Elliptic Curves Notes

October 13, 2025

These notes are based on a course of the same title given by Professor Tom Fisher at Cambridge
during Lent Term 2025. They have been written up by Alexander Shashkov. There are likely plenty
of errors, which are my own.
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Silverman and Cassels are good books, we mostly go with Silverman and if not probably from
Cassels. Cassel’s book is based on lectures that he gave in Part III many years ago.

1 Fermat’s Method of Infinite Descent

1.1 Pythagorean triples
Let A be a right triangle with side lengths a, b, ¢, so a? + b* = ¢ and the area A(A) = ab/2.

Definition 1.1. We say that A is rational if a,b,c € Q. We say that A is primitive if a,b,c € Z
and (a,b) = 1.

Lemma 1.2. Every primitive triangle is of the form (u? — v2, 2uv,u? + v?) for some u > v > 0.

Proof. WLOG let a be odd, b even, ¢ odd. Then

b\ -
oy _ ct+a ¢ a. (1.1)
2 2 2
Since (a,c) =1, ((c+a)/2,(c—a)/2) =1, s0 (c+a)/2 = u?, (c — a)/2 = v? are squares, and then
a=u?—v2c=u®+v2 O

Definition 1.3. D € Q- is a congruent number if there exists a rational triangle A with A(A) =
D. Multiplying by a square gives another congruent number (equivalent to rescaling the sides by a
factor), so we may assume that D is a squarefree positive integer.

Example 1.4. 5 and 6 are congruent numbers, 6 with (3,4,5) and 6 with (9/6,40/6,41/6).
Lemma 1.5. D € Q+ is congruent if and only if Dy? = x> — x has a solution for x,y € Q, y # 0.

Proof. Lemmashows that D is congruent if and only if Dw? = uv(u? —v?) for some u,v,w € Q,
u,v,w # 0. We set z = u/v and y = w/v?. O

Fermat showed that 1 is not a congruent number, so the area of a right triangle is never a perfect
square. This is equivalent to the following theorem.

Theorem 1.6. There is no solution to w? = uv(u® — v?) = wv(u — v)(u + v) with u,v,w € Z,
w # 0.

Proof. We may assume that (u,v) = 1, u,w > 0. This is because if v < 0, then we can replace
(u,v,w) by (—v,u,w). If v >0, then w > v > 0.

Now, if u, v are both odd, we can replace (u, v, w) by (“;“’, 4%, %), and then u and v will have
the opposite parity.

Thus since (u,v) = 1 and v and v have opposite parity, u, v, (u+v), (u—v) are pairwise coprime
positive integers, so they are all squares. Thus v = a?,v = b*,u+v = %, u — v = d? for some
positive integers.

Since u and v have opposite parity, ¢, d are both odd, so =u = a?. Thus we
have a new primitive triangle with side lengths (¢3¢, <54, a), which has area % =v/4 = (b/2)2.
Now, set w; = b/2. Then by the previous lemmas there exists u;,v; such that w% = wyvy (u1 +
v1)(u1 — v1), S0 wy is a new solution to our equation. But we have that 4w? = b? = v|w?, so
wy < w/2. But this is impossible, since w; is a positive integer, so iterating gives a decreasing
infinite sequence of positive integers. O

24d? _ (utv)+(u—v)
2 = 2




1.2 A variant for polynomials

Let K be a field with char K # 2, and let K be the algebraic closure.

Lemma 1.7. Let u,v € K[t] be coprime. If au+ [v is a square for 4 distinct (o, 3;) € P, then
u,v € K.

Proof. WLOG we may assume K = K as if the result holds over K it will hold over K.

Changing coordinates on P! using Mébious transformations, we may assume that the (v, 8;)s
are (1,0),(0,1), (1, —1), (1, A) for some A € K\{0,1}. Then u = a?,v =b* u—v = (a+ b)(a —b),
u— v = (a+ ub)(a — pub) where = +/X. Then a+b,a—b,a+ ub, a — ub are all coprime, and since
they are all squares, this yields a new solution. But since this new solution has

1
max(deg a,degb) < 3 max(deg u, degv), (1.2)

and if max(degu,degv) > 0, then max(dega,degb) > 0, we have infinite descent unless u,v €
K. O

Definition 1.8. An elliptic curve E/K is the projective closure of the plane affine curve y? = f(z)
where f € KJz] is a monic cubic separable polynomial. y?> = f(z) is known as the Weierstrass
equation.

For L/K any field extension, we have that

BE(L) = {(z,y) € L|y* = f(2)} U {0}, (1.3)
where {0} is the point at infinity.

E(L) is naturally an abelian group. In this course we study F(K) for K a finite field, local field,
or number field.
Lemma and Theorem show that if E is the elliptic curve given by 42 = 23 — 22, then

E(Q) ={0,(0,0), (£1,0)}.
Corollary 1.9. Let E/K be an elliptic curve. Then E(K(t)) = E(K).

Proof. WLOG K = K. By a change of coordinates, we may assume y? = x(x — 1)(z — \) for some
A ¢ {0,1}. Suppose (z,y) € E(K(t)).

We can write z = u/v with u,v € K[t] coprime. Then w? = uv(u—v)(u—Av) for some w € K[t].
Since K[t] is a UFD, w,v(u — v), (u — A\v) are all squares. Then by Lemma u,v € Ksox € K,
soy € K. O

2 Some remarks on plane curves

In this course, curves are always irreducible. For this section we work over K = K.

Definition 2.1. A plane affine curve C = {f(z,y) = 0} C A? is rational if it has a rational
parametrization, so that 3¢(t), ¥ (t) € K(¢) such that

1. The map A' — A? given by t — (¢(t),%(t)) is injective on Al except for only finitely many
points.



2. f((t), (1)) = 0.

Example 2.2. 1. Any nonsingular plane conic is rational. Consider the conic C : 22 + y? = 1.
Let y = t(z + 1) be the line with slope ¢ through (—1,0). The second intersection point
(w0, y0) will satisfy 22 + t?(xg + 1)? = 1, which has solution zg = (1 — t2)/(1 + t?), so

(0, y0) = (1 L ) : (2.1)

1+12714¢2
This gives a rational parametrization for C.

2. Any singular plane cubic is rational. Let P be the singular point, then the line through P
with slope ¢ has only 1 more point of intersection, the coordinates of this point in t gives a
rational parametrization.

3. Corollary [T.9 shows that elliptic curves are not rational.

Remark 2.3. The genus ¢g(C) € Z>¢ is an invariant of a smooth projective curve C.
If K =C, then g(C) is the genus as a Riemann surface.

A smooth plane curve C' C P? of degree d has genus g(C) = W.

Proposition 2.4. Let C be a smooth projective curve over K = K. Then
1. C is rational if and only if g(C) = 0.
2. C is an elliptic curve if and only if g(C) = 1.

Proof. The proof of 1. is omitted. If C' is an elliptic curve, we can check that C is a smooth plane
curve, and then use the genus formula in the previous remark. O

2.1 Orders of vanishing

If C is an algebraic curve with function field K (C'), and P(C) is a smooth point, we write ordp(f)
to be the order of vanishing of f € K(C)* at P.

Formally this means the valuation of f, when considered as an element of the fraction field of
the stalk at P, which is a DVR.

Definition 2.5. t € K(C)* is a uniformizer at P if ordp(t) = 1.

Example 2.6. Let C = {g(z,y) = 0} C A? for some g € K[z,y] irreducible. Then K(C) =
Frac(K|[z,y]/(g)). We can write g = go + g1 + - -+ as a sum of homogeneous polynomials. Suppose
that P = (0,0) € C, so that go = 0 and g1 = ax + Sy with «, 8 both not zero. Then any vz + dy
is a uniformizer, as long as ad — By # 0

Example 2.7. Let C° = {y? = x(x — 1)(z — \)} C A% with A ¢ {0,1}. We homogenize to get the
projective variety {Y2Z = X (X — Z)(X — A\Z)} c P2. P = (0,1,0) is the unique point at infinity.
We want to compute ordp(z) and ordp(y). We look at the affine piece Y # 0, and set w = Z/Y
and t = X/Y. We then have that

w = t(t —w)(t — Iw) (2.2)
and P is (t,w) = (0,0). This is a smooth point, and ord,(t) = ord,(t — w) = ord,(t — A\w) =1

by the previous example. So then ord,(w) = 3, and ord,(x) = ord,(t/w) = 1 -3 = —2 and
ord,(y) = ord,(1/w) = —3.



2.2 Riemann-Roch spaces
Let C be a smooth projective curve over K = K.

Definition 2.8. A divisor D is a formal sum of points on C, D = Epec npP where np € Z, and
np = 0 for all but finitely many P € C.

The degree of a divisor is deg D = > np

D is effective, written as D > 0, if np > 0 for all P. We write D1 > Dy if Dy — Dy > 0.

If fe K(C)*, write div(f) = > pecordp(f)P.

The Riemann-Roch space of D € Div(C) is

L(D) = {f € K(C)*|div(f) + D = 0} U {0} (2.3)
This is the k-vector space of rational functions on C with poles and zeros prescribed by D.
The next theorem is a specialized version of Riemann-Roch for genus 1 curves.

Theorem 2.9. Let C be a smooth projective curve of genus 1 and let D € Div(C). Then

deg D degD >0
dim£(D) =< €{0,1} degD =0 (2.4)
0 deg D < 0.

Example 2.10. In Example 2.7 we have

L(2P) = (1,z)
L(3P) = (1,z,y) (2.5)

This follows from checking that the generators are in the Riemann-Roch space, are linearly inde-
pendent, and comparing dimensions on both sides.

Proposition 2.11. Let C C P? be a smooth plane cubic and P € C a point of inflection. Then we
may change coordinates so that C is defined by Y2Z = X(X — Z)(X — \Z) for some X\ # 0,1 and
so that P = (0:1:0) in the new coordinate system.

Proof. We change coordinates and send P — (0 : 1 : 0) and so that the tangent line of C' at P is

Tp(C) = {z = 0}. Then C is defined by some cubic F(X,Y,Z) = 0. Since P € C is a point of

inflection, we have that F'(P) = 0, and on the tangent line z = 0 we further have that the order of

vanishing is 2, and since P is further a point of reflection, we have that the order of vanishing is 3.

Thus it follows that F(¢,1,0) = ct® (see also the remark below).

Thus F has no terms of the form X?Y, XY?2 Y3. So F consists of terms of the form {Y?Z, XY Z, Y 72 X3 X Z? X Z?,.

We need the coefficient of Y2Z to be nonzero otherwise P will be a singular point (the Jacobian

will vanish). We need the coefficient of X to be nonzero otherwise Z|F, which will mean F is not

irreducible. We can rescale X,Y, Z and F such that C is given by

Y2Z +an XYZ +a3YZ? = X + a9 X?Z + ays X Z° + ag Z°. (2.6)

Substituting Y —a; X/2—a3Z/2 into Y, we may assume that a; = ag = 0. So Y?Z = Z3 f(X/Z) with
f monic, and since C' is smooth the roots of f will be distinct. So then we can change coordinates
again so that the roots are 0,1, \. We then have C' in the desired form, which is sometimes called
Legendre form. O



Remark 2.12. The points of inflection of a smooth curve C = {F(X;, X, X3) = 0} C P? are
given by those points where F' = 0 and where the Hessian matrix vanishes:

02F
det (axiazj ) = 0. (2.7)

2.3 Degree of a morphism

Let ¢ : C7 — C3 be a non-constant morphism of smooth projective curves. Then ¢ induces a map
¢* : K(Cy) — K(C4) sending f — fo¢. Thus K(C4) is a field extension of ¢* K (Cy).

Definition 2.13. The degree of ¢ is degp = [K(Cy) : ¢*K(Cs)].
¢ is separable if K(C1)/¢*K(Cy) is separable.

Suppose P € C1, Q € Cy, and ¢ : P — @, and let t € K(C3) be a uniformizer at @, so
ordg(t) =1 and ¢ is a uniformizer in the DVR K(Cs)q.

Definition 2.14. The ramification index of ¢ at P is e,(P) = ordp(¢*t). This will always be > 1,
and is independent of the choice of ¢.

Theorem 2.15. Let ¢ : C1y — C5 be a nonconstant morphism of smooth projective curves. Then
for all Q € Cy, we have

Z es(P) = deg ¢. (2.8)
Pe¢=1(Q)

Moreover if ¢ is separable, then eg(P) = 1 for all but finitely may P € Cy. This is equivalent to
saying that if L/K is a separable extension of fields, then only finitely many primes ramify. In
particular:

1. ¢ is surjective on K -points.
2. #¢71(Q) < deg ¢.
3. If ¢ is separable, then #¢~1(Q) = deg ¢ for all but finitely many Q.

Remark 2.16. Let C be an algebraic curve. A rational map is given C — P, P — (fo(P) :
fi(P) : -+ ¢ fr(P)) where fo,..., fn € K(C) are not all zero. In particular, if for some P € C
we have f;(P) = 0 for all 4, we can multiply by some gp such that (f; - gp)(P) # 0 to define the
rational map at C. We do the same procedure if f; has a pole at P.

If C is smooth, then ¢ is a morphism.

3  Weierstrass equations

Throughout this section, we will assume that K is a perfect field.

Definition 3.1. An elliptic curve E/K is a smooth projective curve of genus 1, defined over K,
with a specified K-valued point 0g € E(K).

Example 3.2. The last part of the definition ensures that F/K has a point at all. For instance,
{X3 4+ pY3 +p?Z3 =0} C P? is not an elliptic curve over Q because it has no Q-rational points.



Theorem 3.3. Every elliptic curve E/K is isomorphic over K to a curve in Weierstrass form via
an isomorphism taking Og — (0,1,0).

Remark 3.4. Proposition treated the case where F is a smooth plane cubic and Og is a point
of inflection.

Remark 3.5. If D € Div(E) is defined over K (so it is fixed by the natural action of Gal(K/K),
then £(D) has a basis consisting of functions in K (E) (as opposed to the general case where the
basis is functions in K(FE)).

Theorem[3.3. Let E/K be an elliptic curve, so a smooth projective curve of genus 1. By Theorem
2.9, we have that

L(2(0g)) € L(3(0g)) (3.1)
with bases {1, z}, {1, z,y}, where z,y € K(F) are some rational functions. We have that ordg, (z) =
—2and ordg,, (y) = —3 because the dimension of £(1(0g)) is 1, so it is spanned by constant functions.

Now, £(6(0z)) is a 6-dimensional vector space, and contains the 7 elements {1, z, y, 22, zy, 3, y*}.
So these 7 elements are not linearly independent, so we can find a relation between them over K.
Furthermore, since the functions z3 and y? have order of vanishing 6, the relation necessarily
contains these two elements. Thus after rescaling x,y, we get that

Y2 + arxy + asy = 2% + agr? + aux + ag (3.2)

for some a; € K. Let E’ be the projective curve defined by this equation (the projective closure of
the affine curve defined by this equation). There is a morphism

¢:E— E' cP?
P — (z(P),y(P),1) (3.3)

Further, since ordg, () = —2 and ordp, (y) = —3, we have that 0g — ((z/y)(0g),1,(1/y)(0g)) =
(0,1,0). We also have that ¢*K(E') = K(z,y). We want to show that K(z,y) = K(F), as then
we will have E = E’ as curves.

Now, we have a map  : E — P!, which induces a field extension K (E)/z*K (P') = K(E)/2*K(T) =
K(E)/K(z). Now, since z has a pole of order -2 at 0g. Thus we have that

degx = Z ex(P)
Pex—1(c0)
= €$(OE)
= ordo, (z*(1/t))
= ordg, (1/x)
=2 (3.4)

so [K(F) : K(z)] = 2. Similarly, [K(F) : K(y)] = 3. Now, since K(z),K(y) C K(z,y) C K(F)
and (2,3) = 1, we have that K(z,y) = K(E). Thus K(F) = K(z,y) = ¢*K(E'), so deg¢ = 1, so
¢ is birational (bijective and rational).

Now, rational maps are morphisms if they are between smooth curves. If E’ is singular, then
E,E' are rational, which is not the case as they are elliptic curves. So E’ is smooth, so ¢! is a
morphism, and thus ¢ is an isomorphism. O



Proposition 3.6. Let E,E' be elliptic curves over K in Weierstrass form. Then E = E' (an
isomorphism of curves sending O — Opgr if and only if the equations are related by a change of
variables

r=ul' +r, y=u3y +uisa’ +t, wu,rsteK,u#0. (3.5)

Proof. We examine the Riemann-Roch spaces in the previous proof. We have that (1,z) = (1, 2'),
so x = Az’ +r. Likewise, y = uy’ + o2’ +t. We did some rescaling to get Weierstrass form. This
forces A3 = 2, so A = u?, = u3, and we can put s = o/u’. O

A Weierstrass equation defines an elliptic curve if and only if it defines a smooth curves, as we
already have from the equation that the curve is of genus 1 and has the point at infinity. FE is
smooth if and only if A(ay,...,as) # 0, where A is a certain polynomial. If char K # 2,3, we may
reduce to the case y? = 23 + ax + b, and then we have A = —16(4a® + 27b?).

Corollary 3.7. Assume char K # 2,3. Then given elliptic curves

E:y*=a3+ar+b

E:y*=a3+daz+t/ (3.6)
we have that E = E' over K if and only if o' = u*a and b’ = uSb with u € K*

Proof. Look at the previous proposition, and see that we need r = s = ¢ = 0 so that no xy,y, x>
terms appear in our equation. O

Definition 3.8. The j-invariant of an elliptic curve E : y? = 23 + ax + b is

1728(4a?)

IE) = Gt ome 3.7)

The weird scaling factors are due to the j-invariant’s connection with modular forms.
Corollary 3.9. E~ E' = j(E) = j(E') and the converse holds if K = K.

Proof. Follows from the previous corollary. O

4 The group law

Let E C P? be a smooth plane cubic with a point 0 € E(K). E meets any line in 3 points
(counting multiplicities). The chord and tangent process is not worth texing.
Let’s prove associativity though.

Definition 4.1. Let Dy, Dy € Div(E). D; and Dy are linearly equivalent if 3f € K(E)* such that
(f) = D1 — Dy and we write D1 ~ Dy and [D;] for the equivalence class.

Definition 4.2. Pic(E) = Div(E)/ ~, and Pic’(E) = Div’(E)/ ~. Note that (f) always has
degree zero, since f is the ratio of polynomials of the same degree.

Proposition 4.3. Let ¢ : E — Pic’(E) be the map P — [(P) — (0g)]. Then ¥(P + Q) =
Y(P)+¥(Q) and ¢ is a bijection.



In particular this shows that E is a group.

Proof. Let £ =0, m = 0 be lines in projective space (linear forms), such that ¢ passes through F
as P, S,Q and m passes through E at Og, S, P + Q. Then ¢/m is a rational function on E. We
have that (¢/m) = (P) + (S) + (Q) — (0r) — (5) = (P + Q) = (P) + (Q) — (0g) — (P + Q). Thus
(P)+(Q) ~ (P+Q) = (05) 50 9(P) + $(Q) = $(P+ Q).

To show 1 is injective, suppose that ¥ (P) = (@), for some P # . Then there exists
f € K(E)* such that (f) = (P) — (Q). So f : E — P! has degree 1 (there is only 1 zero), so
E = P! a contradiction. Thus % is injective.

To show surjectivity, let [D] € Pic’(E). Then D + (0g) has degree 1, so by Riemann-Roch we
have that dim £(D + (0g)) = 1, so there exists f € K(E)* such that (f)+ D+ (0g) > 0. But since
(f) has degree 0, this divisor has degree 1, so it equals (P) for some point P. So D ~ (P) — (0g)
and ¢(P) = [D]. O

4.1 Formulae for £ in Weierstrass form
We can write out formulae for P + @, —P using the chord and tangent process. In particular, if
P = (z,y) and E : y?> + a1y + azy = 23 + azx? + a4x + ag we have that

—P = (z,—(m1x 4+ a3) — y) (4.1)
The rest is bash, and we get linear equations for P + Q).
Corollary 4.4. E(K) is an abelian group for any field K.
Proof. By the formulas for —P and P + @ and the fact that Op € F(K), we have that F(K) is a

subgroup of £ = E(K). O
Theorem 4.5. Elliptic curves are group varieties, so that multiplication and inversion are mor-
phisms of varieties.

Proof. We just showed that these are rational maps of varieties. But E x E is a surface, not a
curve, so we still need to show that the map E x E — F given by addition of points is smooth.
We have that + : E x E — F is regular on

U={P.QUEEXE|P,QP+Q,P—Q+#0g} (4.2)

For P € FE, let 7p : E — F be the translation morphism @@ — P + Q. Taking A, B € F, we factor
+ as

T_AXT_B

ExE2""2pyp —+* . p ™. p

So + is regular on all {74 x 75(U)} 4, Beg, which cover E x E so + is regular on E X E, so + is a
morphism. O

4.2 Statement of results

We will prove some things in this course.

10



4.3 Torsion

Definition 4.6. The n-multiplication operator if [n] : E — E sending P - nP = P+---4+ P. We
also have [—n]P = —[n]P.

Definition 4.7. The n-torsion subgroup of E is E[n] = ker(jn] : E — E). If K = C, then
E(C)=C/A and

Eln] = (Z/nZ)? (4.3)
and [n] has degree n?. We'll show the second fact holds for any K, and the first fact holds if
char K t n.

Lemma 4.8. Assume char K # 2. If E:y? = f(z) = (x —e1)(z — e2)(x —e3), €1,€2,e3 € K, then
E[2] = {0g, (e1,0), (e2,0), (es,0)} == (Z/27Z)>.

Proof. If (z,y) = P € E[2], then P = —P, so we must have y = 0. O

5 Isogenies

Let E4, E> be elliptic curves.

Definition 5.1. An isogeny ¢ : E; — FE» is a nonconstant morphism with ¢(0g,) = Og,.
We say that F, E5 are isogenous.

Note that ¢ being a nonconstant morphism implies that ¢ is surjective on K points.

Definition 5.2. Let Hom(E4, E2) = {isogenies Eq — E5}U{0} be the set of homomorphisms from
E1 — EQ.

Then ¢ € Hom(E, E») is a group homomorphism, and Hom(FE1, E3) is an abelian group under
(p+v)(P) = ¢(P)+¢(P). In particular, we have that ¢+1) is the composition of £ - EXE — E
sending P — (6(P), ¥(P)) = 6(P) + ¥(P).

If : B4 — Es and ¢ : E5 — Ej3 are isogenies then v o ¢ is an isogeny, and by the tower law
deg (¢ o ¢) = deg(t)) deg(¢).

We can also consider the constant map F; — Og, to be an isogeny (the zero isogeny), but I
guess we don’t do this.

Proposition 5.3. If 0 #n € Z then [n| : E — E is an isogeny.

Proof. Addition and hence [n] is a morphism by Theorem and Op — NOg = Og. We must
show [n] # [0]. Assume that char K # 2.

If n = 2, then by Lemma 4.5, E[2] # E, so [2] # [0].

If n is odd, then there exists a nonzero T € E[2], so nT = T # 0, so [n] # [0]. Then since
[mn] = [m] o [n], we are done.

If char K = 2, we could replace Lemma |4.8| by a similar result about F[3]. O

Corollary 5.4. Hom(E1, Es) is a torsion-free Z-module.

Proof. Z acts on Hom(E, E3) by ng = [n] o ¢. But since [n] # [0], there is no torsion. O
Theorem 5.5. Let ¢ : By — FE5 be an isogeny. Then ¢ is a group homomorphism, so ¢(P+ Q) =
P(P) + ¢(Q).

11



Proof. ¢ induces a map on divisors:
¢ : Div(E}) — Div?(E»)
> npP Y npd(P) (5.1)

Recall that we have an inclusion of function fields ¢* : K(E2) — K(FE4), and K(E,)/K(E,) is
a finite extension, so we have a norm map N (/K (g,) * K(E1) — K(E2). It is a fact that if
f € K(Ey)*, then
div(Ng (1)K (E:) f) = ¢«(div f) (5:2)
S0 ¢, sends principal divisors to principal divisors.
Since ¢(0g,) = 0g,, the following diagram commutes:

E1%E2

LT

Pic®(Ey) —2— Pic®(Ey)
So since ¢, is a group homomorphism, ¢ is a group homomorphism. O

Lemma 5.6. Let ¢ : E; — FEs be an isogeny. Then there exists a morphism & making the following
diagram commute:

El#EQ

le JQJQ
Pt —* P

where x; s the coordinate function sending P = (x,y) — x for P € E;.
Moreover, if £(t) =r(t)/s(t), r(t), s(t) € K[t] coprime, then deg ¢ = deg{ = max(degr,degs).

Proof. For i = 1,2, we have that K(E;)/K(z;) is a degree 2 Galois extension, where K(E;) =
K (x;,y;) is the function field of E;. To see, this we just need to exhibit a nontrivial element of the
Galois group. We have that [—1]* sending y; — —y; is such a morphism. Furthermore, by Theorem
[5.5] we have that ¢ o [-1] = [~1] 0 ¢, so if f € K(z2), then

(170" f = ¢"[-1]"f = &7 f (5.3)

so ¢* f is fixed by the Galois group, so ¢*f € K(z1). Thus in particular, we can set ¢*za = £(21)
for some rational function £. Then by the tower law, we have that deg ¢ = degé.

Now K(z2) — K(z1) via x9 — &(z1) = r(x1)/s(z1). We claim that the minimal polynomial of
x1 over xg is F(t) = r(t) — s(t)x2 € K(x2)[t]. We have F'(z1) = 0, and F' is irreducible in K[z, 1]
because 1, s are coprime. Then F is irreducible in K (z2)[t] by Gauss’s lemma. Thus we have that

deg& = [K(z1) : K(x2)] = deg F' = max(degr, deg s). (5.4)

O
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Lemma 5.7. deg[2] = 4.

Proof. Assume char K # 2,3, so that E : y*> = 23 + az + b = f(x).
If P = (z,y) € E, then 2(2P) = g(x)/4f(x) where deg g = 4 (direct calculation). So by Lemma
[5.6] we have that deg[2] = max(deg g, deg f) = 4. O

Definition 5.8. Let A be an abelian group. Then ¢ : A — Z is a quadratic form if
1. q(nz) = n?q(x) for all n € Z,x € A.
2. (z,y) — q(xz +y) — q(z) — q(y) is Z-bilinear.
Lemma 5.9. ¢: A — Z is quadratic form if and only if it satisfies the parallelogram law:
q(z +y) +a(z —y) = 2¢(z) + 2q(y). (5:5)
Proof. Bash/Sheet 2. O

Theorem 5.10. We have that the degree map deg : Hom(FE1, E2) — Z is a quadratic form, where
we set degQ = 0.

We will assume that char K # 2,3 for simplicity. Write
By:y =23 +axr+b (5.6)
and assume that P,Q, P + @, P — @ # 0 with respective z-coordinates x1, T2, T3, T4.

Lemma 5.11. There exist polynomials Wy, W1, W € Z|a, b][x1,z2] of degree at most 2 in x1 and
degree at most 2 in xo such that

(1 X3+ x4 3?3.’174) = (WO W Wg) (57)
Proof. Let y = Ax + v be the line through P and ). Then
2 tar+b—A\r+v)?=(z—x1) (2 —20)(x — x3) = 2% — 5127 + 507 — 53 (5.8)

where s1, 52, S3 are the respective symmetric polynomials in 21, z2, 3. Comparing coefficients gives

)\2 = 51
=2\ =89 —a
v:=s3+0 (5.9)
Eliminating A and v gives
F(x1,72,73) = (52 —a)? —4s1(s3 +b) =0 (5.10)

which has degree less than 2 in x1, x2 3 as s, s2, s3 have degree 1 in x1, 2 x3. Now x3 is a root
of W(t) = F(x1,x2,t), and F is a quadratic polynomial in ¢.

As @ and —(@Q have the same z-coordinate, if we repeat the above process with the line through
P and —@Q, we find that x4 is the other root of F(x1,x2,t) (which is quadratic in ¢). Thus writing
F(x1,29,t) = Wo(t — x3)(t — x4) for some Wy(x1,z2,a,b), we have that

Wo(t — x3)(t — x4) = Wot* — Wit + Ws (5.11)
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where Wy, W7, W5 all have degree less than 2 in z1,x2. Now comparing coefficients gives

T3+ x4 = %, T3Ty = % (5.12)
O
Proof of Theorem[5.10, We show that if ¢, € Hom(E1, F2), then

deg(¢ + ) + deg(¢p — 1) < 2deg ¢ + 2deg 1. (5.13)

When we have show this, we can replace ¢ by ¢ 41 and ¥ by ¢ — 1 to get the inequality going the
other way.

We may assume ¢, ¥, ¢+, p—1 # 0. Otherwise the proof is trivial, or we use that deg[—1] = 1,
deg[2] = 4.

Let ¢, 1, ¢ + 1, ¢ — ¢ have respective coordinate functions &1, &2, &3,&4. Then by Lemma [5.11]
we have that

(1: &+ & - &38) = (Wo(&1,&2), W&, &), Wa(&r,62))- (5.14)
Put & = r;/s; with r;, s; € K[t] coprime. So

(1:834 &4 : &38a) = (8354 : 1384 + 1483 1 r374) = (Wo(ris2,7251) : Wi(r182,7m281) : Wa(risa,ros1))

(5.15)
and the LHS is coprime as r;, s; are coprime. We then have that
deg(¢ + ¢) + deg(¢ — ¢) = max(degrs, deg s3) + max(degry, deg s4)
= max(deg(ssss),deg(rsss + ra83), deg(rsry))
< 2max(degry, deg s1) + 2 max(degra, deg s2)
= 2deg ¢ + 2deg . (5.16)
Replacing ¢ by ¢ + ¢ and ¥ by ¢ — ¢ gives
deg2¢ + deg 2y < 2deg(p + 1) + 2deg(p — ). (5.17)
Applying Lemma [5.7] gives the reverse inequality, which shows the parallelogram law holds, so we
have a quadratic form. O

Corollary 5.12. We have that degn¢ = n?deg ¢ for all n € Z, ¢ € Hom(Ey, E3). In particular,

we have that degn] = n?.

Now we will finally give an example of an isogeny which is not [n].

Example 5.13. Let E/K an elliptic curve, and assume char K # 2, so there exists nonzero
T € E(K)[2]. WLOG we have that

E:y*=z(®+ar+b), abcK, bla*—4b)#0 (5.18)

and we can take T = (0,0) to be our 2-torsion point. We want to quotient out by (0,7). If
P = (z,y), then we have that P’ = P+ T = (2/,y) with

, Y =——=. (5.19)
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We want to send (z,y) and (2/,y’) to the same place. A natural choice for a map is then

2 b
£:x+x/+a:(g) ) 77—y+y'—y<x—>. (5.20)
T T T
Then we have that
n? = £(€% — 2a€ + a® — 4b) (5.21)
Let E' : y* = x(2? + d/z + V') with o’ = —2a, b’ = a®> — 4b. This is an elliptic curve because
b =a? —4b # 0 and a'?> — 4’ = 16b # 0. There’s an isogeny
$:E—E
y)2 y(@® —b)
e ((2) 80 ). 5.22

At 0g = (0:1:0), we can compare orders of vanishing to find that 0 — 0p.
To compute the degree of this map we write

(y)QZM

- ; (5.23)

and the numerator and denominator are coprime as b # 0, so deg ¢ = 2. We say that ¢ is a 2-isogeny
because of its degree.

6 The invariant differential

Let C be an algebraic curve over K = K.

Definition 6.1. The space of differential Q¢ is a K (C)-vector space generated by df for f € K(C),
subject to the relations

1. d(f+g) =df +dg.
2. d(fg) = gdf + fdy.
3. da=0forac K.

Since C'is a curve, Q)¢ is a 1-dimensional vector space. This is the cotangent space at the generic
point of C' I think, which is TE/K’" = Q¢ i (n) or something, for n the generic point of C'. Since
C is a variety, by a Theorem from Abelian varieties, C' is smooth at its generic point, so Q¢ is a
1-dimensional K (C')-vector space because C is 1-dimensional.

Let 0 £ w € Q¢, P € C be a smooth point, t € K(C) a uniformizer at P. Then it is a fact that
w = fdt for some f € K(C)*), and we define

ordp(w) = ordp(f), (6.1)

and this definition is independent of the choice of .
Now, assume C' is a smooth projective curve.
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Definition 6.2. The divisor of 0 # w € Q¢ is

div(w) = Z ordp(w)P € Div(C). (6.2)
pPeC

This is a well-defined divisor because ordp(w) = ordp(f) is zero for all but finitely many P.

A differential w € Q¢ is regular if div(w) > 0, so it has no poles.

The regular differentials form a K-vector space, and its dimension is the genus ¢g(C) of the curve.

In the case of elliptic curves, this is 1-dimensional K-vector space. Note that the space of all
differentials on a curve is a 1-dimensional K (C')-vector space, and don’t confuse these two vector
spaces or think that the fact that they have the same dimension means anything.

As a consequence of the Riemann-Roch theorem, we have that

deg(divw) = 2g — 2 (6.3)
Suppose that f € K(C)*, and ordp(f) = n # 0. If char k { n, then ordp(df) =n — 1.
Lemma 6.3. Assume char K # 2, and let

E:y?=(x—e)(z—e)(x —e3), (6.4)

with ey, ea, e3 distinct. Then w = dx/y is a differential on E with no zeros or poles.

As a consequence, we have that g(E) =1 by (6.3)).

In particular, the k-vector space of reqular differentials on E is 1-dimensional, and spanned by
w.

Proof. Let T; = (e;,0), so that E[2] = {0,71,T2,T5}. Then divy = (T1) + (T2) + (T5) — 3(0).
This follows from the fact that y has a pole of order 3 at 0, and zeros of order 1 at T;, and
since y is principal, has no other poles, and is degree 0, these are all the zeros and poles. For
P = (xzp,yp) € E\{0}, a similar calculation gives div(z —zp) = (P)+(—P)—2(0). If P € E\ E[2],
then ordp(x — zp) = 1, so ordp(dz) = 0. If P = T;, then ordp(z — xp) = 2, so ordp(dz) = 1. If
P =0, then ordp(z) = —2, so ordp(dz) = —3. Thus we have that

divde = (Th) + (To) + (T3) — 3(0) = divy, (6.5)
so div(dz/y) = 0. O
Definition 6.4. For ¢ : C; — C5 a nonconstant morphism we define

(15* : QCQ — ch
fdg = (¢ )d(¢"g). (6.6)

Lemma 6.5. For P € E, let 7p : E — E be the translation map X — X + P, and w = dzx/y as
above. Then Tpw = w, so w is an invariant differential.

Proof. thw is a regular differential on E (by some divisor pushforward stuff), so 7pw = Apw for
some Ap € K* since the space of regular differentials in 1-dimensional.

Now the map E — P! sending P — Ap is a morphism of projective curves, but it is not
surjective, because 0 and oo are not in its image, for instance. So it is constant by Theorem [2.15}
Thus 7pw = Aw, but taking P = 0 we see that A\ = 1. O
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Remark 6.6. If K = C, then C/A = E(C) via the map z — (p(2), ¢’(2)), and under this map we
have dx/y = ©'(2)dz/p(z) = dz which is clearly translation-invariant.

Lemma 6.7. Let ¢,1 € Hom(E1, E3). Let w an be invariant differential on Eo. Then (¢+1)*w =
o*w + Yrw.

Proof. Write E = FE5, and define the following maps ' x F — E:

pe(PQ)—P+Q
pry - (PvQ)'_)P
pry : (P,Q) — Q. (6.7)

It is a fact that Qg« g is a 2-dimensional K (E x E)-vector space with basis pri w, pry w. Therefore
H'w = fpriw+ gpriw (6.8)

for some f,g € K(E x E). We want to show that f =g =1. For Q € E let 1o : E — E x E be the
mapping P — (P, Q). Applying f, to (6.8) gives

(@) w = (1o f)(pr11Q) w + (1gg) (pra Q) w. (6.9)
Now, we have that 79 = p o, pryotg = id, and pryorg = @, so simplifying the above gives
Tow = (1oflw+0=w (6.10)

by Lemma Thus 15, f =1 for all Q € E, so f(P,Q) =1 for all P,Q € E. Similarly g(P,Q) = ¢q
for all P,@ € E. Thus we have that

prw = priw + pryw. (6.11)

Now, we pull back by E; — E x E sending P — (¢(P),¥(P)) to get
(p+¢Y)'w=9w+ ¢ w (6.12)
as desired. O

Lemma 6.8. Let ¢ : C; — Cy be a non-constant morphism. Then ¢ is separable if and only if
¢* : Qc, — Q¢, s nonzero.

Proof. Omitted. O

Example 6.9. Let G, = Al \ {0} be the multiplicative group variety of units. Let ¢ : G — G,
be the morphism x +— x”, for n > 2 an integer. Then clearly deg ¢ = n.

We have that ¢*(dz) = d(z") = na™dx so if char K { n then ¢ is separable.

In this case, by Theorem we have that #¢71(Q) = deg ¢ for all but finitely many points
Q € ((A}m But ¢ is a group homomorphism, so #¢~1(Q) = #ker ¢ for all Q € (@m. Thus we have
that # ker ¢ = deg ¢ = n.

Therefore K = K has exactly n nth roots of unity.

Theorem 6.10. If char K { n, then E[n] = (Z/nZ)?.
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Proof. By Lemma [6.7, we have that [n]*w = nw. Since chark t n, [n] is separable because [n]* is
nonzero by Lemma Thus #[n]~1Q = deg[n] for all but finitely many Q € E. But since [n] is
a group homomorphism, [n]71Q = #E[n] for all points. Thus deg[n] = #E[n] = n? by Corollary

By group theory, we have that E[n] & Z/d1Z x -+ X Z/diZ for 1 < dy|---|d¢|n all dividing
each other. Also, we have that d;|n because E[n] has n-torsion. Let p be a prime, p|d;, then
Elp] & (Z/pZ)t, and so t = 2. Since E[p] C E[n?], we have that E[n] & Z/d1Z x Z/dyZ with
di|da|n, and dydy = n?, so we must have d; = dy = n so E[n] = (Z/nZ)? as desired. O

Remark 6.11. If char k = p, then [p] is separable. It can be shown that either E[p"] & Z/p"Z for
all » > 1, which is the “ordinary” case, or that E[p"] = 0, which is the “supersingular” case.

7 Elliptic curves over finite fields

Lemma 7.1. Let A be an abelian group, q : A — 7Z a positive definite quadratic form. So q(x) > 0,
with equality iff t = 0. Then

lg(z +y) —q(z) — q(y)] < 2v/q(x)q(y) (7.1)
for all x,y € A.

Proof. We may assume that x # 0, otherwise the result is obvious, so g(x) # 0. Let m,n € Z.
Then

0 < g(mz + ny)

1
= §<mx + ny, mx + ny)

= m2q(x) + n’q(y) + mn(z,y)
(s 20" s 2

Take m = —(x,y), n = 2q(x). So q(y) — (z,y)*/4q(x) > 0, so (z,y)* < 4q(x)q(y), and taking square
roots gives the results. O

Theorem 7.2 (Hasse). Let E/F, be an elliptic curve. Then |#E(F,) — (¢ +1)] <2,/q.

Proof. Recall Gal(F4-/F,) is cyclic of order r, generated by Frob, : z — z9.

Let E have Weierstrass equation with coefficients ai,...,q6s € F,. Note that a] = a; since
a; € F,. Define the Frobenius endomorphism ¢ : E — E sending (z,y) — (29,y?). This is an
isogeny of degree ¢ (look at the function fields).

Then E(F,) = {P € E|¢p(P) = P} = ker(¢ — 1).

Also, ¢*w = ¢*(dz/y) = dz?/y? = qu? 'dx/y? = 0. Thus by Lemma since (1 — ¢)*w =
w # 0, 1 — ¢ is separable.

By the same argument as in the proof of we then have that #(1—¢)"1(Q) = # ker(1—¢) =
deg(1 — ¢) = #E(F,).

Since the degree map is a positive definite quadratic form, we have that

| deg(1 — ¢) — deg ¢ — deg1| = [#E(F,) — (¢ + 1) <2/ (7.3)
0
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Definition 7.3. For ¢,¢ € End(F) = Hom(E, E), we put (¢, ¢) = deg(¢ + ) — deg ¢ — deg ).
and tr(¢) = (¢, 1).

Corollary 7.4. Let E/F, be an elliptic curve. Then #E(F,) = q+1—tr(Frob,) and | tr(Frob,)| <
2,/4.
7.1 Zeta functions
For K a number field, set
_ sy 1
Ce(s)= > (o= J[  (-@e™) . (7.4)
aCOk peSpec Ok closed

For K a function field, in other words K = F,(C) where C/F, is a smooth projective curve, set

r(s)= [ = (Va)=)~ (7.5)

z€|C|

where the product is over all the closed points of C. These are the orbits for the action of Gal(F,/F,)
acting on C(F,), and we set Nz = ¢°% where degx is the size of the orbit. In other words, the
closed points are the points over E modulo equivalence under the Galois group. This is the same
as the closed points of the scheme, or the maximal ideals of the underlying rings.

We have that (x(s) = F(q™*) for some F € Q[[T]]:

F(T)= [ (1—1%&")~". (7.6)

z€|C|
Taking logarithms, doing some manipulation, and taking exponents, we get

F(T) = exp (Z #C(F‘I”)T”> (7.7)

n

because x € C(Fy») if and only if z is in the orbit of Gal(F,/F,) with r|n.

Definition 7.5. The zeta function Zc(T') of a smooth projective curve C/F, is the F(T') defined
above.

Theorem 7.6. Let E/F, be an elliptic curve, and let #E(F,) =q+1—a. Then

1—aT + qT?
1-T)1 —qT).

Zp(T) = (7.8)

Proof. We use a convenient formula for #E(F»). Let Frob, = ¢. By Hasse, #E(F,;) = ¢+1—tr(¢),
and we have that tr(¢) = a, deg ¢ = q.
From sheet 2, we have that ¢?> — a¢ + ¢ = 0 in End(FE). Iterating ¢ gives

"2 — g™t + g™ =0 (7.9)
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Taking traces gives ani2 — a1an+1 + ga, = 0, where a,, = tr(¢™). This is a recurrence relation
which we can solve to find a,, = a™ + " where a, 8 are roots of X2 — aX + ¢ = 0. In particular,
we have |af, |3] < /. Then

#HEFp)=q¢"+1—ay. (7.10)
Thus
" +1—ay,,.,
Zg(T) = exp (; %T )

1—a T+ qT?
_ - wd gl (7.11)

(1-T)(1—4T)
after some derivation. O

8 Formal Groups

Definition 8.1. Let R be a ring equipped with the I-adic topology R is complete with respect to
1Iif
1. Hausdorff: (1,5, I" = 0.
2. Every Cauchy sequence converges.
Remark 8.2. If z € I, then 1/(1—x) = 14z 4224 - - in the completion of R, so U!) = 14T C R*.
We care about the rings Z,, F[[t]], Z[[t]].

Lemma 8.3 (Hensel). Let R be complete in the I-adic topology, F € R[z], and s € Z¢. Suppose
a € R satisfies F(a) 20 mod I°, F'(a) € R*. Then there exists a unique b € R such that F(b) =0
and b= a mod I°.

Proof. After renormalizing, can assume a = 0 and F’(0) € UM,
Take 29 =0, Tp41 = 2, — F(2,), and the limit satisfies our conditions.
Uniqueness: exercise, change wu. O

Let E be our elliptic curve with its ugly projective Weierstrass equation. We look at the affine
piece Y # 0, setting t = —X/Y and w=—-Z/Y :

w = t3 + ajtw + ast?w + azw?® + astw?® + agw® = f(t,w). (8.1)

Out goal is to solve this equation for a general w(t) € Zlay,...,as][[t]] = R with maximal ideal

I = (t). We want to find a root of F(X) = X — f(¢t,X) € R[X]. We can do this with Hensel’s
lemma. Take s = 3,a = 0, then F(0) =0 mod 3, and F'(0) =1 mod t. So we get a solution w(t)
such that w(t) = f(t,w(t)) and w(t) =0 mod ¢3.

Remark 8.4. Taking v = 1 in the proof of Lemma [8.3| gives w(t) = lim,, oo wy (t), with wo(f) =0
and wy41(t) = f(¢, ws(t)).

We in fact have that
w(t) = t3(1 4+ Ayt + Agt> +---) (8.2)

where A; = a1, and the other A;s involve the coefficients a;.
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Lemma 8.5. Let R be an integral domain, complete with respect to I. Let E be an elliptic curve
with a; € R, K = Frac R. Then

~

E(I)={(t,w) e BE(K) | t,we I} (8.3)
is a subgroup of E(K).
Remark 8.6. We have that

E(I) = {(t,w(t)) € B(K) | t € I}. (8.4)

This is because (t,w(t)) € I because if t € I, then w(t) € I by completeness. Also, if (t,w) € E(K)
and ¢ € I, then the uniqueness part of Hensel’s lemma forces w = w(t).

Proof of Lemma[8.5 Taking (t,w) = (0,0), we have that O € E(I) So it suffices to show that if
Py, P, € E(I), then —P; — P, € E(I). We do this by calculating that the coefficients of —P; — P»
are in I. A lot of bash. O

Taking R = Zlay, . ..,a6)[[t]], I = (t), Lemma gives that (t,w(t)) € E(I) has an inverse in
I, so that there exists ¢ € R with +(0) = 0 and

(=1t w(t) = (w(t), w(e(t)))- (8.5)

Similarly, taking R = Z[a1, ..., as][[t1,t2]] and I = (t1,t5), Lemmal[8.5| gives that there exists F € R
with F'(0,0) = 0 and

(t1, w(t1)) + (t2, w(ta)) = (F(t1, t2), w(F(t1,12))). (8.6)

We have that F(X,Y) = X +Y — a1 XY — aa(X?Y + XY?) + ... F is a formal group law, and
satisfies the properties below.

Definition 8.7. Let R be a ring. A (1-dimensional, commutative) formal group over R is a power
series F(X,Y) € R[[X,Y]] satisfying

(i) Commutativity: F(Y,X) = F(X,Y).

)
(i) Identity: F(X,0) =X, F(0,Y) =Y.
(ii) Associativity: F(X,F(Y,Z)) = F(F(X,Y), Z).
(iv) Inverse: there exists «(X) € R[[X]] such that ¢(0) =0 and F(X, (X)) =0.
Property (iv) follows from (i)-(iii).

Example 8.8. The additive formal group (@;(X ,Y) = X +Y associated with the group variety
Gy,

The multiplicative group law G,, = X +Y 4+ XY = (1+ X)(1 4+ Y) — 1 associated with the
group variety Gy, .

The power series associated to an elliptic curve.
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Definition 8.9. Let F,G be formal groups over R given by power series F' and G. A morphism
f:F — G is a power series f(X) € R[[X]] such that f(0) =0, and f(F(X,Y)) = G(f(X), f(Y)).

F and G are isomorphic if there exist f : F — G and g : G — F such that fog(X) =go f(X) =
X.

Theorem 8.10. If char R = 0 then any formal group F over R is isomorphic to @a over R ®z Q.
More precisely:

(i) There is a unique power series

logT =T + %T2+%T3+m (8.7)
with a; € R such that
log(F(X,Y)) =log X +logY (8.8)

(i) There is a unique power series

by, o b3
SRV AR (8.9)

with b; € R such that exp(log(T)) = log(exp(T)) =T

Proof. (i) We write Fy(X,Y) = 2£2(X,Y).
First we show uniqueness. Let p(T) = (logT) = 1+ asT + a3T? + - --. Differentiating (8.8))
with respect to X gives

exp(T) =T+

p(F(X,Y))FL(X,Y) = p(X) +0. (8.10)

Putting X = 0 gives p(Y)F1(0,Y) = 1. So p(Y) = F1(0,Y) L.

p is uniquely determined, so a; is uniquely determined, so log T is uniquely determined.

Now to show existence. Let p(T) = F1(0,T)"! = 1+ aT + a3T? + - - -, for some a; € R. Set
logT =T + ay/2T?% + - --. Then

F(F(X,Y),Z) = F(X,F(Y, Z)) (8.11)

by associativity. Taking partial derivatives by X gives

F(F(X,)Y),2)F\(X,Y)=F(X,F(Y, 2)). (8.12)
Setting X = 0 gives
F(Y, Z)Fi(0,Y) = Fy (0, F(Y, Z)) (8.13)
Thus we have that
Fi(Y, Z)p(Y)~* = p(F(Y, 2))"! (8.14)

sop(Y) = F1(Y, Z)p(F (Y, Z)). Taking anti-derivatives/integrating gives
log(F(Y,Z)) =1log(Y) + h(Z) (8.15)

for some power series h(Z) € R[[Z]]. But since F(Y,Z) = F(Z,Y), we have that h(Z) = log Z,
proving (8.8).

Part (ii) follows immediately from Lemma below, with the exact calculation of exp being
doing in Sheet 2, question 12. O
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Lemma 8.11. Let f(T) = oT + --- € R|[T]] with a € Rx. Then there exists a unique g(T) =
a=YT + -+ R[[T]] such that g(f(T)) = f(g(T)) =T.

Proof. We construct a series of polynomials g, (T") such that lim g,,(T) = g(T') satisfies f(g(T)) =T.
In particular, we have f(g,(T)) = T mod T"*!, so f(gn_1(T)) = T + bT"™ mod T"*!. We put
gn(T) = gn-1(T) — b/aT™, and we can check that this works. We can then find h(7T) such that
g(h(T)) = T, and then we have that f(g(h(T))) = f(T) = h(T), so g(f(T)) =T as well. If ¢'(T)
is another inverse, we have that ¢'(f(9(T))) = g(T) = ¢'(T). O

Example 8.12. If F = @m the multiplicative group law, then log, exp are the usual power series
but shifted by 1:

log(T) = log(T + 1)
exp(T) = exp(T) — 1 (8.16)

where the LHS is the formal group law functions and the right hand side is the ordinary Taylor
series.

Definition 8.13. Let F be a formal group law given by the power series F(X,Y) € R[[X,Y]].
Suppose R is a ring, complete with respect to the ideal I. For x,y € I, we set t®ry = F(x,y) € I.
It is easy to verify using the formal group law axioms that

F(I) =, &r) (8.17)
is an abelian group.

Example 8.14. G,(I) = (I,+) and G,,(I) = (1+ I, x) = (UM, x) and E(I), the subgroup of
E(K) defined in Lemma

Corollary 8.15. Let F be a formal group over R and n € Z. Suppose n € R*. Then
(i) [n] is an isomorphism of formal groups.

(i) If R is complete with respect to I, then the multiplication by n map F(I) — F(I) sending
x — nx is an isomorphism of groups. In particular, F(I) has no n-torsion.

Proof. (i) We have that [1](T) = T, so [n](T) = F([n — 1]T,T) for n > 0, and for n < 0, we use
[—1)(T) = «(T), and we can set [-n](T) = F([-n + 1)(T),(T)).

Since F(X,Y) = X +Y mod deg2, we have that [n]T = nT mod deg?2 by induction, and by
Lemma we have that [n]T is invertible so it is an isomorphism.

(ii) It is easy to see that a morphism of formal groups F — G is a morphism of groups F(I) —
G(I), and an isomorphism of formal groups is an isomorphism of groups. O

9 Elliptic curves over local fields

Let K be a field which is complete with respect to the discrete valuation v : K* — Z. We define
the ring of integers Ok with maximal ideal 7O and the residue field k = Ok /7O in the usual
way. Assume that char K = 0 and chark = p > 0. For instance, take K = Q,, Ox = Z, and
k=TF,.

Let E/K be an elliptic curve.
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Definition 9.1. A Weierstrass equation for E with coefficients a1, ..., aq is integral if a; € Ok.
The equation is minimal if v(A) is minimal among all integral Weierstrass equations.

Remark 9.2. 1. Rescaling any Weierstrass equations appropriately gives an integral one.
2. If aq,...,a6 € Ok, then we easily see that A € Ok, so v(A) > 0.

3. If char k # 2, 3 then there exists a minimal Weierstrass equation of the form y? = 3 +ax +b.
This is because we need 1/2 and 1/3 € O, s0 2,3 € Ok x, s0 2,3 € k*.

Lemma 9.3. Let E/K have integral Weierstrass equation y* + ayxy + azy = =3 + asx? + asx + ag

and let 0 # P = (z,y) € E(K). Then either x,y € O or v(z) = —2s and v(y) = —3s for some
s>1.

Compare this with Sheet 1, Question 5.
Proof. Just do some valuation calculations. O

Since K is complete, O is complete with respect to any ideal I = 7"Ok for r > 1. Let E/K

be an elliptic curve and fix a minimal Weierstrass equation for E. We then get a formal group F,
and taking I = 77Ok, we get a group

T 1

E(n"Ok) = {(z,y) € B(K) | (—y, —y) e " Ok} U{0}

@ e B o (2) 0 (2) 2 rhu (o)

{
{(z,y) € E(K) [ v(z) = =2s,0(y) = —3s,5 > r} U{0}
{(z,y) € E(K) | v(z) < =2r,0(y) < =3r} U{0}

(9.1)

so E(7"Of) is the subgroup of E(K) with valuations sufficiently negative, and we can set E(7"Of) =
E.(K). We have a filtration

E(K)DEl(K)DEQ(K)D (92)
More generally, for F a formal group over Ok, we have a filtration
F(rOk) D F(7*Or) D -+ (9.3)

We claim that for r sufficiently large, F (7" Ok) = (Ok,+) and F(1" Ok )/ F(n"T1Ok) = (k, +) for
all » > 1.

Theorem 9.4. Let F be a formal group over Ok . Lete = ex g, = v(p) be the absolute ramification
index. If r > e/(p — 1), then we have an isomorphism

log : F(7"Ok) — Go(n"Ok) (9.4)

with inverse isomorphism R
exp: Gu(n"Ok) = F(n"Ok) (9.5)

It follows that F(n"Ok) = (7" Ok, +) = (Ok, +)
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Proof. For x € " Ok, we must show the power series log z and exp x converge to elements in 7" O .
We do this by straightforward calculation and the integer trick. O

Lemma 9.5. The definition of a formal group gives F(X,Y)=X+Y +XY(---). Soifx,y € Ok,
then F(n"x,7"y) = 7" (x +y) mod 7" +1.

Therefore we have a surjective group homomorphism F(n"Ok) — (k,+) by 7" — x mod =
which has kernel F(n™ 1 O).

Corollary 9.6. If |k| < oo, then F(nOk) has a subgroup of finite index isomorphic to (O, +).
Notation: We write T for the image of « under the reduction mod 7 map O — Ok /7O = k.

Proposition 9.7. Let E/K be an elliptic curve. Then the reduction mod 7 of any 2 minimal
Weierstrass equations for E defines isomorphic curves over k.

Proof. Suppose the Weierstrass equations are related by transformation [u;r, s, t] with u € K*|
r,s,t € K. Then A; = u'2A,, and since both are minimal we have that u € OJ. The transforma-
tion formula for a; and b; and the fact that O is integrally closed implies that r, s, t € Ok as well.
Then the Weierstrass equations for the reduction modulo 7 are related by [u;7,5,t] and u € kx
and 7,5,t € k. O

Definition 9.8. The reduction E/k of E/K is defined by the reduction of a minimal Weierstrass
equations.

The reduction is well-defined, but is it an elliptic curve?

We say that E has good reduction if E is nonsingular (so it is an elliptic curve).

We say that E has bad reduction otherwise.

For an integral Weierstrass equation, if v(A) = 0, then the equation is minimal, and A # 0, so
we have good reduction.

If 0 < v(A) < 12, then the equation is minimal, so we have bad reduction.

If 12 t v(A), then we always have bad reduction. But if 12|v(A), then the equation might not
be minimal.

There is a well defined map

P?(K) — P?(k)

(x:y:2)—=(T:7:%) (9.6)
where we choose representatives (z : y : z) such that z,y,2z € Ok and at least one of z,y, z is in
Ok.

So we can restrict to get a map E(K) — E(K) by sending P — P. If P = (z,y) € E(K),

then by Lemma either z,y € Ok so P = (Z,7) or v(x) = —2s,v(y) = —3s for some s > 1, so
P=(z:y:1)=(m%z: 73y : 73) = (0: 1:0), the point at infinity.
So E(mOk) = E1(K) = {P € E(K)|P = 0}, the “kernel of reduction”.

Definition 9.9. Let E be the reduction of E mod 7. We set

L E F has good reduction
" 1E\{#} E has bad reduction

where # is the singular point of E.
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The chord and tangent process still defines a group law on E,s. The main idea is that the chord
and tangent process will never hit a singular point. N

In the case of bad reduction, we have that either Ens 2 G,,, in which the _isomorphism of
varieties is defined K or over a quadratic extension of K. Or, we have that Eps 2 G,, in which the
isomorphism is defined over K.

For simplicity, assume that char k # 2. Then we have that E : y% = f(z), and deg f = 3. Then
f(z) either has a double root, which is a node, and we say that E has multiplicative reduction, or
f(z) has a triple root, which is a cusp, and we say that E has additive reduction.

If E has multiplicative reduction and the isomorphism Ens &~ @m is defined over K, then we
say that F has split multiplicative reduction.

In the case of additive reduction, we have that our curve looks like y? = 3.
isomorphism

We have an

Ep — Ga
(t2,t73) ¢t
00+ 0
(z,y) = a/y (9.8)

Now, let az + by = 1 be a line not going through the origin, and write P; = (x;,y;) for the three
points of intersection with E,s and t; = ;/y;. Then 23 = y? = y?(az; + by;). Dividing out by 3,
we get t3 —at; — b = 0, so t1,ta,t3 are roots of T3 — aT — b, and the root all sum to zero. Since
t1 +ta+t3 =0and P, + P> + P; = 0, we have a valid chord and tangent process, which defines a
group homomorphism. We can check that it is an isomorphism.

In the node case: removing a node is like removing 2 points because the curve passes through
the node twice, so Fys = P!\ {0, 00} = G,,. Details on example sheet 3.

Definition 9.10. Define Ey(K) = {P € E(K) | P € En(K)}. If E has good reduction, then
Ey(K) = E(K).

Proposition 9.11. Ey(K) is a subgroup of E(K) and reduction mod 7 is a surjective group ho-
momorphism Ey(K) — Ens(K).

_ Note that if E/K has good reduction, then this is a surjective group homomorphism E(K) —
E(K).

Proof. First we will show that we have a group homomorphism Ey(K) — Eyus(K). A line in P2
defined over K has equation ¢ : aX + bY + ¢Z = 0, with a,b,c € K. We may assume that
min(v(a), v(b),v(c)) =0, so reduction mod 7 gives a line

(:aX +bY +¢Z =0. (9.9)

If P\, Py, Ps € E(K) with P, + P, + P3 = 0, then these points line on a line £. Thus Py, P, Ps line
on /. If P,P, e EHS(K), then p3 € EHS(K) as the third point of intersection cannot be singular
(as then the line would intersect the cubic at “4” points). So if Py, P> € Ey(K), then P € Ey(K)
and P, + P, + P = 0. We can check that this still works when one of the reductions is the point
at infinity. Thus we have a group homomorphism.

Now to check surjectivity. Let f(z,y) = y?> 4+ a1zy +asy — (23 +---) and let P € E o (K)\ {0},
so P = (%o, o) for some (z9,y0) € Ok. Since P is nonsingular, either (i) %(mo,yg) # 0 mod 7 or
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(ii) %(90071/0) # 0 mod 7. WLOG assume (i), case (ii) follows similarly. We put g(¢) = f(¢,30) €
Okl[t]. Then g(xzg) = 0 mod 7, and ¢'(x¢) € Ok by assumption (i). By Hensel’s lemma, then
there exists b € Ok such that g(b) = 0 and b = x9 mod 7. Then (b,yo) € E(K), and has reduction
mod 7 equal to P. O

Recall that for r > 1, we put
E.(K) = E(r"Ok) = {(z,y) € E(K) | v(z) < —2r,v(y) < —3r} U {0}. (9.10)

Then we have a filtration
E(K)D Ey(K)DE((K)D--- (9.11)

where for r > e/(p—1) we have that E,(K) = (Ok,+). We also have that E;(K)/E;41(K) = (k,+)
for i > 1 by Proposition we have that

Eo(K)/E1(K) = Eps(K). (9.12)

The question remains: what is E(K)/Ey(K). In general, this requires a lot of algebraic geometry
to calculate, but we can prove it is finite fairly easily.

Lemma 9.12. If |k| < oo, then Eo(K) C E(K) has finite index.

Proof. If E has good reduction, we are done as F(K) = Eg(K). So assume E(K) has bad reduction.
If |k| < 0o, then Ok /7" Ok is finite for all » > 1. So

OKgli_I}lOK/ﬂ'roK (913)

is a profinite group, and hence compact. Then since P"(K) is the union of the standard open
affines, it is compact for the m-adic topology (as the affines are themselves compact).

Then E(K) C P?(K) is a closed subset, and hence compact. So E(K) is a compact topological
group, so if Fy(K) is open, then it is of finite index.

If F has singular point (Zo, 7o), then

E(K)\Eo(K) = {(2,y) € E(K) | v(x —x0) > 1,0(y — yo) > 1}. (9.14)
This is a closed set, so Ey(K) is open. O
Definition 9.13. Set ¢ (E) = [E(K) : Eo(K)], this is called the Tamagawa number.
If we have good reduction, then cx(E) = 1. On sheet 3, we will show the converse is false.

Remark 9.14. It can be shown that if E has split multiplicative reduction, then cx (E) = v(A).
Otherwise, cx (E) < 4. The proofs of these facts work with the minimal Weierstrass equation.

Summing up all the results up to this point, we deduce the following.

Theorem 9.15. If [K : Q] < oo, then E(K) contains a subgroup of finite index isomorphic to

We next recall some facts about local fields. Let L/K be p-adic fields with [L : K] = n, with
residue fields kg, /k of degree [k : k] = f. If x € K*, we have that vy (z) = evg(z). This gives a
commutative diagram
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K*x "% .7

JLX Je
Lx %% .7
We have that [L : K] =ef, and if L/K is Galois, then we have a reduction

Gal(L/K) — Gal(kr/k) (9.15)
with kernel I(L/K) of size e. We have an exact sequence.
1—=I(L/K) — Gal(L/K) — Gal(kp/k) — 1 (9.16)

If L/K is unramified, then it is Galois, and we have a classification using roots of unity, Frobenius,
etc. because L/K is determine pretty much uniquely by the isomorphic extension &z /k. In partic-
ular, if k,,,/k is the unique degree m extension of k, then K,,/K is a unique degree m unramified
extension of K, where uniqueness is determined in some separable closure.
We have
K% = UleKm C K*°P (917)

which is the maximal unramified extension. Unfortunately, K" is not complete.

Theorem 9.16. Let K be a p-adic field. Let E/K be an elliptic curve with good reduction. If
P e E(K), and ptn, then
K([n]™'P)/K (9.18)

is unramified, where K ([n]~'P) is the smallest field containing x,y for each (x,y) € [n]~'P. We
consider the n-torsion points points [n] =1 P over K.

Proof. For each m > 1, since E has good reduction, there exists a short exact sequence
0— B (Kp) — E(Ky) = E(ky) — 0. (9.19)

Taking the union over all m (we avoid completing K" this way) gives a commutative diagram with
exact rows

0 —— B (KY) ——— E(K™) E(k) 0
0 ——— Ey(KY) ——— E(K™) E(k) 0

The first vertical arrow is an isomorphism by Corollary because n € Ok, as n € Ok, for
m large, because p t n.

The last vertical arrow is a nonconstant morphism of smooth projective curves, so it is surjective.
The kernel is (Z/nZ)? by Theorem because p 1 n. Thus by the snake lemma, we have that the
middle term is surjective and the kernel is (Z/nZ)2. Thus we have an exact sequence

0 — (Z/nZ)* = E(K"™) = E(K"™) — 0 (9.20)

Therefore if P € E(K), then there exists Q € E(K"™) such that [n]Q = P and by the group law we
have that
n]"'P={Q+T |T € E[n] = E[K"](n)} (9.21)

so the extension is unramified because all the coordinates lie in an unramified extension. O
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10 Elliptic curves over number fields I: The torsion subgroup

Let K be a number field, and p a prime of K (so a prime ideal of Ok . Then completing at K gives
a local field K, with ring of integers O,, and residue field k, = O, /p. We say that p is a prime of
good reduction for E/K if E/K, has good reduction.

Lemma 10.1. There exists only finitely many primes of bad reduction, and the all divide A(FE).

Proof. Take a Weierstrass equation for E/K with ay,...as € Ok. Since E is nonsingular, we have
that A # 0 and A € Ok. Thus we can factor

(A) =p1" P (10.1)
If pt A, then vy (A) = 0, so our Weierstrass equation is minimal over K, and E has good reduction
at p. O

Note that the converse is not true: there could be primes dividing the discriminant which have
good reduction. The problem is Ok might not be a PID, so you can’t get minimality at all the
different places. But if Ok is a PID, you can.

Jack notes that you should be able to do this if you work with two different Weierstrass equations,
which feels right. This is sort of the result that any ideal in a Dedekind domain can be generated
by 2 elements.

Definition 10.2. Let A be a finitely generated abelian group. Then A =2 T x Z", where T is the
finite torsion group, and r is the rank of A.

Lemma 10.3. Let E(K)iors be the torsion subgroup of E. Then E(K )iors i finite.

Proof. For all primes p, E(K,) has a subgroup A of finite index isomorphic to (O, +). Since A is
torsion free, we have an inclusion of finite groups

E(K)tors € E(Kp)tors € E(K)/A (10.2)
50 E(K )tors 1s finite. O

If we take p a prime of good reduction, we can determine E(K )iops explicitly.

Lemma 10.4. Let p be a prime of good reduction for E/K, and let p t n. Then reduction mod p
gives an injective group homomorphism

E(K)[n] < E(ky) (10.3)

Proof. By Proposition E(K,) — E(ky) is a group homomorphism with kernel E;(K,). But
since p 1 n, by Corollary E1(K,) has no n-torsion because xn is an isomorphism. Thus we
have injections

E(K)[n] < E(Ky)[n] — E(K,)/E1(K,) = E(k,) (10.4)
as desired. O

Example 10.5. Let E/Q have equation y? +y = 2® — 22, A = —11. So E has good reduction at
p # 11, and we can calculate
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7 10

and Lemma, m gives that #FE(Q)tors|5, and in
E(Q)tors = Z/5Z.

Example 10.6. Let E/Q has equation y? +y = 2% + 22, A = —43. So we have good reduction at
p # 43. We calculate

=

act the point (0,0) has nontrivial 5-torsion, so

p |2 3 5 7 11 13
EF, |5 6 10 8 9 19

and thus the torsion is trivial. Thus P = (0,0) must be a point of infinite order, so #E(Q) = oo,
so we have found an elliptic curve with infinitely many rational points.

Example 10.7. Let Ep be the congruent number elliptic curve given by y? = 23 — D%z = f(x),
and let D € Z be squarefree. Then A = 26D% and if p{ 2D (so we have good reduction), then

#Ep(F) =1+ > (( ) + 1) (10.5)

z€F,

where (2) is the Legendre symbol. If p = 3 mod 4, then since f is odd, #Ep(F,) = p+ 1 since

(_?1) = —1. We have that Ep(Q)[2] = (Z/2Z)?, so if m = #Ep(Q)iors, then 4|m|p + 1 for all

sufficiently large primes p (for all p{2mD). Then m = 4 by the PNTAP.

Thus rank Ep(Q) > 1 if and only if 32,y € Q with y # 0 such that y?> = 2> — D%z as in this
case Ep(Q) has a point which is not 2-torsion, so it must have infinite order. Further, this is the
case if and only if D is a congruent number (see Lecture 1).

Lemma 10.8. Let E/Q be given by a Weierstrass equation with ay,...,as € Z. Suppose 0 #T =
(3372/) € E(Q)tors- Then

(i) 4z,8y € Z
(i) If 2lay or 2T # 0, then xz,y € Z.

Proof. The Weierstrass equation defines a formal group law E over Zy. For r > 1, we have that

E(p'Zy) = {(x,y) € Qplup(z) < —2r,v,(y) < ~3r} U {05} (10.6)

Theorem [9.4] implies that E(p"Z,) = (Zp, +) if r > 27 since the ramification index is 0 because

we are working over Q. Then if p = 2, we can take r = 2, otherwise we can take » = 1. Thus if
0#T = (z,y) € E(Q)tors, then va(z) > —2,v2(y) > —3, and vp(x), vp(y) > 0 if p > 2. This prove

(i)-

For (i), if T € E(2Z,), then we must have vy(z) = —2,vs(y) = —3 exactly by (i). Since
(2Z2)/E( 2) = (Fa,4) and E(4Z,) is torsion free, we get that 27" = 0. Also, since (z,y) =
T =-T = (x,—y — a1x — a3), we have that y — (—y — a1z — a3) = 2y + a1 + a3 = 0, so

8y + a1(4x) + 4az = 0, so ap is odd. So if 2T # 0 or a; is even, then T ¢ E(?Zg), sox,y €Z. O

Example 10.9. Part (i) is not completely vacuous. Take y?+xy = 23 +4x+1. Then (—1/4,1/8) €
E(Q)[2], and we can see that a1 is odd and the point has 2-torsion.
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Theorem 10.10 (Lutz-Nagell). Let E/Q be an elliptic curve with equation y* = x® + ax + b,
a,b € Z. Suppose 0 # T = (x,y) € E(Q)tors- Then z,y € Z and either y =0 or y* | (4a® + 27b?)

Proof. By Lemma x,y € Z. If 2T = 0, then y = 0. Otherwise 2T # 0 so 2T = (x2,y2) €
E(Q)tors- By Lemma 9,2 € 7.

Since z = <%;)> — 2z, we have that y|f'(z) since 22 € Z. Since E is nonsingular, f(x) and

f'(z) are coprime, so f(z), f'(z)? are coprime. Pulling a rabbit out a hat, we have the identity
(322 4 4a) f'(x)* — 27(2® + ax — b) f(x) = 4a® + 27D°. (10.7)
Since y|f’(z) and y? = f(x) we get that y? | (4a® + 27b?). O
Remark 10.11. Mazur showed that if £/Q is an elliptic curve, then
E(Q)tors € {Z/nZ | 1 <n<12,n#£ 11} U{Z/2Z x Z/2nZ | 1 < n < 4} (10.8)

and in fact, all of these torsion subgroups occur.

11 Kummer theory

K a field, char K t n. Let u, be the group of nth roots of unity and assume pu,, C K.

Lemma 11.1. Let A C K*/(K*)" be a finite subgroup. Let L = K(3/A). Then L/K is Galois,
and Gal(L/K) = Hom(A, p,).

Proof. Since u, C K, L/K is normal. Since char K { n, L/K is separable. Thus L/K is Galois.
Define the Kummer pairing (a bilinear form)
() Gal(L/K) x A — pp,
(0,) = o(V3)] V5 (11.1)
First we will show it is well-defined. If a,8 € L with o™ = " = z, then (a/B)" = 1, so
a/f € pn C K, s0 o(a/B) =a/B, soo(a)/a=0c(8)/B.

To show it is bilinear, we have

(oT,2) = or({/z)
vz
_oTyr TYx
= {0, x)(T, x) (11.2)

since (7 {/x)™ = x, so 7 {/x is also an nth root of z. We can also calculate that (o, zy) = (o, x)(0,y).
To show it is nondegenerate, let o € Gal(L/K). If (o,z) = 1 for all z € A, then o /o = Y«
for all x € A, so o = id.
If z € K* and {0,z) = 1 for all ¢ € Gal(L/K), then o {/a = /a for all ¢ € Gal(L/K), so
Wx € K, sox € (K*)" is the identity in A. Then we get injective group homomorphisms

Gal(L/K) — Hom(A, un) (11.3)
A — Hom(Gal(L/K), up). (11.4)
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We want to show that these are isomorphisms. By 7 Gal(L/K) is abelian and of exponent
dividing n.

Recall that the exponent of an abelian group G is the least common multiple of the orders of all of
its elements. It is a fact that if G is a finite abelian group of exponent dividing n, then Hom(G, p,,) =
G, although this isomorphism is non-canonical. Thus we have injections Gal(L/K) — A and

A — Gal(L/K), so these are isomorphisms. O
Example 11.2. We have that Gal(Q(v/2,v/3,V5)/Q) = (Z/27)*.

Theorem 11.3 (Main theorem of Kummer theory). There is a bijection

{finite subgroups A C K> /(K*)"} <> {finite abelian extensions L/K of exponent dividing n}
(11.5)

where we send A — K(/A) with inverse LK + (L*)" N K*) /(K*)".

Proof. Let A € K*/(K*)™ be a finite subgroup. Let L = K({/A) and A’ = ((L*)" N K*) /(K*)™.
Clearly, A C A’, so K({/A) C K(V/A") C L, so K(V/A) = K({¥/A’) by Lemma|11.1} so A = A’

Now let L/ K be a finite abelian extension of exponent dividing n. Let A = ((L*)"* N K*) /(K*)".
Then K({/A) C L, and we want to show equality. Let G = Gal(L/K). Then the Kummer pairing
gives an injection A — Hom(G, p,,), and we want to show that it is surjective.

Suppose that it is. By Lemm we have that [K(V/A) : K] =|A| = |G| = [L : K], so since
K({/A) C L, it follows that K({/A) = L so we are done.

Now to show that it is surjective. Let x : G — pu, be a group homomorphism, so y €
Hom(G, pi,,). Then since elements of the Galois group are linearly independent, we have that

there exists a € L™ such that
Y= Z x(1) "' 7(a) # 0. (11.6)
TEG
Let 0 € G. Then
o(y) =x(o) -y (11.7)
since p, C K. Thus o(y"™) = y™, so z :=y" € K™, so z(K*)® € A. We have that

vioo IW oV (11.8)
y Y
so the injection A — Hom(G, p,,) sends x — x by the definition of the Kummer pairing. O

Proposition 11.4. Let K be a number field, and p, C K. Let S be a finite set of primes of K.
There are only finitely many extension L/K such that

(i) L/K is a finite abelian extension of exponent dividing n.
(i) L/K is unramified at allp ¢ S.

Proof. By Theorem L = K(Y/A) for some A ¢ K*/(K*)" a finite subgroup. Let p be a
prime of K Then pOp = P5* --- P, and if x € K represents an element of A, then

nog, (V) = vp, (z) = eivy (). (1L.9)
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Ifp ¢S, then e; =1 for all ¢, so

vp(z) =0 modn (11.10)
Then A C K(S,n), where
K(S,n)={z e K*/(K*)" |vy(x) =0 mod n Vp ¢ S} (11.11)
So if K (S, n) is finite, we are done. We prove this in the next lemma. O
Lemma 11.5. Let
K(S,n)={zec K*/(K*)" |vp(z) =0 modn Vp ¢ S} (11.12)

Then K(S,n) is finite.
Proof. The map

K(S,n) — (Z/nZ)!"
z = (vp(x) mod n)pes (11.13)

is a group homomorphism because v, is a group homomorphism, and the kernel is K (0, n). Since
|S| < oo, it suffices to prove the lemma with S = (.

If x € K* represents an element of K((),n), then (x) = a™ for some fractional ideal a, because
vp(x) =0 mod n for all p. There is a short exact sequence

0= 0% /(O)" = K(0) = Clg[n] — 0
2(K*)™ v [a] (11.14)

Since | Cly, | < oo and O is a finitely generated abelian group by Dirichlet’s unit theorem, K (0, n)
is finite. 0

12 Elliptic curves over number fields II: The Weak Mordell-
Weil Theorem

Lemma 12.1. Let E/K be an elliptic curve and L/K a finite Galois extension. The natural map

E(K)/nE(K) — E(L)/nE(L)
P+nE(K)— P+nE(L) (12.1)

has finite kernel.

Proof. For each element of the kernel, pick a coset representative P € E(K), and then P € nE(L)
so there exists @ € E(L) such that nQ = P. For any o € Gal(L/K), we have that

n(cQ —Q)=ocP — P =0, (12.2)

so 0@ — @Q € E[n]. Since Gal(L/K) and E[n] are finite, the set of maps from Gal(L/K) to E[n] is
finite. We can define a map from our kernel to this set of maps by

P+nE(K)w— (60— 0@ —Q). (12.3)
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If we show that this map is injective, then the kernel is finite. Suppose P;, P» € E(K), and P, = nQ;

for Q; € E(L). Then if 0(Q1) — Q1 = 0Q2 — Q2 or all 0 € Gal(L/K), then (@1 — Q2) = Q1 — Q2
50 Q1 — Qs € E(K), s0 P — Py € nE(K) so P, + nE(K) = Py + nE(K). O

Theorem 12.2 (Weak Mordell-Weil Theorem). Let K be a number field, E/K an elliptic curve,
and n > 2 an integer. Then E(K)/nE(K) is finite.

Proof. By Lemma [I2.1] we may replace K by a finite Galois extension. So WLOG we may assume
pn C K and Eln] C E(K). Let

S = {p|n} U {primes of bad reduction for E/K}. (12.4)

For each P € E(K), the extension K([n]~!P/K) is unramified outside S by Theorem Since
Gal(K/K) acts on [n]~!P, it follows that Gal(K/K([n]~'P)) is a normal subgroup of Gal(K /K)
and hence K([n]7'P)/K is a Galois extension. Let @ € [n]~!P. Since E[n] C E(K), K(Q) =
K([n]71P). We have a map

Gal(K(Q)/K) — E[n] = (Z/nZ)?
oc—0oQ—Q (12.5)

This is a group homomorphism, as

0TQ —Q=0(1Q — Q) + (0Q — Q)
=(1Q - Q)+ (cQ - Q) (12.6)

because 7Q) — Q € Eln| C E(K). It is injective because if @ = @, then o fixes K(Q), so 0 = 1.
So K(Q)/K is an abelian extension of exponent dividing n, unramified outside S.
Proposition shows that as we vary P € E(K), there are only finitely many possibilities for
K(Q). Let L be the compositum of all such extensions K(Q)/K. Then L/K is finite and Galois
and E(K)/nE(K) — E(L)/nE(L) is the zero map. So by Lemma[12.1] |E(K)/nE(K)| < co. O

Remark 12.3. If k =R, C, or [K : Q,] < 00, then E(K)/nE(K) is finite yet E(K) is uncountable,
so not finitely generated.

Remark 12.4. If K is a number field, then there exists a quadratic form, the canonical height
h: E(K) — R>( with the property that for any B > 0, {P € E(K)|h(P) < B} is finite.

We will study the height later and prove these properties, but first assume them and prove the
Mordell-Weil Theorem.

Theorem 12.5 (Mordell-Weil Theorem). Let K be a number field, E/K an elliptic curve. Then
E(K) is finitely generated.

Proof. Fix an integer n > 2. Then the weak Mordell-Weil theorem implies that |E(K)/nE(K)| <
0. Pick coset representatives Pi,..., P,. Let ¥ = {P € E(K) | h(P) < max; h(P;)} which is
finite. We claim that ¥ generates E(K). If note, then there exists P € FE(K)\(X) of minimal
height (the things with smaller height then a given P are a finite set). Then P = P; + nQ for
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1<i<m, Qe E(K). Note that Q € E(K)\(X). But the minimal choice of P and the fact that h
is a quadratic form gives

< n*h(Q)

= h(nQ)

=h(P - F;)

<h(P—P)+h(P+P)

= 2h(P) + 2h(P)) (12.7)
which is a contradiction. O

13 Heights

For simplicity, K = Q. These results generalize to K, but let’s not worry for now. We will remark
about this later.

For a given P € PYN(Q), we can write P = (ag : a; : --- : a,) with ag,...,a, € Z and
ged(ao, - . ., an) = 1. We define the height of P to be

H(P) = max |a; (13.1)

0<i<n
Lemma 13.1. Let f1, fo € Q[x1,x2] be coprime homogeneous polynomials of degree d. Let
F:P'—P?
(z1:22) = (fiz1, 22) ¢ folzr, 22)) (13.2)
Then there erists c1,co > 0 depending on fi, f2, such that for all P € P*(Q),
cH(P)? < H(F(P)) < coH(P)? (13.3)

Proof. WLOG we may assume fi, fo € Z[x1, 22| because H(NF(P)) = H(F(P)).
For the upper bound, write P = (a3 : az2), a1, a2 € Z with (a1,a3) = 1. Then

H(F(P)) < max(|fi(a1, a2)|, | f2(a1, a2)|) < co max(|a1|?, |az|?) (13.4)

where ¢y is the sums of the absolute values of the coefficients of f;. This is pretty much just the
triangle inequality.

For the lower bound, we need to work harder. We claim there exists g;; € Z[z1, 2] homogeneous
of degree d — 1 and k € Z~( such that

2
Zgijfj = k7! (13.5)
j=1
for i = 1,2. Indeed, applying the Euclidean algorithm to fi(x,1) and fa(z,1) gives r,s € Q[z] of
degree d — 1 such that r(x)fi(x,1) + s(z) fa(x,1) = 1. Homogenizing and clearing denominators
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gives (13.5) for ¢ = 2 (just multiply through by some k2. Repeat this with f;(1,z) to get (13.5]) for
i = 1, and then multiply out and set x = lem[ky, k2] to get the full result.
Write P = (a1 : a2), a1, a2 € Z coprime. Then (13.5)) implies that

2
Zgij(ahaz)fj(al, az) = ka?* . (13.6)
j=1
So ged(fi(ay, as), fa(ar, as) divides ged(ka2?~1, ka2?71) so it divides k. Then

2

ka2 < mass | (an,a)] 3 lgis (a1, 02) (13.7)
, 2

and the first term is less than xH (F(P)) and second is less than ~; H(P)%~! where « is the sum of
the absolute value of the coefficients of the g;;s. So

kH(P)*~! < kH(F(P)) - max(y1,v2)H(P)4? (13.8)

SO . 1 .
o H(P)! = FX(WW)H(P) < H(F(P)). (13.9)
O

Definition 13.2. For z € Q, let H(x) = H((z : 1)) = max(|al, |b|), where x = a/b with (a,b) = 1.
Let E/Q be an elliptic curve with equation y? = 23 + ax + b.

Definition 13.3. The height H : E(Q) — R>1 of a point P is H(z) is P = (z,y) or 1 if P = 0p.
The logarithmic height h : E(Q) — Rx>¢ is h(P) = log H(P).

Lemma 13.4. Let E,E’ be elliptic curves over Q, and ¢ : E — E’ an isogeny defined over Q.
Then there exists ¢ > 0 depending on E, E' ¢ such that for all P € E(Q)

|h(¢(P)) — (deg p)h(P)| < c. (13.10)
Proof. Recall by Lemma [5.6| we have a commuting diagram

E—°% g

such that deg¢ = deg¢ = d. Then by Lemma m, there exists ci,co such that ¢ H(P)¢ <
H(¢(P)) < coH(P)4 for all P € E(Q). Taking logs gives

|[h(é(P)) — dh(P)| < max(logca, —loges) = c. (13.11)

Example 13.5. We have that |h(2P) — 4h(P)| < ¢ for all P € E(Q).
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Definition 13.6. The canonical height is

h(P) = lim %h(Z"P) (13.12)

n—roo

We check that this limit converges by checking that it is Cauchy. We have that

1 1 1
—h(2M™P) — —h(2"P)| < —— 13.1
4mh( ) 4ﬂh( ) —3.4n_>0 (13.13)

so h(P) exists.
Lemma 13.7. For all P € E(Q), |h(P) — h(P)| is bounded uniformly.
Proof. Put n =0 in the above calculation. O

Lemma 13.8. For any B > 0, we have that #{P € E(Q) | h(P) < B} < cc.

Proof. If h(P) is bounded, then h(P) is bounded by Lemma So there are only finitely many
choices of z-coordinate, so only finitely many choices for (x,y). O

Lemma 13.9. Let ¢ : E — E’ be an isogeny defined over Q. Then for all P € E(Q),

h($(P)) = (deg §)h(P). (13.14)
Proof. By Lemma [I3.4] there exists ¢ > 0 such that
Ih(6(P)) — (deg &)h(P)] < (13.15)
for all P € E(Q). Replacing P by 2" P, dividing and taking n — oo gives the lemma. O
Corollary 13.10. h is independent of choice of Weierstrass equation.
Proof. Change Weierstrass equation is an isomorphism. O
Corollary 13.11. For all P € E(Q) and all n € Z, h(nP) = n*h(P).
Proof. Trivial. O

Lemma 13.12. Let E/Q be an elliptic curve. Then there exists ¢ > 0 depending on E such that
for all P,Q € E(Q) with P,Q,P+Q,P—Q #0,

H(P+Q)H(P —Q) < cH(P)*H(Q)>. (13.16)

Proof. The above result holds even if some of P,Q,P + @Q,P — @ = 0, but we leave this as an
exercise.

Let E have Weierstrass equation y? = 2% + ax + b with a,b € Z. Let P,Q, P+ Q, P — Q have x
coordinates x1,...,x4. By Lemma there exists Wy, W1, W5 of degree less than 2 in z1 and x5
separately such that

(1 X3+ X4 1731‘4) = (WQ Wh Wz) (1317)
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Write z; = r;/s;, with ;, s; € Z coprime. Then
(8384 17384 + 1483 : 7“3’)“4) = (7 T 7) (1318)

where the LHS are all coprime and the RHS are the homogenizations of the W;s. In particular,
after homogenizing, the degree of W; in r; plus the degree of W; in s; is 2. We have that

H(P+ Q)H(P — Q) = max(|rs|, [ss]) max(|r4|, |s4])
< cmax(|s384], |34 + 7453, |T374])

<cmax(_,_ , )

< cmax(|r | |81| ?) max(|ra|?, [s2]*)

< cH(P)’H(Q)? (13.19)
for some ¢ depending on F. O

Theorem 13.13. h is a quadratic form.

Proof. By Lemma [13.12] and the fact that |h(2P) — 4h(P)| is bounded, we have that there exists
¢ € R such that
h(P+ Q)+ (P - Q) <2h(P)+2h(Q) + ¢ (13.20)

for all P,Q € E(Q). Replacing P, Q by 2" P, 2"(Q), dividing and taking the limit gives
h(P+ Q)+ h(P — Q) < 2h(P) + 2h(Q). (13.21)

Replacing P,@ by P + Q, P — Q and using that fL(QP) = 4E(P) gives the reverse inequality. O

Note that Lemma [[3.1] was essential in all this.

Remark 13.14. For K a number field and P = (ag : a1 : -+ : a,) € P*(K), define
H(P)= Jnax, |@;]y (13.22)

v

where the product is over all places v, and the absolute values are normalized so that
[T =1 (13.23)
v

for all A € K*.
All results in this section generalize to K, with the height function given as above.

14 Dual isogenies and the Weil pairing

Let K be a perfect field, and E/K an elliptic curve.

Proposition 14.1. Let ® C E(K) be a finite subgroup stable under the action of Gal(K /K). Then
there exists E'/K and a separable isogeny ¢ : E — E’ defined over K with kernel ® such that for
every isogeny v : E — E" with ® C ker), v factors uniquely through ¢. In diagram form:
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Proof. This was omitted in class, see Silverman Prop I11.4.12. O

Proposition 14.2. Let ¢ : E — E' be an isogeny of degree n. Then there exists a unique isogeny
¢ : E' = E such that ¢p¢ = [n].

Proof. If ¢ is separable, let ® = ker ¢, | ker ¢| = n. Then ker ¢ C E[n], and we can apply Proposition

with ¢ = [n].

If ¢ is inseparable, see Silverman Theorem III.6.1.

For uniqueness, suppose ©1¢ = 1o = [n]. Then ; and 2 agree on im¢, and since ¢ is
surjective, ¥ = ¥s. O

Remark 14.3. 1. In general, given an isogeny ¢ : E — E’ and isogenies 1,9 : B/ — E" such
that ¥ o ¢ = 95 o ¢, we have that )1 = ¥9 by the same reasoning as above.

2. Write E; ~ FEs if Fy and FE5 are isogenous. The previous proposition verifies that ~ is an
equivalence relation by showing it is symmetric.

—

3. We have that deg[n] = n2, so [n] = [n] and deg ¢ = deg ¢.

4. We have that 666 = 6[n]x = [n]pé, 50 66 = [n]m, 50 6 = 0.

5. HEY B2 B, then ¢ = 0.

6. If ¢ : B — E, then ¢* — [t ¢]¢ + [deg ¢] = 0, s0 ([tr¢] — ¢)¢ = [deg ¢], s0 [tr¢] = ¢ + ¢.
Lemma 14.4. If ¢, € Hom(E, E'), then ¢+ v = ¢ + 1.

Proof. f E = E/, then ¢ = [tr¢] — ¢, 50 o+ 0 = [tr(d + ¥)] — d— 1) = S+ 0.
In general, let a: E/ — FE be any isogeny. Then

ad +av = at + ag, (14.1)

s0 b+ 9a=(b+10)a, 50 b+ =+ 0

Remark 14.5. In Silverman’s book, he proves Lemma [14.4] much earlier, and then uses this to
show that the degree is a quadratic form.

Here is some notation. Define
sum : Div(E) —» F
> np(P)= Y npP (14.2)
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where the LHS is a formal sum of divisors and the RHS is a group element of E. Recall that we
have an isomorphism

o: E = Pic’(E)
P [(P)—(0g)] (14.3)

Given D = Y. np[(P) — (0g)] € Pic’(E), we have that sum D = > npP, and this gets mapped
back to D under o. Thus sum is the inverse of o, and we have that ker sum is the divisors such
that > npP = 0, so we deduce the following lemma.

Lemma 14.6. Let D € Div(E). Then D ~ 0 if and only if both deg D = 0 and sum D = Og.

Now, let ¢ : E — E’ be an isogeny of degree n with dual qAS Assume char K { n, so that ¢, qg are
separable. Set ker ¢ = E[¢] and ker ¢ = E’[¢] We define the Weil pairing

-~

¢o : Elg) x E'[] - (14.4)

-~

where j1,, = Z/nZ is the group of nth roots of unity. Let T' € E’[¢]. Then nT = 0, so there exists
f € K(E')* such that div(f) = n(T) — n(0g) by Lemma [14.6] Pick Ty € E(K’) with ¢(Tp) = T,
and pull back:

" (T)—¢*(0p) = > (P+Th) - (P). (14.5)
PeE[¢]
By Lemma this divisor is principal because
sum (¢*(T) — ¢* (0g)) = nTp = ¢p¢To = ¢T = 0. (14.6)

Thus there exists ¢ € K(E)* such that div(g) = ¢*(T) — ¢*(0). Now, div(¢*f) = ¢*(div f) =
n(¢*(T) — ¢*(0)) = div(g"), so ¢*f = cg™ for some ¢ € K -, and we can normalize so that ¢ = 1,
so ¢* f = ¢g". For any s € ker ¢, we have that 75(div g) = div g because

75(9") = 75(¢" f)
=(¢o7s)"f
— =g (14.7)
S0
nrgdivg = 75 divg"
= div(rgg")
=divg"
=ndivg. (14.8)

So 149 = (g for some ¢ € FX, so we have that { = g(X + 5)/g(X) for any X € E(K). But
¢ = g(X+ 95"
g(x)"
_ fod(X+19)
foo(X)

=1 (14.9)
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so ( = pn,. So we define
g(X +59)

es(S,T) = e

(14.10)

Proposition 14.7. ey is linear and nondegenerate.

Proof. (i) First we show linearity in the first argument:
g(X +S1+8) g(X+51)
ey(S1+ 52, T) = .
o1+ D) = sy 9(X)
= e¢(517T)e¢(Sg,T). (14.11)

-~

(ii) Next we show linearity in the second argument: Let T),75 € E’[¢]. Then there exists
f1, f2,91, g2 such that

div(fi) = n(T1) = n(0),  ¢"fr =47
div(f2) = n(Tz) — n(0), O fa =gy (14.12)
as in the construction of the pairing. Then there exists h € K(E’) such that
divh = (Tl) + (TQ) — (T1 + TQ) — (0) (1413)
Then put f = f,}f? and g = %92, We can check that div f = n(T1 +T3) — n(0). So then
wr O N10°f2 (g192\" .
o= = (55) = R
S0
X+S
eqﬁ(Sa T +Ty) = g(g(X))
_ (X +85) (X495 heX))
g1(X) 92(X)  h(¢(X +5))
= ey(S,T1)eqs (S, To) (14.15)
since S € E[¢].

-~

(iii) Lastly we will show that es is nondegenerate. Fix T' € E'[¢]. Suppose ey(S,T) =1 for all
S € B[g]. Then 749 = g for all S € E[¢] since U550 = 1 for all X, s0 g(X + ) = 759(X) = g(X)
for all X.

We have that K (E) is a Galois extension of ¢* K (E’) with Galois group E[¢] as S € E[¢] acts on
K(E) via 74. Since 74g = g for all S, we have that g € ¢*K(E’), so g = ¢*h for some h € K(E'),
so ¢*f = g™ = ¢*(h"), so f = h™ because ¢ is surjective, so divh = (T) — (0), so (T) — (0) is a
principal divisor, so T' = 0.

-~

We shown that E’[¢] is in bijection with Hom(E[¢], i, ), and the reverse bijection holds by some

-~

counting argument involving #E[¢] = #E'[¢] = n.

O
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Remark 14.8. 1. If E,E’, ¢ are all defined over K, then e, is Galois equivariant, so
ey(0S,0T) = o(es(S,T)) (14.16)
for all o € Gal(K/K), S € E[¢], T € E'[¢).

2. Taking ¢ = [n] : E — E, so that ¢ = [n], we have that e, : E[n] x E[n] — 2, but since E[n]
has exponent n, the image lies in p,,.

Corollary 14.9. If E[n] C E(K), then p, C K.

Proof. Let T € E[n] have order n. The nondegeneracy of e, implies that there exists S € E[n]
such taht e, (S,T) = (,, where (, is some primitive nth root of unity. Then

o(Cn) = a(en(S,T))

=en(0S,0T)

=e,(5,T)

=Gn (14.17)
for all o € Gal(K/K), so ¢, € K. O

Example 14.10. Since Q does not contain ug, there is no elliptic curve F/Q with E(Q)tors
(Z./37)2.

Remark 14.11. In fact, e, is alternating, so e, (T, T) = 1 for all T € E[n], so e,(S,T) = e, (T,s) " .

15 Galois cohomology

Let G be a group (a Galois group in all further applications), and let A be a G-module, so A is an
abelian group with an action of G, or A is a Z[G]-module.

Definition 15.1. We set
H°(G,A) = A ={a € A|o(a) =aVo € G} (15.1)

We have a filtration of sets

CY(G,A) = {maps G — A} “cochains”
U
ZHG, A) = {(av)oec | aor = o(ar) + a, Yo, € G} “cocycles”
U
BYG,A) = {(ob—b)oec | b€ A} “coboundaries” (15.2)
and we set
HY(G,A) = Z*(G,A)/B*(G, A) (15.3)

Remark 15.2. If G acts trivially on A then H'(G, A) = Hom(G, A).
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Lemma 15.3. Given a short exact sequence of G-modules

054585050 (15.4)

we have a long exact sequence of abelian groups
0 A% % BG4 00 5 HY(G, A) L5 HY(G, B) L5 HY(G, 0). (15.5)
Proof. Omitted. O

Definition 15.4. The connecting homomorphism § is given as follows. Let ¢ € C“. Then there
exists b € B such that ¢(b) = ¢. Then ¢(cb—b) =cc—c=0for all 0 € G, so ab—b € ker 1), so
ob— b= ¢(a,) for some a, € A and we set

5(c) = [(ao)oec] € Z'(G, A)/B* (G, A). (15.6)

Theorem 15.5. Let A be a G-module, and H < G a normal subgroup. There is an “inflation-
restriction” exact sequence

0— HY(G/H,A™) 25 HY(G, A) X HY(H, A). (15.7)
Proof. Omitted. O

Let K be a perfect field. Then Gal(F/l( ) is a topological group with basis of open subgroups
Gal(K /L) with [L : K] < co. IF G = Gal(K /K), we modify the definition of H'(G, A) by insisting
that

1. The stabilizer of each a € A is an open subgroup of G.
2. All cochains G — A are continuous, where A is given the discrete topology.
We then have that

H'(Gal(K/K), A) = limy H'(Gal(L/K), AS2(K/L)y (15.8)
L/K finite, Galois

where the direct limit is with respect to the inflation maps.

Theorem 15.6 (Hilbert’s Theorem 90). Let L/K be a finite Galois extension. Then

H'(Gal(L/K),L*) = 0. (15.9)
Proof. Let G = Gal(L/K), and let (ay)sec € Z*(G, L*). Then there exists y € L such that
zi=Y a7'r(y) #0 (15.10)
TEG

as the elements of Gal(L/K) are linearly independent. Then (note the switch from additive to
multiplicative notation)

o(z) =) olar) o7 (y)

TEG
=a, » azlor(y). (15.11)
TEG
Thus a, = 2% for all o € G, 50 (a,)sec € BY(G,L*), so H(G,L*) = 0. O
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Corollary 15.7. Taking direct limits, we have that
H'(Gal(K/K),K") =0. (15.12)

As an application, assume char K { n. Then there is a short exact sequence of Gal(K/K)-
modules

0o pn =K K50 (15.13)
and we get a long exact sequence
K* — K* — HY(Gal(K/K), ttn) — 0 (15.14)

so HY(Gal(K/K), i) = (K*)/(K*)™. If p, C K, then Gal(K/K) acts trivially on j,, so
Hom,s(Gal(K /K), pun) =2 K /(K*)™. (15.15)

The finite subgroups of the LHS are of the form Hom(Gal(L/K), u,) for L/K a finite abelian
extension of K with exponent dividing n. Compare to class field theory. This gives another proof
of Theorem [IT.3l

From now on, we write H'(K,__) to mean H'(Gal(K/K),_).

Let ¢ : E — E’ be an isogeny of elliptic curves over K. We have a short exact sequence of
Gal(K /K)-modules:

05 El¢) > ESE -0 (15.16)

which gives a long exact sequence
E(K) % B/(K) S HY(K,E[¢) — H\(K,E) 25 HY(K, E') (15.17)
and at the central term we get a short exact sequence
0 — E'(K)/¢E(K) - H' (K, E[¢]) - H' (K, E)[¢.] — 0. (15.18)

Now take K a number field, and for each place v fix an embedding K C K,. Then Gal(K,/K,) C
Gal(K/K). At each place we get a short exact sequence (and a commutative diagram)

0 — F'(K)/¢E(K) -0 HY(K,E[¢)) —— HYK,E)[¢:] —— 0

J F% }m

0 ——— E'(K,)/0E(K,) —2— HY(K,, E[¢]) ——— H'(K,, E)[¢.] —— 0

Taking the product over all places, we get a commutative diagram

0 ——— E'(K)/$B(K) ——— H\(K,El¢]) —— H'(K,B)[$,] —— 0

J Jﬂresu \\\\\\ JHresv
IRt

0 —— I1, E'(K,) /¢ E(K,) —12 ], HY(K,, El¢]) —— I, H'(K,, B)[$,] —— 0
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The ¢-Selmer group S(?)(E/K) is the kernel of the dashed line. It equals (by going through the
diagram and using exactness)
SU(E/K) = ker <H1<K, Elg]) = [ H" (K., E)[m)
= {a € H (K, E[¢]) | resy(a) € im,Vv}. (15.19)
Definition 15.8. The Tate-Shafarevich group is defined as
II(E/K) := ker <H1(K, E) — HHl(Kq,, E)> : (15.20)
This gives a short exact sequence (the Selmer and IIT term are just subgroups of the terms in the
previous exact sequence)
0— E'(K)/¢E(K) — S(E/K) — III(E/K)[¢.] = 0 (15.21)
Taking ¢ = [n] gives
0 — E(K)/nE(K) — S"™(E/K) - III(E/K)[n] — 0 (15.22)
We can reorganize the proof of weak Mordell-Weil to instead prove the following stronger result.
Theorem 15.9. S (E/K) is finite.
Proof. For L/K a finite Galois extension, we have the inflation/restriction exact sequence
0 —— HY(Gal(L/K),E(L)[n])) —— HYK,E[n]) —=— H(L, E[n])
SM(E/K) ——— SM(E/L)

We have that H'(Gal(L/K), E(L)[n]) is finite because Gal(L/K) and E(L)[n] are finite. Thus
S(")(E/K) is finite if and only if S (E/L) is finite, so we can extend to a finite extension L.
In particular, we may assume E[n] C E(K) and hence by the Weil pairing that u, C K. So
E[n] & py, x gy, as Gal(K /K)-modules, as they are both trivial under the action of Gal(K/K). So

HY(K,Eln]) = H' (K, pn) x H' (K, pn)
~ KX/(KX)n % KX/(KX)’H,' (15.23)

Let S be the set of primes of bad reduction as well as all the places v with v | noo. Then S is a
finite set of places.

Definition 15.10. The subgroup of H'(K, A) unramified outside of S is

HY (K, A; S) = ker ((Hl(K, A)—1] H%K;ﬂA)) (15.24)
vgS
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There is a commutative diagram with exact rows

H'(K, E[n])

Jresv
[n] 5y

E(KU) EE— (KU) EE— Hl(Kv,E[’I’L])

LT E

B(Kyr) —"— BKY) —— H(KY, E[n))
Ifv ¢ S, then the morphism [n] on the lower row is surjective by Theorem so the next morphism
will be 0. Recall that if « € H' (K, E[n]), then o € S™ (E/K) if and only if res,(a) € im§, for all
v (see (15.19)). But if this is the case, then resy, ores, = 0 by the above diagram. So

SM(E/K) c HY(K, E[n);S) = HY(K, jin; S) x HY(K, pin; S) (15.25)
and
H'(K, j1n; S) = ker (KX/(KX)" — H(KL”V/(KL”)") (15.26)
vgS

Thus it is the elements of K* which are nth powers in K}*. But in K", the valuations are the
same because it is an unramified extension, so v,(a) =0 mod n for every place v, so

HY (K, ji,; S) € K(S,n) (15.27)
as defined in Lemma the same Lemma shows that it is finite. O
Remark 15.11. 1. S (E/K) is finite and effectively computable.

2. Tt is conjectured that |III(E/K)| < oo, if so we could take n { |III[(E/K)| and then we would
have E(K)/nE(K) = S™(E/K).

This would imply that rank F(K) is effectively computable.
16 Descent by cyclic isogeny
Let E, E’ be elliptic curves over a number field K. Let ¢ : £ — E’ be an isogeny of degree n.
Suppose ker ¢ = Z/nZ, and is generated by some T C E'(K).

Then E[¢] = p,, as a Gal(K/K)-module, by the Weil pairing S — €4(S5,T). We have a short
exact sequence of Gal(K /K )-modules

0= pn = ESE -0 (16.1)

which gives a long exact sequence
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B(K) —%— B'(K) —°— HY(K,u,) —— H'(K, E)

KX/(KX)’I’L
Theorem 16.1. Let f € K(E') and g € K(E) with div(f) = n(T) — n(0) and ¢*f = g™. Let
a: E'(K)— K*/(K*)" be the map given in the commutative diagram above. Then a(P) = f(P)
mod (K*)™ for oll P € E'(K) \ {0,T}.

Proof. Let P € E'(K) and Q € ¢~'(P). Then §(P) € H'(K,u,) is represented by the map
o (6Q — Q) (see Definition [15.4)), and we have that cQ — @ € E[¢] = p,. So

9(0Q - Q+X)
ey(0Q —Q,T) = LI« T2 16.2
o e (16.2)
for any X € FE, avoiding the zeros and poles of g, and taking X = @ gives
9(0@Q)
€ JQ 7Q7T =
4 ) 9(Q)
_ o(9(Q)
9(Q)
V(P
_ o) (16.3)
V(P
as ¢*f = g", so f(P) = g(Q)". Now, we have that the isomorphism K> /(K*)" — HY(K, u,) is
given by sending
oz
16.4
x (a — Uz ) (16.4)
Thus o sends P — (00— 0Q—Q) € H'(K, E[¢]) , and this is sent to (U — U&%ﬁ € HY(K, uin),
and this is sent to f(P) € K*/(K*)", so a(P) = f(P) mod (K*)™. O

16.1 Descent by 2-isogeny

We simplify to the case where F/K has 2-torsion, and work over the isogeny given in Example 5.13]
which we now recall. Let

E:y? =2(2® + ax +b)
By =x(z? +adz+ V) (16.5)
with b(a? — 4b) # 0, a’ = —2a, b/ = a® — 4b. Then we have an isogeny

¢:E— FE (a:,y)l—><<z>2,y(x;_b)>
¢?: E - F (z,9) — <i (%)2 , W) (16.6)

~

We have that E[¢] = {0,T} with T = (0,0) € E(K) and E'[¢] = {0,T'} with T’ = (0,0) € E'(K).
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Proposition 16.2. There is a group homomorphism

E'(K) — K*/(K*)?

r mod (K*)2 x#0
Ly) 16.7
(@y) {b’ mod (K*)? x=0 (16.7)
with kernel pE(K).
Note that we need to treat « = 0 separately because 0 ¢ K*.
Proof. One method is to apply Theorem with f =z € K(E') and g = £ € K(E).
Another is by direct calculation, as on Sheet 4. O
So we have injections
ap: B(K)/¢E' (K) < K*/(K*)?
ap : B'(K)/pE(K) — K*/(K*)?. (16.8)
We can use these two calculate the rank of our elliptic curve.
Lemma 16.3. We have that ) )
2rankE(K) — |1H1 aE| ) |1H1 aE/| (169)

4

Note that everything above are Fy vectors spaces, so divisible by 2.

Proof. If A 1B % C are homomorphisms of abelian groups (not necessarily exact), then there is
an exact sequence

0—kerf — kergf ER ker g — coker f 2 coker gf — coker g — 0 (16.10)
Since $¢ = [2]g, we get an exact sequence
0— Z/27 — E(K)[2] © /27 — imap % B(K)/2E(K) — imag — 0 (16.11)

By some standard exact sequence stuff (everything above is a finite abelian group), we get

|E(K)/2E(K)| _ |imag|-|imagp|
[E(K)[2]] 4

(16.12)

By Mordell-Weil, E(K) = A x Z" with A finite, and r = rank E(K). We have that E(K)[2] = A[2],
and E(K)/2E(K) =2 A/2A x (Z/2Z)" and |A/2A| = |A[2]| by the short exact sequence

0= A2l > A—=2A—=0 (16.13)

so we are done. O

Lemma 16.4. Let K be a number field, and suppose that a,b € Ok. Then im(ag) C K(S,2),
where S = {p € Spec Ok | p|b}, where K(S,n) is defined as in (11.11)).
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Proof. We must show that if z,y € K with y* = z(2* + az + b) and if p 1 b (so vy(b) = 0), then
vp(2) =0 mod 2.
In the case where v,(x) = 0, we are done.

In the case where v,(x) < 0, by Lemma 9.3 v, () = —2r for some r > 1, so we are done.
In the case where vy (z) > 0, we have that v, (2% + az + b) = 0, s0 vy (x) = vy (y?), s0 vy(z) =0
mod 2. O

In particular, the image of ag lies in those cosets (K *)? with z|b.
Lemma 16.5. If biby = b, then by (K*)? € im(ag) if and only if
w? = byut + au?v? + by (16.14)
has a solution for u,v,w € K not all zero.

Proof. If by € (K*)? or by € (K*)?, then both conditions are satisfied since b(K*)?, (K*)? €
im(ag). So assume by, by ¢ (K*)?, so b1 (K*)? € im(ag) if and only if there exists (z,y) € E(K)
such that z = b1t2 or some t € K*. Then y? = (b1t2)(b3t* + abit? + b), so dividing gives

2
<y> = byt* + at? + by (16.15)
bit

so (16.14) has a solution (u,v,w) = (¢,1,y/(b1t)). Conversely, if (u,v,w) is a solution to (16.14])
then uv # 0, and

u\ 2 uw
<b1 (5) ,ble) € B(K), (16.16)
SO bl(KX)QEimozE. ]

Now we look at some examples with K = Q.

Example 16.6. Let E : y> = 23 — 2 soa = 0,b = —1. By Lemma and Proposition
im(ap) = (~1) € (Q*)/(Q)".

We have E’ : y?> = 23 + 4x, so imag C (—1,2) € Q*/(Q*)% We need to consider b; =
—1,2, -2, and after checking we find that Im(ag/) = (2), so rank(E(Q)) = 0, so 1 is not a congruent
number.

Example 16.7. Let E : y?> = 2° + pr with p=5 mod 8. We have imag = (p).
We have E' : y? = 2® — 4pzx, so im(ap) C (—1,2,p) C Q*/(Q*)?. Note that ap (T') =
(—4p)(Q*)? = (—p)(Q*)2. So it remains to check

by =2: w? = 2u* — 2pvt (16.17)
bh=—-2: w? = —2ut 4 2pv? (16.18)
by=p: w? = pu* — 4* (16.19)

(16.20)

Suppose that (16.17) is soluble, and WLOG let u,v,w € Z with ged(u,v) = 1. If p | u, then p | w
so then p | v, which is a contradiction on the assumption that ged(u,v) = 1. So w? = 2u* # 0

mod p, so (%) = 1, which is a contradiction as p =5 mod 8. Thus (16.17) is insoluble.

Likewise, (|16.18]) has no solution since (_72) =-1.
We will return to (16.19)) later as it is more difficult.
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Let’s return to the general 2-isogeny case. Let E : y? = x(2? + ax + b), and ¢ : E — E’ be our
friendly neighborhood 2-isogeny. We have a commutative diagram with exact rows

0 ——— E(Q)/¢E'(Q) — SO(E'/Q) —— LI(E'/Q)[¢.] — 0

e

Recall our equation
w? = but + au®v? + b2t b1by = b. (16.21)
We have that
imag = {b;(Q*)? | (16.21) is soluble over Q}. (16.22)

Determining whether (16.21)) has a solution over Q is hard, but we might be able to apply the local
global (Hasse) principle. In particular, we have that

imag C S’(@(E'/Q) = {b1(Q*)? | (16.21) is soluble over R and over Q,Vp}. (16.23)

Solving things locally is easier. In fact, by Sheet 3 Question 9 and Hensel’s Lemma we have that if
a,by,by € Z, and p { 2b(a® — 4b) then is soluble over Q,.

Now we return to the previous example, and in particular. We have that rank E(Q) = 0
if is insoluble and 1 if it is soluble.

We have that (16.19)) is soluble over @Q,, since (%) =1,s0 -1¢€ (Z;k,)2 by Hensel’s lemma and

setting (u,v) = (0,1) we can find a w which solves the equation.

We have that is soluble over Qg because p—4 =1 mod 8, so p— 4 € (Z3)? by Hensel’s,
so setting (u,v) = (1,1), we can find a w which solves the equation.

We have that is soluble over R because \/p € R.

People have found rational solutions to for many values of p, but we don’t know if there
is always a solution in general. It is conjectured that the rank is always 1, so the equation always
has a solution and the Hasse principle holds.

This is believable because Selmer conjectured that if the Hasse principle fails, it fails by an even
amount, so since our only other option is the rank being 0, the rank should be 1. Someone has
proved this conjecture assuming that III is finite.

Now lets give an example where we know that the Hasse principle fails.

Example 16.8 (Lind). Let E : y?> = 23 + 17z, so im(ag) C (17) C Q*/(Q*)?, and E’ : y? =
23 — 68z, and im(ap) C (—1,2,17) C Q*/(Q*)2.
If by = 2, then w? = 2u* — 34v* and doing a change of variables w — 2w and simplifying gives

C:2uw? =ut — 170" (16.24)

This is not homogeneous in the normal sense, but we can work in weighted projective space, which
we now define. Let
C(K) = {(u,v,w) € K3\ {0} | C(u,v,w) =0}/ ~ (16.25)

where (u,v,w) ~ (Au, \v, \2w) for all A € K*.
We have that C'(Q2) # 0 because 17 € (Z%)* so we have a solution (171/4,1,).
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We have that C(Qy7) # () since 2 € (Z%,)?, so we have a solution (1,0, 1/v/2).

We have that C(R) # 0 since v/2 € R.

So C(Q,) # 0 at every place of R.

But C(Q) = 0, as we now show. Suppose (u,v,w) € C(Q). WLOG wu,v,w € Z, w > 0 and
ged(u,v) = 1. If 17 | w then 17 | w and then 17 | v, which is a contradiction. So if p | w then p # 17,

and in fact we need (%) = 1 (look at reduction mod p). By quadratic reciprocity, if p is odd then

(%) _ (Z) — (16.26)

and we also have (%) =1. So (%) =1, but 2w* = u* mod 17, so this would imply 2 € (F,7%)* =

{1, +4}, which is a contradiction. Thus C(Q) = 0.
Thus the Hasse principle fails, so C' represents a nontrivial element of III(E/Q).
17 Birch and Swinnerton-Dyer Conjecture

Let E/Q be an elliptic curve.
Definition 17.1. The L-function of FE is

L(E,s) =[] Ly(E,s) (17.1)
P
where
(1—app~* +p'~2%)~1 p has good reduction
L(B,s) = (1- p*‘ﬁ)*i p has split m.ultipli(,jat%ve %"eduction . (17.2)
(I+p~°)~ p has nonsplit multiplicative reduction
1 p has additive reduction

and #E(Fp) =1+p—a, and a, = Tr(Frob,).

By Hasse’s Theorem, we have that |a,| < 2,/p, so L(E, s) converges for Re(s) > 3/2.
By the modularity theorem, we can write L(E,s) = L(f,s) for f a modular form of weight 2,
so we can analytic continuation to C and a functional equation.

Conjecture 17.2 (Weak BSD).
ords—1 L(E, s) = rank E(Q) (17.3)

If true, we can compute the rank by computing L(E, s), which is tractable.
Conjecture 17.3 (Strong BSD). The coefficient of (s —1)" in the expansion of L(E,s) at s =1 is
Qp Reg E(Q)IL(E/Q)| T, ¢p(E)

174
|E(Q)tors|2 ( )
where cp(E) are the Tamagawa numbers, Reg E(Q) is the regulator, and
d
Qp = / S — (17.5)
E®) |2y T a1z + a3
where ay, .. .,ag € Z are the coefficients of a globally minimal Weierstrass equation for E/Q.
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We have no idea how to solve this in general, you get $1,000,000 if you do.
Theorem 17.4 (Kolyvagin). If the analytic rank is < 1, then weak BSD holds and |III(E/Q)| < cc.
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