for all
v (see (15.19)). But if this is the case, then resur ◦ resv = 0 by the above diagram. So

S(n)(E/K) ⊂ H1(K,E[n];S) ∼= H1(K,µn;S)×H1(K,µn;S) (15.25)

and

H1(K,µn;S) = ker

(
K×/(K×)n →

∏
v/∈S

(Kur
v )×/(Kur×

v )n

)
(15.26)

Thus it is the elements of K× which are nth powers in Kur
v . But in Kur

v , the valuations are the
same because it is an unramified extension, so vv(a) = 0 mod n for every place v, so

H1(K,µn;S) ⊂ K(S, n) (15.27)

as defined in Lemma 11.5, the same Lemma shows that it is finite.

Remark 15.11. 1. S(n)(E/K) is finite and effectively computable.

2. It is conjectured that |X(E/K)| <∞, if so we could take n ∤ |X(E/K)| and then we would
have E(K)/nE(K) ∼= S(n)(E/K).

This would imply that rankE(K) is effectively computable.

16 Descent by cyclic isogeny
Let E,E′ be elliptic curves over a number field K. Let ϕ : E → E′ be an isogeny of degree n.
Suppose ker ϕ̂ ∼= Z/nZ, and is generated by some T ⊂ E′(K).

Then E[ϕ] ∼= µn as a Gal(K/K)-module, by the Weil pairing S 7→ eϕ(S, T ). We have a short
exact sequence of Gal(K/K)-modules

0→ µn → E
ϕ−→ E′ → 0 (16.1)

which gives a long exact sequence
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E(K) E′(K) H1(K,µn) H1(K,E)

K×/(K×)n

ϕ δ

α ∼=

Theorem 16.1. Let f ∈ K(E′) and g ∈ K(E) with div(f) = n(T ) − n(0) and ϕ∗f = gn. Let
α : E′(K)→ K×/(K×)n be the map given in the commutative diagram above. Then α(P ) = f(P )
mod (K×)n for all P ∈ E′(K) \ {0, T}.

Proof. Let P ∈ E′(K) and Q ∈ ϕ−1(P ). Then δ(P ) ∈ H1(K,µn) is represented by the map
σ 7→ (σQ−Q) (see Definition 15.4), and we have that σQ−Q ∈ E[ϕ] ∼= µn. So

eϕ(σQ−Q,T ) =
g(σQ−Q+X)

g(X)
(16.2)

for any X ∈ E, avoiding the zeros and poles of g, and taking X = Q gives

eϕ(σQ−Q,T ) =
g(σQ)

g(Q)

=
σ(g(Q))

g(Q)

=
σ n
√
f(P )

n
√
f(P )

(16.3)

as ϕ∗f = gn, so f(P ) = g(Q)n. Now, we have that the isomorphism K×/(K×)n → H1(K,µn) is
given by sending

x 7→
(
σ 7→ σ n

√
x

n
√
x

)
(16.4)

Thus α sends P 7→ (σ 7→ σQ−Q) ∈ H1(K,E[ϕ]) , and this is sent to
(
σ 7→ σ n

√
f(P )

n
√
f(P )

)
∈ H1(K,µn),

and this is sent to f(P ) ∈ K×/(K×)n, so α(P ) = f(P ) mod (K×)n.

16.1 Descent by 2-isogeny
We simplify to the case where E/K has 2-torsion, and work over the isogeny given in Example 5.13,
which we now recall. Let

E : y2 = x(x2 + ax+ b)

E′ : y2 = x(x2 + a′x+ b′) (16.5)

with b(a2 − 4b) ̸= 0, a′ = −2a, b′ = a2 − 4b. Then we have an isogeny

ϕ : E → E′ (x, y) 7→
((y

x

)2
,
y(x2 − b)

x2

)
ϕ̂ : E′ → E (x, y) 7→

(
1

4

(y
x

)2
,
y(x2 − b′)

8x2

)
(16.6)

We have that E[ϕ] = {0, T} with T = (0, 0) ∈ E(K) and E′[ϕ̂] = {0, T ′} with T ′ = (0, 0) ∈ E′(K).
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Proposition 16.2. There is a group homomorphism

E′(K)→ K×/(K×)2

(x, y) 7→

{
x mod (K×)2 x ̸= 0

b′ mod (K×)2 x = 0
(16.7)

with kernel ϕE(K).

Note that we need to treat x = 0 separately because 0 /∈ K×.

Proof. One method is to apply Theorem 16.1 with f = x ∈ K(E′) and g = y
x ∈ K(E).

Another is by direct calculation, as on Sheet 4.

So we have injections

αE : E(K)/ϕ̂E′(K) ↪→ K×/(K×)2

αE′ : E′(K)/ϕE(K) ↪→ K×/(K×)2. (16.8)

We can use these two calculate the rank of our elliptic curve.

Lemma 16.3. We have that
2rankE(K) =

| imαE | · | imαE′ |
4

(16.9)

Note that everything above are F2 vectors spaces, so divisible by 2.

Proof. If A f−→ B
g−→ C are homomorphisms of abelian groups (not necessarily exact), then there is

an exact sequence

0→ ker f → ker gf
f−→ ker g → coker f

g−→ coker gf → coker g → 0 (16.10)

Since ϕ̂ϕ = [2]E , we get an exact sequence

0→ Z/2Z→ E(K)[2]
ϕ−→ Z/2Z→ imαE′

ϕ̂−→ E(K)/2E(K)→ imαE → 0 (16.11)

By some standard exact sequence stuff (everything above is a finite abelian group), we get

|E(K)/2E(K)|
|E(K)[2]|

=
| imαE | · | imαE′ |

4
(16.12)

By Mordell-Weil, E(K) ∼= ∆×Zr with ∆ finite, and r = rankE(K). We have that E(K)[2] ∼= ∆[2],
and E(K)/2E(K) ∼= ∆/2∆× (Z/2Z)r and |∆/2∆| = |∆[2]| by the short exact sequence

0→ ∆[2]→ ∆→ 2∆→ 0 (16.13)

so we are done.

Lemma 16.4. Let K be a number field, and suppose that a, b ∈ OK . Then im(αE) ⊂ K(S, 2),
where S = {p ∈ SpecOK | p|b}, where K(S, n) is defined as in (11.11).
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Proof. We must show that if x, y ∈ K with y2 = x(x2 + ax + b) and if p ∤ b (so vp(b) = 0), then
vp(x) = 0 mod 2.

In the case where vp(x) = 0, we are done.
In the case where vp(x) < 0, by Lemma 9.3 vp(x) = −2r for some r ≥ 1, so we are done.
In the case where vp(x) > 0, we have that vp(x2 + ax+ b) = 0, so vp(x) = vp(y

2), so vp(x) = 0
mod 2.

In particular, the image of αE lies in those cosets x(K×)2 with x|b.
Lemma 16.5. If b1b2 = b, then b1(K

×)2 ∈ im(αE) if and only if

w2 = b1u
4 + au2v2 + b2v

4 (16.14)

has a solution for u, v, w ∈ K not all zero.

Proof. If b1 ∈ (K×)2 or b2 ∈ (K×)2, then both conditions are satisfied since b(K×)2, (K×)2 ∈
im(αE). So assume b1, b2 /∈ (K×)2, so b1(K×)2 ∈ im(αE) if and only if there exists (x, y) ∈ E(K)
such that x = b1t

2 or some t ∈ K×. Then y2 = (b1t
2)(b21t

4 + ab1t
2 + b), so dividing gives(

y

b1t

)2

= b1t
4 + at2 + b2. (16.15)

so (16.14) has a solution (u, v, w) = (t, 1, y/(b1t)). Conversely, if (u, v, w) is a solution to (16.14)
then uv ̸= 0, and (

b1

(u
v

)2
, b1

uw

v3

)
∈ E(K), (16.16)

so b1(K×)2 ∈ imαE .

Now we look at some examples with K = Q.

Example 16.6. Let E : y2 = x3 − x so a = 0, b = −1. By Lemma 16.4 and Proposition 16.2,
im(αE) = ⟨−1⟩ ∈ (Q×)/(Q×)2.

We have E′ : y2 = x3 + 4x, so imαE′ ⊂ ⟨−1, 2⟩ ⊂ Q×/(Q×)2. We need to consider b1 =
−1, 2,−2, and after checking we find that Im(αE′) = ⟨2⟩, so rank(E(Q)) = 0, so 1 is not a congruent
number.

Example 16.7. Let E : y2 = x3 + px with p ≡ 5 mod 8. We have imαE = ⟨p⟩.
We have E′ : y2 = x3 − 4px, so im(αE′) ⊂ ⟨−1, 2, p⟩ ⊂ Q∗/(Q∗)2. Note that αE′(T ′) =

(−4p)(Q∗)2 = (−p)(Q∗)2. So it remains to check

b1 = 2 : w2 = 2u4 − 2pv4 (16.17)

b1 = −2 : w2 = −2u4 + 2pv4 (16.18)

b1 = p : w2 = pu4 − 4v4 (16.19)
(16.20)

Suppose that (16.17) is soluble, and WLOG let u, v, w ∈ Z with gcd(u, v) = 1. If p | u, then p | w
so then p | v, which is a contradiction on the assumption that gcd(u, v) = 1. So w2 = 2u4 ̸= 0

mod p, so
(

2
p

)
= 1, which is a contradiction as p ≡ 5 mod 8. Thus (16.17) is insoluble.

Likewise, (16.18) has no solution since
(

−2
p

)
= −1.

We will return to (16.19) later as it is more difficult.
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Let’s return to the general 2-isogeny case. Let E : y2 = x(x2 + ax+ b), and ϕ : E → E′ be our
friendly neighborhood 2-isogeny. We have a commutative diagram with exact rows

0 E(Q)/ϕ̂E′(Q) S(ϕ̂)(E′/Q) X(E′/Q)[ϕ̂∗] 0

Q∗/(Q∗)2

αE

Recall our equation
w2 = b1u

4 + au2v2 + b2v4 b1b2 = b. (16.21)

We have that
imαE = {b1(Q∗)2 | (16.21) is soluble over Q}. (16.22)

Determining whether (16.21) has a solution over Q is hard, but we might be able to apply the local
global (Hasse) principle. In particular, we have that

imαE ⊂ S(ϕ̂)(E′/Q) = {b1(Q∗)2 | (16.21) is soluble over R and over Qp∀p}. (16.23)

Solving things locally is easier. In fact, by Sheet 3 Question 9 and Hensel’s Lemma we have that if
a, b1, b2 ∈ Z, and p ∤ 2b(a2 − 4b) then (16.21) is soluble over Qp.

Now we return to the previous example, and (16.19) in particular. We have that rankE(Q) = 0
if (16.19) is insoluble and 1 if it is soluble.

We have that (16.19) is soluble over Qp since
(

−1
p

)
= 1, so −1 ∈ (Z∗

p)
2 by Hensel’s lemma and

setting (u, v) = (0, 1) we can find a w which solves the equation.
We have that (16.19) is soluble over Q2 because p− 4 ≡ 1 mod 8, so p− 4 ∈ (Z∗

2)
2 by Hensel’s,

so setting (u, v) = (1, 1), we can find a w which solves the equation.
We have that (16.19) is soluble over R because √p ∈ R.
People have found rational solutions to (16.19) for many values of p, but we don’t know if there

is always a solution in general. It is conjectured that the rank is always 1, so the equation always
has a solution and the Hasse principle holds.

This is believable because Selmer conjectured that if the Hasse principle fails, it fails by an even
amount, so since our only other option is the rank being 0, the rank should be 1. Someone has
proved this conjecture assuming that X is finite.

Now lets give an example where we know that the Hasse principle fails.

Example 16.8 (Lind). Let E : y2 = x3 + 17x, so im(αE) ⊂ ⟨17⟩ ⊂ Q∗/(Q∗)2, and E′ : y2 =
x3 − 68x, and im(αE′) ⊂ ⟨−1, 2, 17⟩ ⊂ Q∗/(Q∗)2.

If b1 = 2, then w2 = 2u4 − 34v4 and doing a change of variables w → 2w and simplifying gives

C : 2w2 = u4 − 17v4. (16.24)

This is not homogeneous in the normal sense, but we can work in weighted projective space, which
we now define. Let

C(K) = {(u, v, w) ∈ K3 \ {0} | C(u, v, w) = 0}/ ∼ (16.25)

where (u, v, w) ∼ (λu, λv, λ2w) for all λ ∈ K×.
We have that C(Q2) ̸= ∅ because 17 ∈ (Z∗

2)
4 so we have a solution (171/4, 1, ).
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We have that C(Q17) ̸= ∅ since 2 ∈ (Z∗
17)

2, so we have a solution (1, 0, 1/
√
2).

We have that C(R) ̸= 0 since
√
2 ∈ R.

So C(Qv) ̸= 0 at every place of R.
But C(Q) = ∅, as we now show. Suppose (u, v, w) ∈ C(Q). WLOG u, v, w ∈ Z, w > 0 and

gcd(u, v) = 1. If 17 | w then 17 | u and then 17 | v, which is a contradiction. So if p | w then p ̸= 17,
and in fact we need

(
17
p

)
= 1 (look at reduction mod p). By quadratic reciprocity, if p is odd then( p

17

)
=

(
17

p

)
= 1 (16.26)

and we also have
(

2
17

)
= 1. So

(
w
17

)
= 1, but 2w4 ≡ u4 mod 17, so this would imply 2 ∈ (F17

∗)4 =
{±1,±4}, which is a contradiction. Thus C(Q) = ∅.

Thus the Hasse principle fails, so C represents a nontrivial element of X(E/Q).

17 Birch and Swinnerton-Dyer Conjecture
Let E/Q be an elliptic curve.

Definition 17.1. The L-function of E is

L(E, s) =
∏
p

Lp(E, s) (17.1)

where

Lp(E, s) =


(1− app−s + p1−2s)−1 p has good reduction
(1− p−s)−1 p has split multiplicative reduction
(1 + p−s)−1 p has nonsplit multiplicative reduction
1 p has additive reduction

(17.2)

and #Ẽ(Fp) = 1 + p− ap and ap = Tr(Frobp).

By Hasse’s Theorem, we have that |ap| ≤ 2
√
p, so L(E, s) converges for Re(s) > 3/2.

By the modularity theorem, we can write L(E, s) = L(f, s) for f a modular form of weight 2,
so we can analytic continuation to C and a functional equation.

Conjecture 17.2 (Weak BSD).

ords=1 L(E, s) = rankE(Q) (17.3)

If true, we can compute the rank by computing L(E, s), which is tractable.

Conjecture 17.3 (Strong BSD). The coefficient of (s− 1)r in the expansion of L(E, s) at s = 1 is

ΩE RegE(Q)|X(E/Q)|
∏
p cp(E)

|E(Q)tors|2
(17.4)

where cp(E) are the Tamagawa numbers, RegE(Q) is the regulator, and

ΩE =

∫
E(R)

∣∣∣∣ dx

2y + a1x+ a3

∣∣∣∣ (17.5)

where a1, . . . , a6 ∈ Z are the coefficients of a globally minimal Weierstrass equation for E/Q.
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We have no idea how to solve this in general, you get $1,000,000 if you do.

Theorem 17.4 (Kolyvagin). If the analytic rank is ≤ 1, then weak BSD holds and |X(E/Q)| <∞.
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