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1 Introduction

1.1 Motivation
Let E be an elliptic curve over a field k. This means that E is a proper, irreducible curve over k
whose points form a group. We have the following facts:

(i) E can be embedded as a nonsingular cubic E ↪→ P2
k.

(ii) The group law on E is commutative.

(iii) If k = k is algebraically closed, E(k) is a divisible group and ∀n ≥ 1, E[n] = {x ∈ E(k)|nx =
0} is finite. If char(k) = 0 or char(k) = p and p ∤ n, E[n] ∼= (Z/nZ)2. If char(k) = p, then
E[pr] ∼= Z/prZ or 0.

Definition 1.1. A divisible group G is a group where any element is divisible by any positive
integer. So for all x ∈ G and n ∈ Z≥1, there exists y ∈ G such that ny = x.

(iv) E(k) ∼= Cl0(E) with the isomorphism given by P → (P ) − (0). This is known as Abel’s
theorem, or the Abel-Jacobi theorem.

Definition 1.2. The degree 0 divisor class group Cl0(E) is the group of all degree 0 divisors
divided by the group of all degree 0 principal divisors. In many cases (and for all projective
varieties) it seems like all principal divisors have degree 0.

Most of the above facts can be proved using the elementary methods, namely the equation
defining an elliptic curve and the group law, as well as the Riemann-Roch theorem.

An Abelian Variety is a higher dimensional analogue of an elliptic curve. This means that it is
a proper variety X over a field k whose points form a group (in some sense). We have the following
analogues of the 4 properties of elliptic curves listed above:

1. X is a projective variety, but there might not be a nice set of equations defining it.

2. The group law (which we have not defined) is commutative.

3. If k = k is algebraically closed, then X(k) is a divisible group and X[n] ∼= (Z/nZ)2 dimX if
char(k) ∤ n, and if p = char(k) > 0, then X[pr] ∼= (Z/prZ)j for some 0 < j ≤ dimX.

4. There exists another abelian variety X̂, called the dual abelian variety, such that X̂(k) ∼=
Pic0(X) ∼= Cl0(X) ⊂ Pic(X). Additionally, there is a surjective homomorphism X → X̂ with
finite kernel.

The first half of this course is a continuation of algebraic geometry. We will study two different
topics:

1. We will prove more things about the cohomology of coherent sheaves.

2. We will find out that the Riemann-Roch theorem is about two different things:

(a) dimH0(X,L)− dimH1(X,L) = 1− g + degL.
(b) H1(X,L)∨ ∼= H0(X,Ω1

X ⊗ L).
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1.2 Conventions
• Rings are commutative with 1, and ring homomorphisms take 1→ 1.

• If f : A→ B is a ring homomorphism, then B is an A-algebra.

• An A-module is finite if it is finitely generated, so there exists a surjective homomorphism
An →M .

• An A-algebra B is finite if it is finitely generated as an A-module.

• An A-algebra B is finite type if it is finitely generated over A, so there exists a surjective
homomorphism φ : A[x1, . . . , xn]→ B.

• A finite type A-algebra B has finite presentation if the homomorphism φ defined above is
finitely generated.

• If A is Noetherian, finite type implies finite presentation.

• For most of this course, we can assume that rings are Noetherian.

• A family of elements of a set S is (xi)i∈I , or a function I → S, for some set I.

2 Varieties over a field
In classical algebraic geometry, a variety is a closed irreducible subset of An(k) ∼= kn or Pn(k), and
we take k to be algebraically closed.

• We also might take an open subset of a projective variety, which is a quasi-projective variety.

• There exist proper schemes which are non projective.

• Even in classical AG, non-algebraically closed fields appear. Take some morphism f : X → S.
We consider X as a parameter space, and the fibers of f (meaning the schemes Xs = X ×Y

Spec k(s) for each s) can be not algebraically closed. I think he is talking about the residue
fields k(s) specifically?

For the purposes of this course, we use the following definition of a k-variety.

Definition 2.1. Let k be a field, and k its algebraic closure. A k-variety (or a variety over k) is a
k-scheme X which is separated, of finite type, and such that X ×Spec k Spec k is integral (reduced
and irreducible).

By separated and of finite type we mean that the structure morphism X → k is separated and
of finite type.

The condition that X ×Spec k Spec k is called being geometrically integral. In general, being
geometrically [property] means that the base change to k has [property].

Example 2.2. If k = R, then X = SpecR[T1, T2]/(T 2
1 + T 2

2 ) is not a variety. The base change to
C is reducible.
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Example 2.3. If k = Fp(t) is a function field, then X = Spec k[T1, T2]/(T
p
1 − tT

p
2 ) is not a variety.

Xk is not reduced because T p
1 − tT

p
2 = (T1 − t1/pT2)p in k.

Proposition 2.4. If X and Y are k-varieties, then so is X ×k Y .

Proof. First we reduce to the case where X = SpecA, Y = SpecB (exercise).
In this case we have that X ×k Y = SpecA⊗k B, this is of finite type because A and B are of

finite type (just take the tensor product of the generators of A and B).
We have that X ×k Y is separated because it is affine (Hartshorne Prop 2.4.1).
It remains to show that SpecA⊗k B is geometrically integral. It suffices to show that

(A⊗k B)⊗k k = (A⊗k k)⊗k (B ⊗k k) (2.1)

is an integral domain. By assumption A ⊗k k and B ⊗k k are integral domains. So it suffices to
show that if k = k is algebraically closed, and A,B are finite type k-algebras and integral domains,
then A⊗k B is an integral domain.

If not, then there exists some relation

(
∑

ai ⊗ bi)(
∑

a′j ⊗ b′j) = 0. (2.2)

WLOG, we may assume that the sets {bi} and {b′i} are each linearly independent, and a1, a
′
1 are

nonzero. Thus a1a′1 ̸= 0, so the distinguished open set D(a1a
′
1) ̸= 0 in SpecA. Thus there exists

a maximal ideal m ∈ D(a1a
′
1), so a1a′1 /∈ m, and A/m = k because k is algebraically closed. Here

we use that there exists a maximal ideal not containing a1a′1, this is true because A is a finite type
k-algebra which is a domain, so the intersection of all the maximal ideals is

√
(0) = (0). Also, we

use that A/m is an algebraic extension of k, which is a consequence of the Nullstellensatz.
Anyways, we reduce our zero relation mod m, so we have that

(
∑

ai ⊗ bi)(
∑

a′j ⊗ b
′
j) = 0 (2.3)

in (A/m)⊗kB ∼= k⊗kB = B. But since B is a domain, this means that
∑
ai⊗ bi = 0. But then by

the linear independence of the bis, we have that ai = 0 for all i, so in particular a1 = 0, so a1 ∈ m,
so a1a′1 ∈ m, so a1a′1 ∈ m, which is a contradiction.

Let X be a k-variety, so it is an integral scheme which has a unique generic point η ∈ X,
and OX,η = k(X) is a field, the function field of X. Now, given a cover of X by affine schemes
Ui = SpecAi, we have that Ai is a finitely generated k-algebra, and k(X) is the fraction field of Ai,
so k(X)/k is finitely generated over k as a field extension (this means there is a surjective morphism
k(T1, . . . , Tn)→ k(X).

Proposition 2.5. If X is a k-variety, then k is algebraically closed in k(X).

Proof. This means that for any a ∈ k(X), a being algebraic over k implies that a ∈ k.
Suppose not. Then there exists a ∈ k(X) which is algebraic over k, such that k ⊊ k(a) ⊂ k(X).

Since k(X) = OX,η, there exists a nonempty open affine SpecA = U ⊂ X such that a ∈ A ⊂ k(X).
Explicitly, we can take any open affine V = SpecB, and a will be an element of Frac(B), so a = b/b′

with b, b′ ∈ B, and then we can take U = D(b′) = SpecBb′ .
We then have that Spec(A⊗k k) = Uk ⊂ Xk, and since k(a) ⊂ A because A is a k-algebra, we

have that k(a)⊗k k ⊂ A⊗k k. But since a /∈ k and k is the algebraic closure, a ∈ k and k(a)⊗k k
is not an integral domain, so A ⊗k k is not an integral domain, so Xk is not an integral scheme,
contradicting geometric integrality.
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Remark 2.6. The converse theorem is not true in general, but is true if k is perfect.
Over a non-perfect field, there can exist X integral, separated, finite type over k, but not

geometrically integral, so not a variety, such that k is algebraically closed in k(X).

Definition 2.7. 1. A variety X is projective if there exists a closed immersion X ↪→ Pn
k .

2. A variety X is affine if there exists a closed immersion X ↪→ An
k .

3. A variety is quasi projective if it is an open subscheme of a projective variety.

Theorem 2.8. Pn
k is a proper scheme over Spec k. More generally, Pn

Z → SpecZ is proper.

Proof. Hartshorne Theorem 2.4.9.

Corollary 2.9. Every projective k-variety X is proper over k.

Proof. By Hartshorne Corollary 2.4.8, a closed immersion if proper, and the composition of two
proper morphisms is proper, so X ←↩ Pn

k → k is proper.

We next state a “basic finiteness theorem” which will be useful for the next result.

Theorem 2.10. Let f : X → SpecA be a proper morphism, A Noetherian, and F a coherent
OX-module. Then Γ(X,F) is a finite A-module.

I’m not sure how hard it is to prove this. We need it for the next result.

Theorem 2.11. If X is a proper k-variety, then Γ(X,OX) = k.

Proof. Applying Theorem 2.10, we have that Γ(X,OX) = B is a finite k-algebra, and B ⊂ k(X)
because X is integral. But since k ⊂ B ⊂ k(X) and B is a finite k-algebra, B is a finite field
extension of k contained in k(X), so by Proposition 2.5, B = k.

There are many proper varieties which are not projective. Hironaka gave a few examples which
can be found in Hartshorne.

Next we have two useful results.

Definition 2.12. A morphism f : X → Y of integral schemes is birational if there exists a
nonempty open set V ⊂ Y such that f−1(V )→ V is an isomorphism.

Note that f−1(V ) ⊂ X and V ⊂ Y are dense open sets because X,Y are integral and thus
irreducible topological spaces.

Lemma 2.13 (Chow). If X is a proper k-variety, then there exists a birational morphism f : X ′ →
X where X ′ is a projective k-variety.

We will prove this below.

Theorem 2.14 (Nagata). Every k-variety is an open subscheme of a proper k-variety.

This theorem is much harder to prove. Here is also a more general version of Chow’s lemma, a
proof of which can be found in the Stacks project.

Lemma 2.15 (General Chow’s). Let S be a Noetherian scheme, g : X → S a proper morphism.
Then ∃ a surjective f : X ′ → X such that X ′ is a closed subscheme of Pn

S and there exists an open
dense U ⊆ X such that f : f−1(U)→ U is an isomorphism.
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Now we sketch a proof of Chow’s lemma.

Lemma 2.13. Let X =
⋃m

i=1 Ui be an affine open cover. We can take a finite open cover because
X is of finite type over k. Since each Ui = SpecAi is a finitely generated k-algebra, for each i,
Ui ↪→ Ani

k for some ni, as Ai = k[x1, . . . , xni
]/Ii for some ideal Ii. Let U∗

i ⊆ Pni

k be the closure
of Ui in Pni

k , with the reduced subscheme structure. This is the unique structure on U∗
i which

makes U∗
i → Pni

k a closed immersion, and such that U∗
i is a reduced scheme. The construction is

essentially by constructing a quasi-coherent sheaf of ideals, and then taking U∗
i to be the associated

closed subscheme.
Then U∗

i ∩A
ni

k = Ui and U∗
i is a variety (why?). So now let U =

⋂
Ui ↪→

∏
Ani

k be the “diagonal
embedding”. This is a closed immersion.

I’m going to leave the rest of this proof for later because I don’t really understand it.

3 Differentials and nonsingularity and smoothness
Definition 3.1. Let φ : A→ B be a ring map. Then there exists a B-module ΩB/A, the module of
(Kähler) differentials, together with a derivation d = dB/A : B → ΩB/A, which means an A-linear
map satisfying d(xy) = ydx+ xdy. ΩB/A is universal for all A-derivations of B, which means that
if M is a B-module, and DerA(B,M) is the set of all A-derivations D : B →M , then

HomB(ΩB/A,M) ∼= DerA(B,M) (3.1)

via ψ → D = ψ ◦ dB/A. Another way of saying this is that ΩB/A is initial in the slice category, or
satisfies the obvious universal property.

We construct ΩB/A in two different ways:

1. Generators and relations: We set ΩB/A = P/Q where P is the free B-module on {[b]|b ∈ B}
and Q is the submodule generated by [φ(a)] for all a ∈ A and [b1b2] − b1[b2] − b2[b1] and
[b1 + b2]− [b1]− [b2]. Then dB/A(b) is the image of [b] in P/Q.

2. Let µ : B ⊗A B → B be the standard multiplication map b ⊗ b′ → bb′, J = kerµ. There are
two maps B → B ⊗A B whose composition with µ is the identity, them being b→ 1⊗ b and
b→ b⊗ 1. Then J/J2 is a B⊗A B-module annihilated by J , so the two B-module structures
on it are the same. In particular, we have that if a⊗ c ∈ J , then (1⊗ b− b⊗ 1)(a⊗ c) ∈ J2,
so defining b(a ⊗ c) = a ⊗ bc or b(a ⊗ c) = ab ⊗ c makes no difference. We then define our
derivation

d′ : B → J/J2

b→ 1⊗ b− b⊗ 1. (3.2)

Proposition 3.2. There exists an isomorphism P/Q ∼= J/J2, [b] mod Q→ d′(b).

Remark 3.3. Let C = B ⊗A B/J
2. Then B → B ⊗A A ↪→ C, I don’t understand this remark.

Remark 3.4. The differential has nice functorial properties. If
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B B′

A A′

is a commutative square of ring maps, there is an induced B-module map ΩB/A → ΩB′/A′ which is
transitive for B → B′ → B′′ and induces a B′-module map by extension of scalars: ΩB/A⊗B B

′ →
ΩB′/A′ .

Proposition 3.5. If B′ = B ⊗A A
′, then ΩB/A ⊗A A

′ ∼= ΩB/A ⊗B B′ ∼= ΩB′/A′ .

Proof. Exercise.

In particular, if S ⊂ A is a multiplicatively closed set, and SB is the image of S in B, then

ΩS−1
B B/S−1A = S−1

B · ΩB/A (3.3)

Example 3.6. If B = A[t1, . . . , tn] is a polynomial algebra, then

ΩB/A =
⊕

B(dti) (3.4)

is a free module on the symbols dti. Since B ⊗A B = A[{ti ⊗ 1, 1 ⊗ ti}] = A[{ti ⊗ 1, zi}] where
zi = 1⊗ ti − ti ⊗ 1, we have that J is the ideal generated by {zi}.

Next we define two exact sequences.

Proposition 3.7. Let A→ B → C be a ring map. Then

ΩB/A ⊗B C → ΩC/A → ΩC/B → 0 (3.5)

is an exact sequence of C-modules, where the map ΩC/A → ΩC/B is given by dC/Ac→ dC/Bc.

Proposition 3.8. If A → B → C = B/I be ring maps, where B → C is given by the obvious
b→ b+ I, then

I/I2 → ΩB/A ⊗B C → ΩC/A → 0 (3.6)

is an exact sequence of C-modules, where the first map takes f + I2 → df ⊗ 1.

The proof of both of these propositions is left as an exercise.

Corollary 3.9. If B = A[{xi}], C = B/({fj}), then

ΩC/A =
⊕

Cdxi/(
∑
j

dfj) (3.7)

where dfj =
∑

i
∂fj
∂xi

dxi.

Example 3.10 (Differentials and separability). Let L/K be a finite extension of fields. Then L/K
is separable if and only if ΩL/K = 0.

We write K ⊂ K1 ⊂ L such that K ⊂ K1 is separable and K1 ⊂ L is purely inseparable. Then
K1 = K(α) = K[t]/(g) with g(α) = 0, g′(α) ̸= 0, g irreducible.
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Applying Corollary 3.9, we have that

ΩK1/K = K1dt/K1g
′(t)dt = (K(α)dα)/(K(α)g′(α)dα) = 0 (3.8)

because g′(α) ̸= 0. Then by Proposition 3.7 with ring map K → K1 → L, we have ΩL/K1
= ΩL/K .

Then if L/K is separable, we have that K1 = L, so then ΩL/K = 0.
Now, if L/K is purely inseparable, then K1 = K and K ⊂ K2 ⊊ L, where L = K2(β) =

K2[t]/(h) with h(t) = tp − b, p = char(K) ̸= 0. Then ΩL/K2
= Ldβ/(Lh′(β)dβ = Ldβ because

h′(β) = 0, so ΩL/K ̸= 0 by Proposition 3.7.

Proposition 3.11. If A→ B is a ring map, S ⊂ B multiplicatively closed, then

S−1B ⊗B ΩB/A = S−1ΩB/A
∼= ΩS−1B/A (3.9)

3.1 Sheafification
We now construct the Kahler differential for a general scheme S. Let f : X → Y be a morphism of
schemes. We will define a quasi-coherent sheaf ΩX/Y of OX -modules and a f−1OY -linear map

d = dX/Y : OX → ΩX/Y , (3.10)

the sheaf of relative differentials, or the relative cotangent sheaf. This sheaf will be functorial for
commutative squares, so if

X ′ X

Y ′ Y

g′

f ′ f

g

is a commutative square and g, g′ are open immersions, then (g′)∗ΩX/Y → ΩX′/Y ′ is an isomor-
phism.

Also if X = SpecB → SpecA = Y is a morphism of affine schemes, then ΩX/Y = ΩB/A
:

.

Definition 3.12. Recall that if X = SpecR, M an R-module, then M̃ is a sheaf of OX -modules
such that Γ(X, M̃) =M , Γ(D(f), M̃) =Mf , and (M̃)p =Mp.

If f : SpecR′ → SpecR, then f∗M̃ = M ⊗R R
′: . In particular, if U = SpecR′ ⊂ SpecR is an

open affine, then M̃(U) =M ⊗R R
′.

A quasi-coherent sheaf is one which locally looks like M̃ .

Now we begin constructing our differential. First assume that f is separated. Then the diagonal
map ∆ : X → X ×Y X = X2 is a closed immersion, so we have an ideal sheaf I∆ ⊆ OX2 , such
that OX2/I∆ = ∆∗OX . Now, by some result on the Stacks project (29.31/01R1), since I∆/I2∆ is
annihilated by I∆, we have that I∆/I2∆ = ∆∗ΩX/Y for a unique quasi-coherent OX -module ΩX/Y .

Now, suppose that j : X ′ → X, Y ′ → Y are open immersions such that f(X ′) ⊂ Y ′. We can
check that ΩX′/Y ′ = ΩX/Y |X′ = j∗ΩX/Y . In fact, if ∆′ : X ′ → X ′ ×Y ′ X ′ then I∆′ = I∆|X′×X′ ,
so I∆′/I2∆′ = (I∆/I2∆)|X′×X′ . Thus ΩX′/Y ′ = ΩX/Y |X′ .

If X = SpecB → Y = SpecA, then I∆ = J̃ , where J = ker(µ : B ⊗A B → B), so ΩX/Y =

J/J2
:

= ΩB/A
:

.
Now for the general case where f might not be separable. First we sketch the following nice

lemma about ∆.
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Definition 3.13. Let f : X → Y be a morphism of schemes. Then f is an immersion if it is a
closed immersion followed by an open immersion.

Remark 3.14. Not every immersion can be written in the reversed form as an open immersion
followed by a closed immersion. But it is hard to find an example of this happening.

Lemma 3.15. Let f : X → Y be a morphism of schemes. The diagonal map ∆ : X → X ×Y X is
an immersion of schemes.

Proof. Write X =
⋃
Ui, Ui = SpecAi such that f(Ui) ⊂ Vi for some open affine Vi of Y . Then we

have
i : X → V =

⋃
Ui ×Vi

Ui. (3.11)

But i−1(Ui×Y Ui) = Ui, so i is a closed immersion because it is basically the union of the diagonal
embedding of affine schemes, which is a closed immersion (see the stacks). Further, we have that

j :
⋃
Ui ×Vi

Ui → X ×Y X (3.12)

is an open immersion by some other result in the stacks, so ∆ = j ◦ i is an immersion.

Now consider IX⊂V where V is a defined above to be the quasi-coherent ideal sheaf of OV -
modules, and define ΩX/Y to be the associated quasi-coherent OX -module i−1(IX⊂V /I2X⊂V ). This
is independent of V because it vanishes away from the diagonal. Also, the functoriality of the
diagonal implies the functoriality properties.

To define the differential d = dX/Y : OX → ΩX/Y , it is enough to define it on each open affine
U = SpecB ⊂ X such that f(U) ⊂ V = SpecA ⊂ Y some open affine. We define OX(U) = B →
ΩX/Y (U) = ΩB/A by just taking dB/A. Then since we have a local morphism of sheaves, we can
extend it to a global one since it is nice.

Now that we have our construction finished, we can prove Proposition 3.11.

Proposition 3.11. Let X = SpecB and X ′ = SpecS−1B be schemes over Y = SpecA.
If S is generated by a finite subset, then X ′ is open in X. Then ΩX/Y = ΩB/A

:
so ΩX′/Y =

ΩX/Y |X′ = S−1ΩB/A

:
by the properties of the twiddle operator. So ΩS−1B/A = ΩX′/Y (X

′) =
S−1ΩB/A.

For an arbitrary, potentially infinite S, we pass to the limit.

Since ΩX/Y = ΩB/A
:

if X = SpecB → Y = SpecA, we can rewrite the two exact sequences in
terms of sheaves.

Proposition 3.16. Let

X Y S
f

be a morphism of schemes. Then we have an exact sequence

f∗ΩY/S ΩX/S ΩX/Y 0.

Proposition 3.17. Let i : Z → X be a closed subscheme given by a quasi-coherent sheaf of ideals
I = IZ/X = OX , f : X → Y a morphism of schemes. Then we have an exact sequence
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I/I2 i∗ΩX/Y ΩZ/Y 0.

Next we show that ΩX/Y is coherent in certain nice situations.

Definition 3.18. A scheme X is locally Noetherian if every x ∈ X has an affine open neighborhood
SpecR with R Noetherian. An equivalent condition is that every affine open is Noetherian.

Let X be a locally Noetherian scheme. Then a quasi-coherent OX -module F is coherent if
for every open affine SpecR = U ⊂ X, we have that F|U = M̃ for M = F(U) a finite (finitely
generated) R-module.

It is enough to check coherence for a single open affine cover of X.

Remark 3.19. Hartshorne has the wrong definition of coherence for schemes which are not Noethe-
rian.

Proposition 3.20. Let f : X → Y be a morphism of schemes which is locally of finite type, and
Y be locally Noetherian. Then ΩX/Y is coherent.

Proof. First note the conditions of the proposition imply that X is locally Noetherian, since for any
SpecA = V ⊂ Y we have that f−1(V ) can be covered by finitely generated A-algebras, which will
have the form B = A[T1, . . . , Tn]/I, and by Hilbert’s basis theorem B is Noetherian. Thus we can
cover X by Noetherian open affines.

The question is local on X, so we can assume that X = SpecB → Y = SpecA with A,B
Noetherian, and in particular B = A[T1, . . . , Tn]/I. It suffices to show that ΩB/A is a finite B-
module since the differential is functorial with respect to open immersions.

By Proposition 3.8, we have surjection

ΩA[T1,...,Tn]/A ⊗A B =

n⊕
i=1

BdTi → ΩB/A. (3.13)

Since
⊕
BdTi is a finite B-module (it’s a free module of rank n) we have that ΩB/A is a finite

B-module.

3.2 Tangent and cotangent spaces
Let X be a k-scheme, so we have a structure morphism X → Spec k, and let x ∈ X be any point.
Then we have a residue field k(x) = OX,x/mx which will be a field extension of k since morphisms
of schemes correspond to morphisms of stalks. We will write x for the morphism Spec k(x) → X
given by mapping ∗ → x, induced by the map of stalks OX,x → k(x) = OX,x/m.

If x ∈ X is a closed point this is a morphism of k-schemes.
Now, if F is any OX -module, we define

F(x) = Fx ⊗OX,x
k(x) = Fx/mxFx. (3.14)

Definition 3.21. The cotangent space to X at x ∈ X is the k(x) vector space

T ∗
X/k,x = ΩX/k(x). (3.15)

Note that this is not the dual to the tangent space T in general.
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Example 3.22. LetX = An
k , then ΩX/k = Ωk[T1,...,Tn]/k
:

is a freeOX -module with basis dT1, . . . dTn.
So for any point x ∈ X, we have T ∗

An
k/k,x

=
⊕
k(X)dTi since we have that

ΩX/k(x) =

(
n⊕

i=1

OXdTi

)
x

⊗OX,x
k(x)

=

(
n⊕

i=1

OX,xdTi

)
⊗OX,x

k(x)

=

n⊕
i=1

k(x)dTi. (3.16)

In scheme theory, nilpotents play the role that infinitesimals play in calculus.

Definition 3.23. Let K be any field. Then the ring of dual numbers over K is K[ϵ] = K[T ]/(T 2) =
K ⊕Kϵ. This is a local ring with maximal ideal (ϵ).

The scheme SpecK[ϵ] is non-reduced, and consists of only 1 point (ϵ). There is a canonical
closed reduced subscheme SpecK → SpecK[ϵ] given by the morphism K[ϵ]→ K sending ϵ→ 0.

Definition 3.24. Let X be any k-scheme. The (Zariski) tangent space to X at x ∈ X is the set

TX/k,x = {k-scheme morphisms θ : Spec k(x)[ϵ]→ X such that θ|Spec k(x) is x : Spec k(x)→ X}
(3.17)

The idea here is that we start with some x : Spec k(x) → X and enlarge it to a morphism θ :
Spec k(x)[ϵ] → X. Intuitively, we think of the embedding of Spec k(x)[ϵ] into X as a point x plus
a direction.

Theorem 3.25. There is a canonical bijection

TX/k,x → Homk(x)(T
∗
X/k,x, k(x)) = HomOX,x

(ΩX/k,x, k(x)) (3.18)

so that T is the dual of T ∗ (but maybe not the other way).

Proof. By localization, we have that ΩX/k,x = ΩOX,x/k and since Spec k(x)[ϵ] is one point, every θ
of the form (3.17) factors through OX,x → X. So we can replace X by SpecOX,x.

Thus WLOG we have X = SpecA, where (A,m, k(x) = K = A/m) is a local k-algebra, x ∈ X
is the closed point (the maximal ideal). Then

TX/k,x = {k-algebra homomorphisms φ : A→ K[ϵ] such that ∀a ∈ A, φ(a) mod ϵa} (3.19)

where a is given by A→ A/m = K, a→ a. Any such φ is of the form φ(a) = a+D(a)ϵ, for some
map D : A→ K which is k-linear. Now, φ is a homomorphism if and only if

φ(aa′) = aa′ +D(aa′)ϵ

= φ(a)φ(a′)

= aa′ + (aD(a′) + a′D(a))ϵ (3.20)

if and only if D is a k-derivation A→ k. So φ→ D is a bijection so we have a bijection

TX/k,x → Derk(A, k) = HomA(ΩA/k, k). (3.21)

Thus in particular TX/k,x is a k(x)-vector space.
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Remark 3.26. The base field k doesn’t play much of a role here. We can replace Spec k by any
base scheme S and define T ∗

X/S,x = ΩX/S(x) for f : X → S and TX/S,x to be the set of morphisms
θ as above.

However, this generality is illusory because of the functoriality properties of the Kahler differ-
ential (basically the local property of it). If f(x) = s ∈ S, then if Xs = X ×S Spec k(s) is the fibre
at s, then we have a commuting square

Xs X

Spec k(s) S

and we have that T ∗
X/S,x = T ∗

Xs/k(s),x
and TX/S,x = TXs/k(s),x.

Proposition 3.27. Let X be a k-scheme, x ∈ X with the residue field k(x) = k. Then ΩX/k(x) ∼=
mx/m

2
x as k-vector spaces.

Proof. Both sides depend only on OX,x. Thus we may assume that X = SpecA, where (A,m) is
a local k-algebra with A/m = k. Consider the second exact sequence Proposition 3.8 or 3.17 for
k → A→ A/m = k. Then we have an exact sequence

m/m2 → ΩA/k ⊗A k = T ∗
X/k,x → Ωk/k = 0 (3.22)

so we have a surjection m/m2 → T ∗
X/k,x.

Thus it suffices to show that the map m/m2 → ΩA/k ⊗A k is injective, or equivalently, that the
dual map

HomA(ΩA/k, k)→ Homk(m/m
2, k) (3.23)

is surjective. Further, recall that by the universal property for ΩA/k, we have that HomA(ΩA/k, k) =
Derk(A, k).

If D ∈ Derk(A, k) and x, y ∈ m, then D(xy) = (x+m)D(y)+(y+m)D(x) = 0 because x, y ∈ m.
Thus we have that Derk(A, k) = Derk(A/m

2, k), because D ∈ Derk(A, k) vanishes on m2.
As the sequence 0→ m→ A→ A/m = k → 0 is exact, it splits so A = k⊕m. Further, we have

that A/m2 = k ⊕ (m/m2) with multiplication given by

(a, x)(b, y) = (ab, ay + bx) (3.24)

which basically follows from

(a+ x)(b+ y) = ab+ (ay + bx) + xy (3.25)

and we have that ab ∈ k, ay + bx ∈ m, and xy ∈ m2 so it is zero.
Thus given some φ ∈ Homk(m/m

2, k), we can extend it to a D ∈ Derk(A/m
2, k) by writing

D = φ ◦ π, where π is the projection map A/m2 = k ⊕m/m2 → m/m2.

Remark 3.28. If more generally k(x)/k is a finite separable extension, then Proposition 3.27
still holds with the isomorphism as k(x)-vector spaces, since Ωk(x)/k = 0 by Example 3.10 and
A/m2 ∼= k(x)⊕ (m/m2) from Example sheet 1.

Example 3.29. If k = k, then ∀x ∈ X closed points we have that

T ∗
X/k,x = mx/m

2
x. (3.26)

This is the definition of the cotangent space in some books.
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3.3 Algebraic interlude
Lemma 3.30. Let A be a ring, φ : Am → An an A-module map. Then

{p ∈ SpecA | rank(φ⊗A k(p) : k(p)
m → k(p)n) ≤ r} (3.27)

is a closed subset of SpecA.

Proof. The map φ⊗ k(p) is the induced map on k(p)-vector spaces.
The above set is equal to

p| all (r + 1)× (r + 1)-minors of φ⊗ k(p) vanish} = V (I), (3.28)

where I is the ideal generated by all (r + 1)× (r + 1) minors of φ. Basically, the (r + 1)× (r + 1)
minors are the determinants of dimension r+1-subspaces. If they all vanish in Ap then φ⊗k(p) has
rank at most r. So if we take the ideal I containing all of them, then they vanish in k(p) = Ap/p
if and only if I ⊆ p.

Proposition 3.31. Let X be a locally Noetherian scheme, F a coherent OX-module. Then

1. The function x→ d(X) = dimk(x) F(x) is upper semi-continuous.

2. If X reduced, then d constant implies that F is locally free of dimension d. Note that if F is
locally free, then the function d is locally constant.

Proof. 1. We need to show that (this is the definition of upper semi-continuous)

Zr = {x ∈ X|d(x) ≥ r} (3.29)

is closed for all r.
We can check this locally because being closed is local on a base, so assume that X = SpecA is

affine, A is Noetherian, and F = M̃ for M a finite A-module. Let

Am AnM 0
φ

be a presentation. Then ∀x ∈ X, the induced sequence

k(x)m k(x)n M ⊗A k(x) 0
φ⊗k(x)

is exact by the right exactness of the tensor product.
So d(x) = n− rank(φ⊗ k(x)). So

Zr = {x| rank(φ⊗ k(x)) ≤ n− r, (3.30)

which is closed by the lemma.
2. First, note that the reduced condition is essential, and we can consider counter-examples as

simple as X = Spec k[ϵ] and M = k as a k[ϵ]-module.
Now, let d = d(x) be constant for all x ∈ X. Being locally free is a local condition, so again we

can assume that X = SpecA,F = M̃ . Suppose there exists a surjection

π : Ad ↠M. (3.31)
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By hypothesis, π ⊗ k(p) : k(p)d → M ⊗ k(p) is an isomorphism for all p ∈ SpecA. So we have an
inclusion

(A/p)d ↪→M/pM. (3.32)

Thus kerπ ⊂
⋂

p p
d ⊂ Ad, and A is reduced so

⋂
p = 0, so M ∼= Ad is free.

In general, it suffices to show that for all m ∈ SpecA maximal, there exists D(f) = SpecAf

containing m with F|D(f) = M̃f free, as then F will be locally free.
Let k = A/m, and pick a basis M ⊗A k =

⊕
mi ⊗ 1, mi ∈ M . Put M ′ =

∑
Ami ⊂ M , so

M =M ′ +mM . Pretty much M ′ is M modulo m, so we add in M to get M . Then by Nakayama’s
lemma, there exists f ∈ 1 +m such that f(M/M ′) = 0. Then

(mi) : A
d
f ↠M ′

f =Mf (3.33)

because Ad
f ↠M ′

f via ei → mi/1, and M ′
f =Mf by Nakayama.

So by the previous step, M̃f is free. Also since f ∈ 1 +m, we have m ∈ D(f).

Proposition 3.32. Let X be an integral k-scheme of finite type, d = dimX. Then ∀x ∈ X,
dimk(x) T

∗
X/k,x = dimTX/k,x ≥ d and we say X is smooth over k at x if equality holds, so the

dimension of the (co)tangent space is d.
We say X is smooth over k if it is smooth at all x ∈ X.

Proof. Let η ∈ X be the generic point of X. Then Proposition 3.31 part 1 applied to ΩX/k shows
that for all x ∈ X, dimT ∗

X/k,x ≥ dimT ∗
X/k,η = dimk ΩK/k, where K = k(x) = k(η). By question 6

on sheet 1, this is ≥ the transcendence degree of K/k, which is d.

Theorem 3.33. Let X be an integral k-scheme of finite type, dimX = d. Then

1. The set of smooth points of X, Xsm, is open in X.

2. X is smooth at x ∈ X if and only if ∃U ⊆ X an open neighborhood of x such that ΩX/k|U ∼= Od
U

is free of rank d.

Thus X is smooth if and only if ΩX/k is locally free of rank d.

3. Let k′/k be an algebraic extension (for instance take k′ = k). Take the projection morphism
p : X ′ = X ×k Spec k′ → X. Assume X ′ is integral, and for x′ ∈ X ′, let x = p(x′). Then X ′

is smooth over k′ at x′ if and only if X is smooth over k at x.

Note that p is surjective by the going-up theorem, so X is smooth over k if and only if X ′ is
smooth over k′.

Proof. 1. Applying Proposition 3.31 (i) to ΩX/k, we find that the set of points where dimT ∗
X/k,x ≥

d+ 1 is closed, and since dimT ∗
X/k,x ≥ d always, the set of points where dimT ∗

X/k,x = d is open.
2. If ΩX/k|U ∼= Od

U , and x ∈ U , then taking stalks gives the desired result.
Now let x ∈ V = Xsm. Then

dimk(y) ΩX/k(y) = d (3.34)

for all y ∈ V , and since X is reduced, by Proposition 3.31 (ii) we have that ΩX/k|V is locally free
of rank d.
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3. By Proposition 3.5, we have that ΩX′/k′ = p∗ΩX/k, so

T ∗
X′/k′,x′ = T ∗

X/k,x ⊗k(x) k(x
′) (3.35)

so the dimensions over the corresponding fields are equal and the fact that dimX = dimX ′ gives
the result.

For varieties, we have a stronger result.

Theorem 3.34. Let X be a k-variety. Then

1. Xsm is non empty, so it is a dense open subset.

2. x ∈ Xsm if and only if ΩX/k is free in a neighborhood of x (and thus it will be free of dimension
d in this neighborhood).

Proof. 1. By Theorem 3.33 (iii), it is sufficient to prove that (X ×k Spec k)sm ̸= ∅, so assume that
k = k.

Let η ∈ X be the generic point, and let K = k(η) = k(x) = OX,η. By commutative algebra, be-
cause k = k and K/k is finitely generated, there exists K0 = k(t1, . . . , td) ⊂ X purely transcenden-
tal, where d = dimX = trdegK, withK/K0 finite, separable. Then ΩK/k = ΩK0/k⊗K0

K =
⊕
Kdti

by Sheet 1, question 6, and this equals T ∗
X/k,η. Thus η ∈ Xsm.

2. By the first part, X is smooth over k at η, and dimT ∗
X/k,η = d = dimX.

Now, if x ∈ Xsm we are done by Theorem 3.33 (ii).
If x ∈ U is open such that ΩX/k|U is free, then η ∈ U , and ΩX/k|U has to have rank d. So

x ∈ Xsm.

Remark 3.35. Morally, x is a smooth point if locally, X looks like Ad
k in a neighborhood of x.

This is a “manifold like” condition.

Example 3.36. Consider the cubic Spec k[u, v]/(v2 − u(u − 1)2), char k ̸= 2. At the point x =
(v, u− 1), we have that T ∗

X/k,x
∼= k2, but ΩX/k is locally free of rank 1 on the open set X\{x}, so

x is the only non-smooth point.

Example 3.37. ΩX/k being locally free isn’t enough for smoothness in general (but it is for
varieties).

Let k = Fp(t), X = SpecK, where K = k( p
√
t) = k(s), for sp = t. Then X is integral, of finite

type over k, and dimX = 0. But we have that

ΩX/k = ΩK/k
: ̸= 0 (3.36)

as ΩK/k = Kds ̸= 0. So ΩX/k is free of rank 1, but dimX = 0, so X is not smooth over k.
This is because X is not geometrically integral.

Over algebraically closed k = k, there is another equivalent notion of smoothness. First we
recall two definitions of regularity.

Definition 3.38. Let (A,m) be a local ring of (Krull) dimension d with A/m = k. Then the
following are equivalent, and if either holds we say that A is regular :

1. m can be generated by d elements e1, . . . , ed.
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2. dimk m/m
2 = d.

In general, we have that the minimal number of generators of m is at least d by Krull’s principal
ideal theorem, so a local ring is regular if the number of generators is minimal.

The proof of the equivalence of these things is actually contained in the proof of the next
theorem.

Theorem 3.39. Let X be an integral scheme of finite type over algebraically closed k = k, and
dimX = d. Note that if we also assume X is separated, then X is a variety. Then x ∈ Xsm if and
only if the local ring OX,x is regular.

Remark 3.40. Note that dimOX,x = dimX as x ∈ X is closed.
Also note that dimX = trdegk(x)/k.

Proof. As k(x) = k, we have that T ∗
X/k,x = mx/m

2
x by Proposition 3.27. Let a1, . . . , ar ∈ mx. By

Nakayama, a1, . . . , ar generate mx if and only if they generate mx/m
2
x. So OX is regular if and only

if dimmx/m
2
x = d.

Remark 3.41 (Warning!). If k is not algebraically closed then the previous result can be false, so
we can have a non-smooth point with a regular local ring.

For instance, let X = SpecK, and let K/k be a nontrivial separable extension.

Example 3.42. The previous theorem can even be false for a k-variety if k is not algebraically
closed.

Take k = Fp(a), p ̸= 2, X = Spec k[u, v]/(v2 − up − a) = SpecA. Then X is geometrically
integral because the defining polynomial is irreducible over k, and after checking the other conditions
we can see that X is a k-variety of dimension 1. Let x = p = (v, up − a) = (v) ⊂ A. Then
A/p = k[u]/(up − a) = k( p

√
a). So x is a closed point and mx = vOX,x ⊂ OX,x. We then have that

ΩA/k = (Adu⊕Adv)/(Avdv) = Adu⊕ (A/vA)dv (3.37)

so dimX/k,y = 1 for all y ̸= x. But dimTX/k,x = 2, so x is not a smooth point.
Over k, the equation for X becomes v2 = (u− a1/p)p, which clearly isn’t smooth.

Remark 3.43. Let X be an integral k-scheme of finite type over k, x ∈ X, d = dimX. Then X is
smooth over k at x ∈ X if and only if there exists an open affine neighborhood of x U = SpecA ⊆ X,
with

A = k[t1, . . . , tm+d]/(g1, . . . , gm) (3.38)

such that the matrix M =
(

∂gi
∂tj

(x)
)
ij

has rank m.

Given such a presentation, then T ∗
X/k,x is the cokernel of M , and should have dimension d. The

other direction is harder, but standard.

3.4 Digression on finiteness and related conditions
Let X be a scheme. Recall that

• X is quasicompact (qc) if and only if X is a finite union of open affines. This is not really a
topological condition, but a finiteness condition.
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• Some non-quasicompact schemes are
⊔

n∈Z Spec k, and A∞
k \(0, 0, . . .). Note that this is the

inverse limit of An
k .

• If X is a separated scheme, then the intersection of any two open affines is affine.

• X is quasiseparated if the intersection of any 2 open affines is quasicompact.

• A non-quasiseparated scheme is A∞
k ∪ A∞

k glued together on the complement of the origin.
This is the infinite dimensional version of the line with doubled origin.

• Fun exercise: find a scheme X = U ∪ V with U, V affine such that U ∩ V =
⊔

n∈Z Spec k. We
basically want an affine scheme SpecA which contains

⊔
n∈Z Spec k as an open subset.

• Non-quasiseparated schemes rarely arise in nature, but non-separated schemes are fairly com-
mon.

• We sometimes work with schemes which are quasicompact and quasiseparated (qcqs).

• A morphism f : X → Y is quasi-compact if for all open affines U ⊂ Y , f−1(U) is quasi-
compact.

• f is locally of finite type if for all x ∈ X, there exists open affines x ∈ U = SpecB ⊂ X,
f(U) ⊂ V = SpecA ⊂ Y , such that B is an A-algebra of finite type.

This is equivalent to f−1(V ) having an open affine cover by finite type A-algebras.

• f is of finite type if it is locally of finite type and quasi-compact.

• f is locally of finite presentation if it is locally of finite type and B is a finitely presented
A-algebra (if A is Noetherian this is automatic).

• f is of finite presentation if it is locally of finite presentation, quasi-compact, and quasi-
separated.

• X is locally Noetherian if every open affine is Noetherian.

• X is Noetherian if it is locally Noetherian and quasi-compact.

Now let F be a sheaf of OX -modules. Recall that

• F is quasi-coherent if F|U ∼= M̃ where U = SpecA is an open affine and M is an A-module.

• F is of finite type if there exists a surjection On
U ↠ F .

• If X is locally Noetherian, then F is coherent if and only if M is finitely generated, so F is
quasi-coherent and of finite type.

• For non-locally Noetherian schemes, there is a definition in Serre’s FAC paper. The one in
Hartshorne is wrong. Also, OX might not be coherent.

• F is locally free if for each x ∈ X, there is an open neighborhood U such that F|U is free.

• F being locally free implies that Fx is a free OX,x-module for all x ∈ X.
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• But the converse is false:

Let X = SpecZ, M = {a/b ∈ Q | b squarefree }. Then M(p) = 1/pZ(p) for all primes p, so it
is free. But M ⊗ZZ[1/n] is not free for any n ≥ 1, so M is not locally free. Here, M ⊗ZZ[1/n]
is the restriction of M to the affine open consisting of the primes not dividing n, all affine
opens of SpecZ are of this form.

4 Flatness and smooth morphisms
We review some things about flatness and define smooth morphisms, which are very nice.

Mumford once said “Flatness is an algebraic riddle which is the answer to many prayers”.
Let A be a ring, M an A-module

Definition 4.1. M is flat over A (or A-flat) if for any injection N ↪→ N ′ of A-modules, M⊗AN ↪→
M ⊗A N

′ is injective.
An A-algebra B is flat if it is flat as an A-module.

Here are a bunch of facts:

0. Any free A-module is flat. A flat module is one which “behaves” like a free module.

1. M is flat if and only if for every finitely generated ideal I ⊂ A, M ⊗ I → M ⊗ A = M is
injective, so if and only if M ⊗A I ∼= IM ⊂ M . This means we can check flatness on just
ideals, not all modules.

2. M if flat if M ⊗ is an exact functor. In general, M ⊗ is right exact, flatness implies left
exactness.

3. Flatness is a “weak form of freeness”, which can be made precise with “equational flatness”:

M is flat if and only if ∀m1, . . . ,mn ∈ M , a1, . . . , an ∈ A with
∑
aimi = 0, there exists

e1, . . . , er ∈M , bij ∈ A with mi =
∑
bijej , such that

∑
aibij = 0.

Compare this to a basis for a free module. If M is free, then we can choose our eis from a
basis for M .

4. Direct limits of flat modules are flat. This is because as in the previous step, any relation will
live in a finite submodule of the limit.

The same result applies for filtered colimits, but not for arbitrary colimits. This is because
any module is a colimit of free modules. For example, Z/2Z, which is not flat as a Z-module,
can be written as the colimit of the diagram

Z Z
0

2

5. Let A→ B be a ring map, M a flat A-module, then M ⊗A B is a flat B-module.

6. M is A-flat if and only if Mp is Ap-flat for all p ∈ SpecA. So flatness is a local condition.

7. If B is a flat A-algebra, M a flat B-module, then M is a flat A-module.
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8. If A is a field, then all A-modules are flat (because they are all vector spaces, which are free).

If A is a PID, then M is A-flat if and only if M is A-torsion free. This can be seen by applying
property (1) to a principal ideal.

9. If A is Noetherian, M a finite A-module, then M is flat if and only if M is projective, so
M ⊕M ′ is free for some M ′, if and only if M̃ is locally free on SpecA, if and only if Mp is
free for all p ∈ SpecA.

Here are some basic facts about flatness and cohomology.

Proposition 4.2. Let

· · · Kn−1 Kn Kn+1 · · ·dn−1 dn

be a complex of A-modules and A-linear maps (so that dn ◦ dn−1 = 0 for all n). Let M be an
A-module. There is a natural homomorphism

Hn(K)⊗A M → Hn(K ⊗A M) (4.1)

which is an isomorphism if M is A-flat.

Proof. We have that Hn(K) = ker dn/ im dn−1. Then we have exact sequences

0 ker dn Kn Kn+1dn

and by the functoriality of ⊗M we get a morphism

σ : ker dn ⊗A M → ker(dn ⊗ id). (4.2)

We also have an exact sequence

Kn−1 ker dn Hn(K) 0dn−1

Tensoring preserves exactness:

Kn−1 ⊗M ker dn ⊗M Hn(K)⊗M 0

Kn−1 ⊗M ker(dn ⊗ id) Hn 0

id σ λ

The map λ exists because the rows are exact and the other two vertical arrows exist. If M is flat,
then σ is an isomorphism, so λ is also an isomorphism.

Definition 4.3. Let f : X → Y be a morphism of schemes, x ∈ X. Then f is flat at x if OX,x is
a flat OY,f(x)-algebra and f is flat if it is flat at every x ∈ X.

A quasi-coherent OX -module F is flat over Y if Fx is OY,f(x)-flat for all x ∈ X. So f : X → Y
is flat if OX is flat over Y .

If Y = X, f : X → X the identity, then if F a quasi-coherent OX -module is flat over X, we say
it is a flat OX -module.
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1. SpecB → SpecA is flat if and only if B is A-flat.

2. Open immersions are flat because OX,x = OY,f(x).

3. Closed immersions are rarely flat because A/I typically has torsion as an A-module.

4. If X,Y are k-schemes, then X ⊗k Y → Y is flat because A⊗k B is flat over B as A is k-flat.

Remark 4.4. Morally, a flat morphism can be thought of as a continuously varying family. Read
Hartshorne III.9.

Proposition 4.5. Let f : X → Y be a morphism of integral schemes of finite type over k. If f is
flat, then for all closed points y ∈ Y , and for all irreducible components Z ⊂ f−1(y) ⊂ X of the
fiber at y, then

dimZ + dimY = dimX. (4.3)

So a flat morphism is like a projection. Since X ×k Y → Y is flat, and we have f−1(y) ∼= X, we
get dimX + dimY = dimX ×k Y .

Example 4.6. Let f : A2
k → A2

k be given in coordinates by (u, v) 7→ (u, uv). Then if u ̸= 0 the
fiber of f above (u,w) is (u,w/u). But f−1(0, 0) is a line, so f is not flat (blowup?).

Example 4.7. Although fiber dimension is constant in a flat family, other things can vary. Let
Y = Spec k[t] = A1

k and consider the injections into X1 = Spec k[x, y, t]/(xy − t) and X2 =
Spec k[x, y, t]/(x2 − ty). The fibers over t = 1 are xy = 1, and y = x2, respectively, which are nice
and integral. But the fiber of X1 over t = 0 is xy = 0, which is not reduced, and the fiber of X2

over t = 0 is x2 = 0, which is reducible. But note that the fibers all have the same dimension.

Example 4.8. Let f : X → Y = SpecA with A a PID (or a Dedekind domain). Then f is flat if
and only if ∀x ∈ X, OX,x is A-torsion free. So f is flat and X is integral with generic point η ∈ X,
then OX,η is A-torsion free, so f(η) is the generic point of SpecA. So if f is proper, then f is
surjective, and in general it is dominant. A morphism is dominant if the image is a dense subset.

If Y is a regular scheme, then the converse of our dimension result is often true.

Theorem 4.9. Let f : X → Y be a morphism of integral schemes of finite type over k, Y regular.
If X is also regular (this condition can be weakened), and if for all y ∈ Y , and for all Z ⊂ f−1(y)
an irreducible component of the fiber, we have that dimX = dimZ + dimY , then f is flat.

Example 4.10. Y being regular in the above example is essential. Let Y = Spec k[u, v]/(u3−v2) =
SpecA with char k ̸= 2, 3. And let X → Y be the normalization, so X = Spec k[t] ∼= A1 with the
parametrization u = t2, v = t3. Then f is finite. So if f were flat, then k[t] would be a locally free
module over k[u, v]/(u3 − v2). But for m ⊂ A a maximal ideal, we have that dimA/mk[t]/mk[t] is
2 if m = (u, v) because k[t]/mk[t] = k[t]/(t2), and 1 otherwise.

Remark 4.11. For X to be flat, it’s enough to assume that X is locally a complete intersection, so
that locally X looks like Spec k[t1, . . . , tm+dimX ]/(f1, . . . , fm). This if call “miracle flatness”, Vakil
talks a lot about it.

Here’s one final property of flat morphisms, which is fairly hard to prove.
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Lemma 4.12. Let f : X → Y be a flat morphism which is locally of finite presentation (for instance
f is of finite type, and Y is Noetherian). Then f is an open map, so it takes open sets to open sets.

Example 4.13. SpecQ→ SpecZ is flat but not open.

For more on flat morphisms, read III.9 of Hartshorne, especially the particularly illuminating
example III.9.8.4. But don’t use the first edition as there is a mistake.

The nicest sort of family is a family with smooth fibers.

Definition 4.14. Let f : X → Y be a locally of finite presentation, x ∈ X, y = f(x) ∈ Y .
Then f is smooth over x (of relative dimension d) if it is flat over x, and there exists an open
x ∈ U ⊂ Xy = f−1(y) such that U is smooth at x over f−1(y) (of dimension d).

We say f is smooth if it is smooth at every x ∈ X (if and only if f is flat, and the connected
components of every fiber Xy are smooth over k(y)).

Example 4.15. Y,Z varieties over k, Z smooth over k. Then X = Y ×k Z → Y the projection
map is smooth.

Theorem 4.16. f : X → Y locally of finite presentation. TFAE:

1. f is smooth (as defined above).

2. f is flat, and ΩX/Y is free of rank d (the fiber dimension, see below).

3. ∀x ∈ X, there exists an open affine neighborhood x ∈ U = SpecB ⊂ X such that f(U) ⊂ V =
SpecA ⊂ Y , with B = A[t1, . . . , tm+d]/(f1, . . . , fm), such that the matrix(

∂fi
∂tj

(x)

)
ij

∈ Matm+d,m(k(x)) (4.4)

has rank m.

The second condition means that for any connected component Y ′ ⊂ Y , ΩX/Y is locally free
of rank d on f−1(Y ′), where d is the dimension of every irreducible component of f−1(y) for every
y ∈ Y ′.

A smooth morphism is a family of smooth schemes of dimension d. When d = 0, a smooth
morphism is then intuitively a “local isomorphism”.

Definition 4.17. A morphism f is etale if it is smooth of relative dimension 0. In other words, f
is locally of the form SpecB → SpecA, where

B = A[t1, . . . , tm]/(f1, . . . , fm), (4.5)

with det
(

∂fi
∂tj

)
ij

is invertible.

This is sort of an analog of the implicit function theorem: locally, it looks like a function.

Example 4.18. Let char k ̸= 2, and consider k[u, v]/(u − v2) → k[u] sending v → v2 = u. Away
from u = v = 0, f is etale.

f is etale if it is locally of finite presentation and flat and unramified, so ΩX/Y = 0.
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5 Sheaf cohomology
In this section, all schemes will be separated and Noetherian, unless otherwise stated. So our
schemes will be quasicompact and the intersections of affines are affine.

5.1 Homological algebra
A complex (A•, d•) is a chain

A0 A1 A2 · · ·d0 d1

of R-modules or sheaves, so dp+1 ◦ dp = 0 for all p.
We have cohomology groups Hn(A•) = Hn(A•, d•) = ker dn/ im dn−1, and we define the direct

sum
H∗(A•) =

⊕
n≥0

Hn(A•) (5.1)

which has the obvious grading.
Complexes form a category, with a morphism (A•, d•A) → (B•, d•B) being a family of maps

fp : Ap → Bp commuting with d, so that fd = df . This induces a map Hp(f) : Hp(A)→ Hp(B).
It is a basic fact of cohomology, that if we have an exact sequence

0 A• B• C• 0
f g

we get a long exact sequence in cohomology

0→ H0(A)→ H0(B)→ H0(C)→ H1(A)→ · · · (5.2)

which is functorial with respect to exact sequences, so if we have a commuting diagram between
exact sequences we get a morphism of cohomology complexes.

Definition 5.1. Suppose we have (A•, d•A) and (B•, d•B) complexes and we are given maps hp :
Ap → Bp−1 for all p, where h0 = 0. If h ◦ d+ d ◦ h is a morphism of complexes which induces the
zero map from Hp(A)→ Hp(B), then we say that h is a homotopy.

If f, g : A• → B• are maps of complexes such that f − g = dh+ hd, then f, g induces the same
map Hp(A)→ Hp(B) on cohomology. Then h is then called a homotopy between f, g and we say
that f, g are homotopic.

In particular, if we have maps hp : Ap → Ap−1 such that hd + dh = idA, then we have that
Hp(idA) = 0, so Hp(A) = 0 for all p. We then say that A• is null-homotopic

If A• is null-homotopic, then H∗(A) = 0. For vector spaces over a field k, the converse is true.
Suppose Hp(A•) = 0 for all p ≥ 0. By linear algebra, we have that our complex is of the form

B0 = A0 → B0 ⊕B1 = A1 → B1 ⊕B2 = A2 → · · · (5.3)

with the obvious projection maps, and we can define hp : Ap → Ap−1 as the obvious maps in the
other direction. Then h is a null homotopy.

Note that this converse is not true for abelian groups: the complex

Z/2Z Z/4Z Z/2Z 0·2
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has zero cohomology but is not null homotopic.

Remark 5.2. Let us work over complexes of R-modules. For p ≥ 0, let R[−p] be the complex
which is R in degree p, and 0 elsewhere (in general, [−p] means to shift −p places to the left).

Then for any complex A• of R-modules, Hp(A) equals the homotopy classes of morphisms of
complexes R[−p]→ A•. We can see this as follows:

0 R 0

Ap−1 Ap Ap+1

f
0

h

dp−1 dp

Our morphism f is determined by sending 1→ a ∈ A, and since the composite with dp is zero, we
must have a ∈ ker dp. Now, if we have a homotopy map h, h is determined by sending 1→ a′ ∈ Ap−1.
Then the dp−1(a′) ∈ im dp−1. If f and g are homotopic, then f − g = dh+hd = dh because hd = 0,
so f and g differ by a map sending 1→ a′′ ∈ im dp−1. Thus the set of morphisms modulo homotopy
is ker dp/ im dp−1 = Hp(A).

Lemma 5.3 (Snake lemma). Suppose we have a commutative diagram with exact rows

A′ B′ C ′ 0

0 A B C

f g h

Then we get a long exact sequence

ker f → ker g → kerh→ coker f → coker g → cokerh (5.4)

and we have that ker f = H0(A′ → A) and coker f = H1(A′ → A) for example.

5.2 Tensor product of complexes
Let (A•, d•A) and (B•, d•B) be complexes of R-modules. Then we have a tensor product complex
(A• ⊗R B

•, dA⊗B) which in degree n is ⊕
p+q=n

Ap ⊗R B
q (5.5)

with differential
d(a⊗ b) = da⊗ b+ (−1)pa⊗ db (5.6)

if a ∈ Ap, b ∈ Bq. Under this differential map Ap⊗Bq 7→ (Ap+1⊗Bq)⊕ (Ap⊗Bq+1). What is the
cohomology of this complex?

Theorem 5.4 (Naive Künneth formula). Let R = k be a field. Then

Hn(A• ⊗k B
•) =

⊕
p+q=n

Hp(A•)⊗k H
q(B•). (5.7)
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Proof. Let H•(A) be the complex

H0(A•) H1(A•) · · ·0 0

Then since k is a field, we can split off each Hp(A) as a summand of Ap:

A• ∼= H•(A)⊕• (5.8)

where C• has zero cohomology. Essentially we split off the “cohomology” part of A, and are left
with the complex C•, and the boundary operators are all exact (which is easy to see if you write it
out), so they have zero cohomology.

Since C• is a vector space with zero cohomology, it is null homotopic, so there exists hp : Cp →
Cp−1 with dCh+ hdC = idC. Then

A• ⊗k B
• ∼= H•(A)⊗k B

• ⊕ C• ⊗k B
• (5.9)

and h′ = h ⊗ idB is a null homotopy for the complex C• ⊗k B
• (we can check that h′ ◦ dC⊗B +

dC⊗B ◦ h′ = idC⊗B). Thus C• ⊗k B
• has zero cohomology.

Then

Hn(A• ⊗B•) = Hn(H•(A)⊗B•)

= Hn(H•(A)⊗H•(B)

=
⊕

p+q=n

Hp(A)⊗Hq(B). (5.10)

5.3 Sheaf cohomology
Recall that if F is a sheaf of abelian groups on a topological space X, then sheaf cohomology gives
groups Hp(X,F) such that

H0(X,F) = Γ(X,F) = F(X) (5.11)

and for all short exact sequences of sheaves

0→ F1 → F2 → F3 → 0 (5.12)

we get a long exact sequence

0→ H0(F1)→ H0(F2)→ H0(F3)→ H1(F1)→ · · · (5.13)

which “remedies” the fact that H0(X,F2)→ H0(X,F3) may not be surjective. This is because the
functor Γ(X, ) is left exact but not right exact.

We can define sheaf cohomology with injective resolutions, but this is not very concrete as giving
descriptions of injective modules is difficult. But we can also compute sheaf cohomology in a few
other ways.

First, recall that a sheaf G is flasque (or flabby) if for all opens U ⊂ V ⊂ X, the restriction map
ρUV : G(V )→ G(U) is surjective. Then if

0→ F → G0 → G1 → · · · (5.14)
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is a long exact sequence with Gp flasque, then Hp(X,F) = Hp(Γ(X,G•)). So the cohomology of F
is given by the cohomology of the global sections of G•. In particular, if F is flasque, we can set
G0 = F and Gp = 0 for p ≥ 1, and we get that H0(X,F) = Γ(X,F) and Hp(X,F) = 0 if p ≥ 1.

We can generalize this method to acyclic sheaves: recall that G is an acyclic sheaf if for all p > 0,
then Hp(X,G) = 0. Then if

0→ F → G0 → G1 → · · · (5.15)

with Gp acyclic, then Hp(X,F) = Hp(Γ(X,G•)). Every sheave F has a canonical resolution of the
form (5.15) by flasque sheaves, called the Godemont resolution. Let GF be the sheaf

GF =
∏
x∈X

(ix)∗(Fx), (5.16)

where ix : {x} ↪→ X is the inclusion. There is a canonical injection F → GF by Fx → (ix)∗Fx and
GF is clearly flasque by construction, because we have

GF(U) =
∏
x∈U

Fx. (5.17)

We then build a complex

0 F G0 = GF G1 = G(coker a0) G2 = G(coker a1) · · ·a0 a1 a2

Sheaf cohomology is functorial in the following sense. Let f : X → Y be a continuous map, and
let F be a sheaf on X and G a sheaf on Y . Then for any map φ : G→ f∗F (which is the same as
giving a map f∗G → F), there is an induced map

Hp(Y,G)→ Hp(X,F). (5.18)

Proposition 5.5. Let i : Y → X be a closed subset, and F a sheaf on Y . Then for all p,

Hp(Y,F) = Hp(X, i∗F) (5.19)

Proof. Choose a flasque resolution on Y

0→ F → G0 → G1 → · · · (5.20)

Then H∗(Y,F) = H∗(Γ(Y,G•)).
By definition, i∗Gn is a flasque sheaf on X, so Hp(X, i∗F) = Hp(Γ(X, i∗G•)) = Hp(Γ(Y,G•)) =

H∗(Y,F) as well.

Theorem 5.6 (Mayer- Vietoris sequence). Let U, V ⊂ X be open sets with U ∪ V = X, F a sheaf
on X. Then we have a long exact sequence

0 H0(X,F) H0(U,F|U )⊕H0(V,F|V ) H0(U ∩ V,F|U∩V

H1(X,F) H1(U,F|U )⊕H1(V,F|V ) H1(U ∩ V,F|U∩V ) · · ·

r0

r1
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where rp is the difference of the restriction maps induced by U ∩ V ↪→ U, V , so that rp = ρU,U∩V −
ρV,U∩V .

Proof. Let 0→ F → G0 → G1 → · · · be a flasque resolution of F . Then

0 Γ(X,G•) Γ(U,G•)⊕ Γ(V,G•) Γ(U ∩ V,G•) 0r0

is an exact sequence of complexes of groups (it is left exact by the sheaf axioms, and right exact as
G• are all flasque).

As H∗( ,F) = H∗(Γ( ,G•)) for ∈ {X,U, V, U ∩ V }, then the long exact sequence for
cohomology gives the result (take the cohomology of the exact sequence).

Now assume that X is a scheme which is separated and Noetherian. It is a basic fact that for
any sheaf F on X, if dimX = d, then Hp(X,F) = 0 for all p > d.

For quasicoherent sheaves of OX -modules, we can compute H∗ using Čech cohomology Let
X =

⋃N
i=1 Ui be an open cover, F a sheaf on X. Then we define

Ȟ∗((Ui),F) = H∗(Č((Ui),F), ď), (5.21)

where

Čp((Ui),F) =
∏

1≤i0<···<ip≤N

F(Ui0 ∩ · · · ∩ Uip) (5.22)

and

ďp : Čp((Ui),F)→ Čp+1

s = (si0<···<ip) 7→ t = (ti0<···<ip+1
) (5.23)

where

ti0<···<ip+1 =

p+1∑
α=0

(−1)αsi0<···(̌iα)···<ip+1
|Ui0

∩···∩Uip+1
(5.24)

where (̌iα) means omit α.
Convenient notation: if I = {i0 < · · · < ip}, then UI = UI0 ∩ · · · ∩ Uip . So

Čp((Ui),F) =
∏

#I=p+1

F(UI). (5.25)

There exists alternative, equivalent definitions of Čech cohomology which don’t rely on the ordering
of the open cover.

Remark 5.7. Assume that F is a quasicoherent sheaf of OX -modules, and that (Ui) is an open
affine covering, so that all the UIs are affine as X is separated. Then H∗(X,F) ∼= Ȟ∗((Ui),F), and
this isomorphism is canonical.

In particular, if X is affine, and F = M̃ , taking (Ui) = (X), we get that H0(X,F) = M , and
Hp(X,F) = 0 for p > 0.

A more general principle is that if F has no cohomology in degree 0 on all of the UIs (so that
F|UI

is acyclic), then Čech cohomology is the same as sheaf cohomology. We can think of this fact
as a sort of generalization of the Mayer-Vietoris sequence.
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Lemma 5.8. Let j : V ↪→ X be an inclusion of an open affine, and F a quasicoherent OV -module.
Then j∗F is quasicoherent and is acyclic.

Proof. X is separated, which implies that j is an affine map, as if U ⊂ X is affine, then j−1(U) =
U ∩ V is affine.

By Question 4 of Example sheet 1, we have that if j∗F is quasicoherent, we can compute its
Čech cohomology:

Čp((Ui), j∗F) =
∏

i0<···<ip

F(Ui0 ∩ · · · ∩ Uip ∩ V ) = Čp((U ′
i),F) (5.26)

where if X =
⋃
Ui, then U ′

i = V ∩ Ui. Then

Ȟp((Ui), j∗F) = Ȟp((U ′
i),F) = 0 (5.27)

if p > 0 as V is affine, and the two cohomology groups are equal because the associated Čech
complexes are equal.

We can also develop a “sheaf version” of Čech cohomology: for V ⊂ X open, define

Č•((Ui),F)(V ) = Č•((Ui ∩ V ),F|V ) (5.28)

so that
Čp((Ui),F) =

∏
#I=p+1

(jI)∗(F|UI
) (5.29)

where jI : UI ↪→ X is the inclusion. This makes it clear that Č is in fact a sheaf, as it is a product
of the pushforward sheaves (jI)∗(F|UI

).
The Čech differentials give a complex of sheaves

0→ F → Č0((Ui),F)→ Č1((Ui),F)→ · · · (5.30)

Proposition 5.9. Assume (Ui) is an affine cover and F is quasicoherent. Then (5.30) is an exact
sequence of quasicoherent sheaves and

Hn(X, Čp((Ui),F)) =

{
Čp((Ui),F) n = 0

0 n > 0
(5.31)

Proof. By Lemma 5.8, applied to jI∗(F|UI
), the sheaves Čp are quasicoherent and acyclic for all

p ≥ 0 because they are the product of quasicoherent acyclic sheaves. We have that

H0(X, Čp((Ui),F) = Γ(X, Čp((Ui),F)) =
∏

#I=p+1

F(UI) = Čp((Ui),F). (5.32)

It remains to show the sequence (5.30) is exact. Let V ⊂ X be an open affine. Then the sections
over V of (5.30) are

0→ F(V )→ Č0((Ui),F)(V )→ Č1((Ui),F)(V )→ · · · (5.33)

and since Čp((Ui),F)(V ) = Čp((Ui∩v),F|V ), we have that the cohomology of (5.30) is H∗(V,F|V )
which is acyclic because V is affine. Thus (5.30) is exact.
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Theorem 5.10 (Kunneth formula). Let X,Y be Noetherian, separated k-schemes for k a field, and
let F , G be quasicoherent sheaves of OX , OY -modules, respectively. Then

Hn(X ×k Y, pr
∗
1 F ⊗OX×kY

pr∗2 G) ∼=
⊕

p+q=n

Hp(X,F)⊗k H
q(Y,G) (5.34)

We write
F ⊠ G := pr∗1 F ⊗OX×kY

pr∗2 G (5.35)

for the “product” of F and G as a OX×kY -module.

We will use a preparatory lemma.

Lemma 5.11. (i) Let A,B be k-algebras, M an A-module, N a B-module. Then on SpecA×k

SpecB = SpecA⊗k B, we have that

M̃ ⊠ Ñ =M ⊗k N
:

(5.36)

(ii) If F , G are as in the theorem, and F → K• and G → L• are resolutions of quasicoherent
sheaves, then

F ⊠ G → K• ⊠ L• (5.37)

is a resolution, where
(K• ⊠ L•)n =

⊕
p+q=n

Kp ⊠ Lq (5.38)

Proof. (i) Let F = M̃ . Then pr∗1 F =M ⊗A (A⊗k B)
:

so

M̃ ⊠ Ñ = (M ⊗A (A⊗k B))⊗A⊗kB ((A⊗k B)⊗B N)
:

=M ⊗k N
:

. (5.39)

We could make the tildes wider if we wanted to, but the question is, should we?
(ii) It is enough to check that this is true for an open affine covering, because being a complex

is the same as d2 = 0, and we can check being zero on an open affine covering. So assume that
X,Y are affine, F = M̃ , G = Ñ , Kp = K̃p, and Lp = L̃p with M → K•, N → L• resolutions of
groups/modules. It suffices to show (by part (i)) that M ⊗N → K• ⊗k L

• is a resolution, in other
words that

Hn(K• ⊗k L
•) =

{
M ⊗k N n = 0

0 n > 0
(5.40)

But by the naive Kunneth formula Theorem 5.4, we have that

Hn(K• ⊗ L•) =
⊕

p+q=n

Hp(K•)⊗Hq(L•) =

{
M ⊗k N n = 0

0 n > 0
(5.41)

since we assume that X,Y are affine.

Proof of Theorem 5.10. Take affine open cover (Ui), (Vj) for X,Y . Then we have Čech resolutions
by quasicoherents:

F → Č•((Ui),F) ,G → Č•((Vj),G). (5.42)
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So by Lemma 5.11 part (ii), we have a resolution

F ⊠ G → K• := Č•((Ui),F)⊠ Č•((Vj),G) (5.43)

and we have that
Kn =

⊕
p+q=n

∏
#I=p+1
#J=q+1

KI,J (5.44)

where

KI,J = (jI)∗F|UI
⊠ (jJ)∗G|VJ

= (jI × jJ)∗((F ⊠ G)|UI×VJ
). (5.45)

As each jI × jJ : UI × Vj ↪→ X × Y is an inclusion of open affines, by Lemma 5.8, Kn is acyclic. So
H∗(X × Y,F ⊠ G) = H∗(Γ(X × Y,K•)), and we have that

Γ(X × Y,KI,J) = Γ(UI × VJ ,F ⊠ G)
= F(UI)⊗k G(VJ) (5.46)

by Lemma 5.11 (i), so
Γ(X × Y,K•) = Č•(U,F)⊗k Č•(V,G) (5.47)

and by the naive Kunneth formula Theorem 5.4 we have that the cohomology of this complex is⊕
p+q=n

Hp(X,F)⊗k H
q(Y,G) (5.48)

in degree n.

The Kunneth formula gives rise to the cup product on cohomology as follows. Let Y = X, and
∆ : X ↪→ X ×k X be the diagonal embedding. Let F ,G be quasicoherent sheaves on X. Then
∆∗(F ⊠ G) = F ⊗OX

G. The cup product is the composite map

Hp(X,F)⊗k H
q(X,G) Hp+q(X ×k X,F ⊠ G) Hp+q(X,F ⊗OX

G).Kunneth ∆∗

If we take F = G = OX = F ⊗OX
G, then

H∗(X,OX) =
⊕
n≥0

Hn(X,OX) (5.49)

becomes a k-algebra. It is a fact (the proof is omitted) that H∗(X,OX) is a commutative-graded
k-algebra:

x ⌣ y = (−1)pqy ⌣ x (5.50)

if x ∈ Hp(X,OX) and y ∈ Hq(X,OX).
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5.4 Cohomology of projective spaces, and Hilbert polynomials
Let X be a Noetherian scheme, F a coherent OX -module (so it is locally M̃ for a finite module M).

Definition 5.12. The support of F is

suppF = {x ∈ X|Fx ̸= 0} ⊂ X. (5.51)

This is a closed subset of X since if X = SpecA, F = m̃, then

suppF = {p ∈ SpecA,Mp ̸= 0} = V (annM) (5.52)

because Mp = 0 if and only if there exists a ∈ A\p such that aM = 0 because M is finite if and
only if annM ̸⊂ p.

More precisely: there exists a closed subscheme i : Z ↪→ X with point set supp(F) such that
F = i∗G for a coherent OZ-module G and Z is “as small as possible”, so that if F = j∗G′ for a
OZ′ -module G′, then Z ⊂ Z ′. Note that Z may not be reduced. Also if X = SpecA, then F = M̃
and Z = SpecA/ann(M).

Theorem 5.13 (Basic finiteness theorem). Let A be a Noetherian ring, f : X → SpecA a proper
morphism, so that X is Noetherian, separated, let F be a coherent OX-module. Then Hp(X,F) is
a finite A-module.

In particular, for a proper k-scheme X,

dimkH
p(X,F) <∞ (5.53)

and if p > dimX, then Hp(X,F) = 0, so H∗(X,F) is finite dimensional.

This allows us to define the Euler characteristic.

Definition 5.14. Let X/k be a proper scheme, F a coherent sheaf. Then the Euler characteristic
of F is

χ(X,F) =
∑
p≥0

(−1)p dimkH
p(X,F) ∈ Z. (5.54)

Given a short exact sequence of sheaves

0→ F0 → F1 → F2 → 0, (5.55)

it follows from the long exact sequence of cohomology

0→ H0(X,F0)→ H0(X,F1)→ · · · (5.56)

that χ(X,F1) = χ(X,F0) + χ(X,F2). Recall that for all n ∈ Z, there exists an invertible sheaf
OP(n) on PN

k whose sections on the standard open affine Uj = Spec k[T0/Tj , . . . , TN/Tj ] ⊂ PN
k are

{f/T d
j | f homogeneous of degree n+ d} (5.57)

and the transition functions are (Ti/Tj)
n. We have that

Hp(PN
k ,OP(n)) =

{
k[T0, . . . , TN ]deg=n p = 0, n ≥ 0

k[T0, . . . , TN ]∨−N−n−1 p = N,n ≤ N − 1
(5.58)
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and the cohomology is 0 otherwise. In the first case we have that the cohomology group has
dimension

(
N+n
n

)
and in the second we have that it has dimension

(−n−1
N

)
.

We then have that χ(PN
k ,OP(n)) = P (n), where

P (t) =
(t+N) · · · (t+ 1)

N !
∈ Q[t] (5.59)

is a polynomial. More generally we have the following

Theorem 5.15. Let F be a coherent sheaf on PN
k . Then there exists P (F , t) ∈ Q[t], the Hilbert

polynomial of F , such that ∀n ∈ Z,

χ(PN ,F(n)) = P (F , n) (5.60)

where in general we write
F(n) := F ⊗OP OP(n). (5.61)

We have that degP (F , t) = dim supp(F).

Example 5.16. We have that

P (On
P , t) =

(t+N) · · · (t+ 1)

N !
, (5.62)

and degP (On
P , t) = N = dimPN

k as desired.

More generally, let X be a scheme which is projective over k, so there exists a closed immersion
i : X ↪→ PN

k for some N , and define OX(n) := i∗OP(n).
If X is projective, and F is coherent on X, set F(n) = F ⊗OX

OX(n). Then

H∗(X,F(n)) ∼= H∗(PN , (i∗F)(n)) (5.63)

Thus if we define
P (X,F , t) := P (i∗F , t), (5.64)

then we have that
P (X,F , n) = χ(X,F(n)) (5.65)

for all n ∈ Z.

Definition 5.17. For any k-scheme X and any invertible OX -module L, say that L is very ample
if there exists a closed immersion i : X → PN

k with L ∼= OX(1), so that X is proper.

Now, let L be a very ample invertible OX -module. Then if s0, . . . , sN is a basis for Γ(X,L), it
determines a closed immersion i : X ↪→ PN with sj equal to the pull back of Tj ∈ Γ(Pn,OP(1)).

Remark 5.18. An equivalent criterion to very ampleness if that L separates points and tangent
vectors, we proved this on sheet 3 of algebraic geometry, it’s in Hartshorne.

Now, we will define ampleness and give 4 equivalent criteria. First, we give a definition.

Definition 5.19. A sheaf F is generated by global sections if there exists a surjection O⊕m
X ↠ F .
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Theorem 5.20. Let X/k be a proper scheme, and let L be an invertible OX-module. The following
are equivalent:

(i) For some r ≥ 1, L⊗r is very ample.

(ii) There exists r0 ≥ 1, such that for all r ≥ r0, L⊗r is very ample.

(iii) for all coherent OX-modules F , there exists n0 > 0 such that for all n ≥ n0, F ⊗OX
Ln is

generated by global sections.

(iv) (Serre’s criterion) For all coherent OX-modules F , there exists n0 such that for all n ≥ n0
and for all p > 0, then

Hp(X,F ⊗OX
L⊗n) = 0. (5.66)

If any of the above hold, we say that L is ample.

Remark 5.21. We add some intuition behind condition (iii) above. The sheaf F is coherent,
so it has finite presentation, so it is isomorphic to O⊕m

X for some m, with some “denominators”
coming from the presentation. We then have that FOX

L⊗n “cancels” those denominators and
makes F ⊗OX

L⊗n “projective”.

Example 5.22. Let X be an elliptic curve over k, and P ∈ X a k-rational point. Let L = OX(P ).
Then L⊗3 is very ample, because there is an embedding of X as a plane cubic in P2. But L is not
very ample, so L is ample but not very ample.

In general, for a smooth proper curve X, L is ample if and only if L ∼= OX(D), for D a divisor
of degree > 0.

Thus ampleness can be thought of as a sort of “positivity condition”.

The proof of all these results can be found in Hartshorne.

Proposition 5.23. Let X ⊂ PN
k be projective, integral, and dimX = d, η ∈ X the generic, and F

a coherent sheaf of OX-modules. Then

P (X,F , t) =
(
dimk(X) Fη

)
P (X,OX , t) +R(t), (5.67)

where R(t) has degree strictly less than d. Recall that P (X,OX , t) has degree dim suppOX = d.

Proof. Let e1, . . . , er be a k(X)-basis for Fη, for some r ≥ 0 (in particular, Fη could equal 0).
Then there exists n such that e1, . . . , er extend to global sections of F(n) (why?). So we have

an exact sequence
0→ O⊕r

X → F(n)→ G → 0 (5.68)

where G is the cokernel. We have that Gη = 0 because Gη = Fη/(e1, . . . , er) = 0 because e1, . . . , er
span Fη. So η /∈ suppG, so dim(suppG) < d, and we have that

P (X,F , t+ n) = P (X,F(n), t)
= P (X,G, t) + P (X,O⊕r

X , t)

= P (X,G, t) + rP (X,OX , t) (5.69)

and we are done because P (X,G, t) has degree less than d.

Notation: we write P (X, t) = P (X,OX , t), the Hilbert polynomial of X. Some people also
sometimes write PX(F , t) = P (X,F , t).
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5.5 Cohomology and base change
Let f : X → Y = SpecA be a morphism of Noetherian, separated schemes with Y affine, and let
F be a quasicoherent OX -module. Let B be an A-algebra. The we have the fiber product base
change diagram

XB := X ×A SpecB X

SpecB SpecA

f ′

g′

f

g

and we can define FB = (g′)∗F , which is a quasicoherent OXB
-module. By functoriality, there exists

a map Hp(X,F)→ Hp(XB , YB). This is an A-module homomorphism, and extending scalars gives
a B-module homomorphism, called the base change homomorphism:

βp : Hp(X,F)⊗A B → Hp(XB ,FB) (5.70)

We are interested in finding out when βp is an isomorphism. This is the same as the question:
“When does cohomology commute with base change”?

Example 5.24. Let s ∈ SpecA be a point, B = k(s) = OY,s/ms. Then XB is the fiber f−1(s) =
Xs = X ×A Spec k(s) and we have an inclusion i = g′ : Xs ↪→ X, and FB = i∗F = F(s). Thus we
are asking when Hp(Xs,F(s)) = Hp(X,A)⊗A k(s). Even for p = 0, this need not hold.

Example 5.25. Let X = A2
k \ {0} → Y = A1

k = Spec k[t] with the map given by (t1, t2) 7→ t1.
Let F = OX , and H0(X,OX) = k[t2, t2]. Let s = (t) be the origin in A1

k. Then we have that
H0(X,OX)⊗A k(s) = k[t2], Xs = A1

k \ {0}, so H0(Xs,OXs
) = k[t2, t

−1
2 ].

We approach this question with out good friend Čech cohomology. Let (Ui)0≤i≤N be an affine
open cover of X, so Ui = SpecRi, and UI =

⋂
i∈I Ui = SpecRI is also affine for ∅ ≠ I ⊂ {0, . . . , N},

becauseX is separated. Then we have thatXB =
⋃
U ′
i , where U ′

I = UI×ASpecB = Spec(RI⊗AB),
and FB(U

′
I) = F (UI)⊗A B. We have that

Č•((U ′
i),FB) = Č•((Ui),F)⊗A B (5.71)

and
H∗(XB ,FB) = H∗(Č((Ui),F)⊗A B). (5.72)

By homological algebra, we have a map

H∗(Č((Ui),F))⊗A B → H∗(Č((Ui),F)⊗A B), (5.73)

so we get a map
β∗ : H∗(Č((Ui),F))⊗A B → H∗(XB ,FB) (5.74)

Here is one important case where βp is always an isomorphism.

Theorem 5.26 (Flat base change). If B is a flat A-algebra, then H∗(X,F)⊗A B → H∗(XB , YB)
is an isomorphism for any X, and any quasicoherent sheaf F .

Proof. Since B is flat over A, β∗ is an isomorphism by Proposition 4.2.
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Example 5.27. If X → Spec k, k a field, then for any field extension K/k, H∗(Xk,Fk) =
H∗(X,F)⊗k K.

Example 5.28. If X = Ap, p ∈ SpecA, then H∗(X,F)p = H∗(X×AAp,FAp
). Thus we can often

reduce understanding cohomology to the case of a local base.
This is one of the great things about scheme theory: you can localize on the base, so instead of

studying X → SpecA, you instead study Xp → SpecAp.
Importantly, we also need to study the non-closed points. There were attempts to simplify

scheme theory by eliminating non-closed points, but this is a stupid idea.

In the general case, we will replace Č•((Ui,F) by some smaller complex which also computes
cohomology.

Assume that f : X → Y = SpecA is proper, F is coherent, and flat over A. Then Hp(X,F) is
then a finite A-module, which is zero for p sufficiently large. For example, if X =

⋃
0≤i≤N Ui, then

Čp = 0 for p > N .

Theorem 5.29 (On which everything rests). Let f : X → SpecA be proper, A Noetherian, and let
F be a coherent OX-module, which is A-flat. Assume that Hp(X,F) = 0 for all p > n. Then there
exists a complex

L0 → L1 → · · · → Ln → 0→ 0→ · · · (5.75)

of finite flat A-modules Lp such that for all A-algebras B, there is an isomorphism

H∗(L• ⊗A B)→ H∗(XB ,FB) (5.76)

which is functorial in B.

Remark 5.30. 1. The above theorem tells us there is a complex L• which computes not just
the cohomology of X, but the cohomology of all base changes.

2. In fact, for any A-module M , H∗(L• ⊗A M) = H∗(X,F ⊗A M) = H∗(X,FOX
f−1M̃).

3. Moreover, we can arrange that the Lps are finite and free for all p ̸= 0.

4. Since A is Noetherian, L is a finite flat A-module if and only if L is finite locally free if and
only if L is finite and projective.

To prove this, we use the following result from homological algebra.

Theorem 5.31. Let A be Noetherian, and let K• be a complex of A-modules, and assume that
Hp(K•) = 0 for all p > m and Hp(K•) is finite for all p. Then

(i) There exists a complex
L0 → L1 → · · · → Ln → 0→ 0→ · · · (5.77)

of finite A-modules with L0, . . . , Lm free, and a morphism f : L• → K• of complex such that
H∗(f) : H∗(L•)→ H∗(K•) is an isomorphism.

(ii) Suppose p ≥ 0, Kp is A-flat, and zero for p sufficiently large. Then L0 is flat and for every
A-module M ,

H∗(f ⊗ idM ) : H∗(L• ⊗A M)→ H∗(K• ⊗A M) (5.78)

is an isomorphism.
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We rely on the following lemma.

Lemma 5.32. Let
0→ C0 → · · · → CN → 0 (5.79)

be an exact sequence of flat A-modules. For for all A-modules M ,

0→ C0 ⊗M → · · · → CN ⊗M → 0 (5.80)

is also exact.

Proof. Proceed by induction, using Question 4 on Sheet 2.

Now we can prove our homological algebra theorem.

Proof of Theorem 5.31. (i) We start by defining Lm and working backwards. Choose Lm free, finite
with fm : Lm ↠ Hm(K•). As Lm is free, we can lift fm to a map fm : Lm → ker dmK . Note that
this map might not be surjective.

Now for the inductive step. Assume the for some n ≤ m we have a commuting diagram

0 · · · 0 Ln Ln+1 · · · Lm 0

K0 · · · Kn−1 Kn Kn+1 · · · Km Km+1

dn
L

fn

dm
L

fm

Such that Lp are finite and free, and Hp(f•) : Hp(L•)→ Hp(K•) is an isomorphism for n < p ≤ m,
and ker dnL ↠ Hn(K•) is surjective.

Our base case is when n = m, and we have that ker dmL = Lm, so ker dmL ↠ Hm(K•) is surjective
because fm is surjective.

Choose a finite free A-module P with an exact sequence

P ker dnL Hn(K) 0,
g

so that coker g = Hn(K). We then have that fn ◦ g(P ) ⊂ im dn−1
K ⊂ Kn. Another way to see this

is that as before, since P is free, we can lift g to g̃ : P → Kn−1 such that dn−1
K ◦ g̃ = fn ◦ g.

We want a surjection, so we choose a finite free Q such that we have a map h : Q → ker dn−1
K

such that Q↠ Hn−1(K•) is surjective. Then we get a commuting diagram

Q⊕ P Ln Ln+1

Kn−1 Kn Kn+1

0⊕g

h⊕g̃ fn fn+1

and if we set Ln−1 = Q⊕ P , dn−1
L = 0 ⊕ g, and fn−1 = h⊕ g̃, then we have that Hn(fn−1) is an

isomorphism and ker dn−1
L ↠ Hn−1(K•) is surjective.

At n = 0, we get a finite free module φ : L0 ↠ H0(K•) = ker d0K . We replace L0 by L0/ kerφ,
which is finite but not necessarily free.

35



(ii) Let C• be the complex (called a “mapping cone”) Cp = Lp ⊕Kp−1 with differential

dC : (x, y) 7→ (dx, f(x)− dy). (5.81)

This is a complex as

d2(x, y) = d(dx, fx− dy) = (d2x, fdx− dfx+ d2y) = 0. (5.82)

We have a short exact sequence of complexes

0→ (K•−1,−dK)→ C• → L• → 0 (5.83)

giving a long exact sequence of cohomology

Hn−1(K•)→ Hn(C•)→ Hn(L•)→ Hn(K•) (5.84)

and we see that the transition map (the last arrow) is Hn(f), which is an isomorphism. So

0→ C0 → C1 → · · · → Cn → 0 (5.85)

is exact and C1, · · ·CN are all flat, so L0 = C0 is flat by Question 4 on Sheet 2, and (5.83) remains
exact after tensoring by M , again by Question 4 Sheet 2. So we get a long exact sequence on
cohomology

Hn(C• ⊗M)→ Hn(L• ⊗M)→ Hn(K ⊗M) (5.86)

and the last arrow, which is Hn(f ⊗ id), is an isomorphism by Lemma 5.32.

Now we prove the big theorem.

Proof of Theorem 5.29. We know that H∗(XB ,FB) = H∗(Č•((Ui),F)⊗AB) if (Ui) is a finite open
affine cover of X. Applying Theorem 5.31 gives the result.

We give some consequences of Theorem 5.29. First we look at H0. We have that

H0(XB ,FB) = ker(d0L ⊗ idB : L0 ⊗B → L1 ⊗B) (5.87)

and for any finite flat (in other words, finite and locally free) A-module M ,

M ⊗A B = HomA(M
∨, A)⊗A B = HomA(M

∨, B) (5.88)

where M∨ = HomA(M,A). Letting Q = coker((d0L)
∨ : (L1)∨ → (L0)∨), we get the following

corollary.

Corollary 5.33. There exists a finite A-module Q such that for all B,

H0(XB ,FB) ∼= HomA(Q,B) (5.89)

and this isomorphism is functorial in B. So the functor B → H0(XB ,FB) is represented by Q.

Remark 5.34. The fact that L• is finite and flat is important. We already have a complex which
computes H∗, namely the Čech complex, but it is huge.
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Remark 5.35. Let F(s) be the pullback of F toXs = f−1(s) = X×Ak(s). So we have F(s) = π∗F ,
where π : X × k(s)→ X. Then F(s) is a coherent OXs -module.

Remark 5.36 (Alternative definition for Hilbert polynomials). Let M• be a graded finite module
for k[T0, . . . , Tn] = R. Then dimMn is a polynomials for n sufficiently large.

Now, let F be a coherent sheaf on PN
k . Then we can set

M• =
⊕
n

H0(PN ,F(n)) (5.90)

which is a graded R-module, where

R =
⊕
n

H0(Pn,O(n)). (5.91)

For n sufficiently large, Hp(PN ,F(n)) = 0 for all p > 0. So χ(PN ,F(n)) = dimH0(F(n)) for n
sufficiently large, as OP(1) is ample.

Corollary 5.37 (Semicontinuity forH0). For every r ≥ 0, the set Zr = {s ∈ SpecA | dimk(s)H
0(Xs,F(s)) ≥

r} is closed. Thus the function A→ Z, s 7→ dimk(s)H
0(Xs,F(s)) is semicontinuous.

Proof. Locally around s ∈ SpecA, we have that L0 ∼= Am and L1 ∼= A1 are free, and

H0(Xs,F(s)) = ker(d0L ⊗ id : L0 ⊗ k(s)→ L1 ⊗ k(s)) (5.92)

so its dimension is the rank of the matrix of d0L ⊗ id, and so Zr is the set of s where the nullity of
the matrix is greater than r, so it is the set of s where all (m− r + 1)-minors of the matrix vanish
in k(s). This is a closed set.

Another way to prove this which might be more correct: We have that H0(Xs,F(s)) =
HomA(Q, k(s)) for some finiteA-moduleQ. Taking tensor products givesH0(Xs,F(s)) = Homk(s)(Q⊗
k(s), k(s)), so

dimk(s)H
0(Xs,F(s)) = dimk(s)(Q⊗ k(s)) (5.93)

so by Proposition 3.31, Zr is closed.

We will show that this holds for all Hp on the next example sheet.

Corollary 5.38. Assume SpecA is connected and let f be proper, F flat over A. Then χ(X,F(s))
is independent of s.

If X ⊂ PN
A is projective, then the Hilbert polynomial P (Xs,F(s), t) is independent of s.

Proof. The first statement implies the second by the definition of the Hilbert polynomial. For the
first statement, covering SpecA by small open affines, we may assume that all of the Li are free.
Then

χ(Xs,F(s)) =
∑
p≥0

(−1)p dimHp(Xs,F(s))

=
∑
p≥0

(−1)p dimk(s)H
p(L• ⊗A k(s))

=
∑
p≥0

(−1)p dimk(s) L
p ⊗A k(s)

=
∑
p≥0

rankA L
p (5.94)
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as the Lp are all free.

At the top, in the original scheme X, we have that if Hp(X,F) = 0 for all p > n, then for p > n,
Lp = 0, so Hp(XB ,FB) = 0 for all p > n. In particular, Hp(Xs,F(s)) = 0 for all s, and all p > n.
Then

Hn(XB ,FB) = coker(Ln−1 ⊗A B → Ln ⊗A B)

= coker(Ln−1 → Ln)⊗A B

= Hn(X,F)⊗A B, (5.95)

so our map βn : Hn(X,F)⊗AB → Hn(XB ,FB) is an isomorphism. We use that the tensor product
is right exact in the calculation above.

Now, suppose that A is reduced. Then

A→
∏

p∈SpecA

Ap/p =
∏

s∈SpecA

k(s) (5.96)

is injective, as the kernel is
⋂
p =
√
0 = 0. As Hn(X,F) is a finite A-module, Hn(X,F) = 0 if and

only if for all s ∈ SpecA, Hn(X,F)⊗ k(s) = 0 if and only if for all s ∈ SpecA, Hn(Xs,F(s)) = 0.
If these conditions hold, we can replace n by n − 1. Continuing this until we get two nonzero
cohomologies, we have the following corollary.

Corollary 5.39. Assume that A is reduced, and let p ≥ 0. The following are equivalent:

(i) For all i ≥ p, and for all s ∈ SpecA, Hi(Xs,F(s)) = 0.

(ii) For all i ≥ p, Hi(X,F) = 0.

6 Group Schemes
Fix a field k. Let Sch /k be the category of k-schemes and k-morphisms, and let Aff /k be the
category of affine k-schemes, so SpecA for A a k-algebra.

Let X,S be k-schemes. Then we write

X(S) = MorSch /k(S,X) (6.1)

to be the S-valued points of X. If S = SpecR ∈ Aff /k, then we write X(R) = X(S), for the set of
R-valued points.

Example 6.1. If X = V (I) ⊂ AN
k is the vanishing set of some set of polynomials, then

X(R) = {(x1, . . . , xN ) ∈ RN | ∀f ∈ I, f(x1, . . . , xN ) = 0}. (6.2)

This is because a morphism SpecR → X is determined by a ring map k[t1, . . . , tN ]/I → R, which
is just a map k[t1, . . . , tN ]→ R which is zero on I, and these maps are determined by their values
on ti 7→ xi, as the image of k is fixed since we are working in the category of k-schemes.

Remark 6.2. If k = k is algebraically closed, then X(k) is in canonical bijection with the closed
points of k.
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Definition 6.3. A k-group scheme is a scheme G ∈ Sch /k together with a k-morphism

m : G×k G→ G (6.3)

such that for all k-algebras R, the induced map

mR : G(R)×G(R)→ G(R)

(6.4)

which is defined by mR(x1, x2)(r) = m(x1(r), x2(r)) makes G(R) into a group.

Example 6.4. 1. The additive group: Let Ga = Spec k[t] ∼= A1
k. Then we have

m# : k[t]→ k[t1, t2]

t 7→ t1 + t2 (6.5)

We then have that Ga(R) = (R,+).

2. The multiplicative group: Let Gm = Spec k[t, 1/t] = A1
k \ {0}. Then we have

m# : k[t, 1/t]→ k[t1, t2, 1/(t1t2)]

t 7→ t1t2 (6.6)

and then Gm(R) = (R×,×).

3. The general linear group: Let

GLn = Spec k[{tij}1≤i,j≤n, 1/det(tij)] (6.7)

Then GLn(R) is the group of invertible n×nmatrices, as adjoining 1/ det(tij) to Spec k[{tij}1≤i,j≤n]
is like ensuring that det(aij) ̸= 0. We have that m# is just matrix multiplication.

We can more generally work over any base scheme B instead of Spec k.

Definition 6.5. A group scheme over B is a scheme G/B, and a map m : G×B G→ G such that
for all affine SpecR→ B, (G(R),mR) is a group.

Typically, the “topological” points of G don’t form a group, but the closed points might.

Example 6.6. If we consider Ga = A1
k, we can’t make the points of this into a group in a sensible

way, as the nonclosed point is hard to deal with.
Also, the closed points with residue field not equal to k give problems.

Remark 6.7. For a general scheme X, the points of the underlying space don’t determine X. But
the R-valued points do.

Let’s work over k, and let X ∈ (Sch/k), and for every k-scheme we have X(S) = Mork(S,X).
If g : S′ → S is a morphism, we get by composition a map

X(S)→ X(S′)

f 7→ f ◦ g (6.8)

which is compatible with S′′ → S′ → S. Thus we get a contravariant functor hX : (Sch /k)→ Set,
sending S 7→ X(S) and g 7→ ( ◦ g). This also gives a covariant functor from the category of
k-algebras to sets, sending R 7→ X(R) = X(SpecR). We then have the Yoneda lemma.
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Lemma 6.8 (Yoneda). The set of k-morphisms from X to Y is in bijection with the set of natural
transformations hX → hY .

Proof. Trivial, did this in alggeo.

In fact, we have a stronger result for schemes that allows us to consider only affines.

Lemma 6.9 (Yoneda for schemes). Let X,Y be k-schemes, and let h′X be the restriction of hX
to the category of affine schemes (so send S = SpecR 7→ X(S)). Then the set of morphisms
Mork(X,Y ) is in bijection with the set of natural transformations h′X → h′Y .

Proof. Given a natural transformation from h′X → h′Y , we want to construct a morphism X → Y .
A natural transformation h′X → h′Y is a collection of morphisms fS : X(S) → Y (S) for each
S = SpecR affine which are compatible with the functors h′X , h

′
Y .

Cover X by open affines U ∈ U , and let jU : U ↪→ X be the inclusion. Then fU (jU ) ∈ Y (U).
For any two open affines U,U ′ ⊂ X, let V ⊂ U ∩ U ′ be an open affine in the intersection. Let
i : V ↪→ U and i′ : V ↪→ U ′ be the two inclusions. We have that hX(i)(jU ) = hX(i′)(jU ′) = jV ,
since we are just composing inclusions. Since f is a natural transformation, the following diagram
commutes:

X(U) Y (U)

X(V ) Y (V )

X(U ′) Y (U ′)

hX(i)

fU

hY (i)

fV

hX(i′)

fU′

hY (i′)

Thus we have that hY (i′) ◦ fU ′(jU ′) = fV (jV )

fU ′(jU ′)|V = fU ′(jU ′) ◦ i′

= hY (i
′) ◦ fU ′(jU ′)

= fV (jV )

= hY (i) ◦ fU (jU )
= fU (jU )|V . (6.9)

Thus fU ′(jU ′) and fU (jU ) agree on V , so we can glue them together to get a morphism f : X → Y .
We can check that the map from Mork(X,Y ) to NatTrans(hX , hY ) given as before is the inverse.

Here are some more nice consequences of the Yoneda lemma. I’m actually not sure how some
of these follows from Yoneda so I’ve done them by brute force.

Proposition 6.10. Suppose G is a k-group scheme. Then

(i) For all S ∈ (Sch /k), G(S) is a group.

(ii) For all morphisms S′ → S, G(S)→ G(S′) is a group homomorphism.
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Proof. (i) Let S ∈ (Sch /k) and let U be a cover of S by affines U . Any x ∈ G(S) is determined by
its restriction to affines. This defines an injection

G(S) ↪→
∏
U∈U

G(U)

x 7→ (x|U )U . (6.10)

We want to show that the image of G(S) under this map is a subgroup of
∏
G(U), which is a group

itself, under the operation

(x · y)(s) = mS(x, y)(s) = m(x(s), y(s)) (6.11)

For any s ∈ S, we have the s ∈ U for some U ∈ U , so

(x · y)(s) = m(x(s), y(s))

= m(x|U (s), y|U (s))
= mU (x|U , y|U )(s) (6.12)

so we have that
mS(x, y) 7→ (mU (x|U , y|U ))U (6.13)

under the map (6.10). Thus G(S) is clearly a subgroup, hence a group.
(ii) Let f : S′ → S be a morphism of k-schemes. Then we have a map G(S) → G(S′) sending

x 7→ x ◦ f . We want to show that this is a homomorphism, and for all p ∈ S′ we have that

(mS(x, y) ◦ f)(p) = m(x ◦ f(p), y ◦ f(p))
= mS′(x ◦ f, y ◦ f)(p) (6.14)

which shows that we have a group homomorphism.
(ii) Alternative: Let g : S′ → S. The fact that m is a natural transformation immediately gives

xy ◦ g = (x ◦ g)(y ◦ g).

Corollary 6.11. There exists e ∈ G(k), and a morphism i : G → G such that for all S, e 7→ eS
under the map G(k)→ G(S) induced by S → k, and iS : G(S)→ G(S) is the inverse.

Proof. Let e be the identity in G(k). Then since G(k)→ G(S) is a group homomorphism, e 7→ eS .
We have that G(G) = Mor(G,G) is a group, and let i be the inverse of the identity morphism

in G(G). Then we have that mG(idG, i) = eG. Thus, iS : x → i ◦ x is a map from G(S) → G(S),
we have that

mS(x, iS(x))(p) = m(id ◦x(p), i ◦ x(p)
= mG(id, i)(x(p))

= eG(x(p))

= x#(eG)

= eS (6.15)

where x# is the group homomorphism G(G)→ G(S) sending g → g ◦ x.
Alternative proof of inverse: For each S, we have iS : G(S) → G(S) sending x 7→ x−1. These

maps are compatible: if f : S′ → S, we want to show the diagram below commutes:
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G(S) G(S)

G(S′) G(S′).

iS

f∗ f∗

i′S

Since f∗ is a group homomorphism, we have that

(iS(x) ◦ f)(x ◦ f) = (iS(x)x) ◦ f
= eS ◦ f
= eS′ . (6.16)

Thus the compatible family of maps iS gives rise to a natural transformation i : G→ G by Yoneda
stuff.

Definition 6.12 (Alternative definition of group schemes). A k-group scheme can equivalently be
defined as

(G,m : G×G→ G, e ∈ G(k), i : G→ G) (6.17)

satisfying suitable axioms:

1. (Associativity) The diagram

(G×k G)×k G G×G

G×k (G×k G) G×G G

m×id

∼= m

id×m m

and others which I will write down later.
Another alternative definition is that a group scheme is a group object in (Sch /k).
Another alternative definition is that a group scheme is a representable contravariant functor

(Sch /k)→ Grp.

Definition 6.13. A homomorphism of group schemes is a morphism f : G → G′ such that for
all k-algebras R, fR : G(R) → G′(R) is a homomorphism where fR is the obvious map sending
x 7→ f ◦ x.

Equivalently, it is a morphism such that fS : G(S) → G′(S) is a homomorphism for all S ∈
(Sch /k).

Equivalently, it is a morphism making the following diagram commute:

G×G G′ ×G′

G G′

f×f

m m′

f

Definition 6.14. A closed subgroup scheme of a k-group scheme G is a closed subscheme i : H ↪→ G
such that for allR,H(R) ⊂ G(R) is a subgroup. If so,H is a group scheme, and i is a homomorphism
of group schemes.
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Proof. By the Yoneda lemma, for every S ∈ (Sch /k), the morphism mS factors through

(H ×H)(S) (G×G)(S)

H(S) G(S)

(i×i)(S)

mS

i(S)

since it does for S affine. Thus by the Yoneda lemma, we have that m factors through

H ×H G×G

H G

i×i

m

i

which gives H the structure of a group scheme.

Example 6.15. 1. e : Spec k ↪→ G is a closed subgroup scheme.

2. Kernels: Let f : G→ G′ be any homomorphism, and define ker f to be the fiber product

ker f G

Spec k G′

f

e′

so ker f = f−1(e′), the fiber of e′.

By the definition of fiber product, ker f(s) = ker(fS : G(S) → G′(S)) and e′ is a closed
immersion, so its pullback ker f is a closed subscheme, so its a closed subgroup scheme.

3. For all R we have det : GLn(R)→ R× = Gm(R) which is functorial in R. So by the Yoneda
lemma, we have a homomorphism of group schemes

det : GLn → Gm (6.18)

with kernel SLn = ker(det) = Spec k[{tij}]/(det(tij)− 1).

Remark 6.16. Quotients of group schemes are harder to make sense of.

Definition 6.17. Let x ∈ G(k). Then the left translation morphism Lx = Tx : G → G is the
composite

G = Spec k ×k G G×G G
x×idG m

and is the unique morphism such that for all g ∈ G(S), Tx(g) = m(x, g) = xg. Obviously, Te = idG,
and Txy = Tx ◦ Ty. So Tx is a k-automorphism of G.

More generally, let S be a k-scheme, and x ∈ G(S). Then we can define Tx : G× S → G as the
composite
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G× S G×G G
id×x

tm

where t
m : G×G→ G is given on points by (g, h) 7→ m(h, g) = hg. If S = Spec k this is the same

as before.
The product

Tx/S : G× S → G× S
(g, s) 7→ (Tx(g, s), s) (6.19)

satisfies Te/S = idG×kS , and Tx/S ◦ Ty/S = Txy/S , so Tx is an S-automorphism of G×k S.
Similarly, we can define right translation and check that it is the same as left translation if G is

commutative.

That being said, lets define commutativity.

Definition 6.18. G is commutative if G(R) is commutative for all R, if and only if t
m = m by

Yoneda.

6.1 Abelian varieties
If G is a k-group scheme and k′/k any extension, then G ×k Spec k′ = Gk′ is a k′-group scheme,
with multiplication given by

mk′ : Gk′ ×k′ Gk′ = (G×k G)×k k
′ m×id−−−→ G×k k

′ (6.20)

Recall that in this course, a k-variety is a separated k-scheme of finite type which is geometrically
integral.

Definition 6.19. A k-group variety (or algebraic group, but “algebraic group” has many definitions)
is a k-group scheme which is a k-variety.

Definition 6.20. An abelian variety (AV) over k is a k-group variety which is proper
over k.

We will at some point see that all abelian varieties are projective.

Example 6.21. 1. Ga,Gm,GLn are group varieties.

2. The simplest nontrivial abelian variety is an elliptic curve over k.

The product of two group varieties (respectively abelian varieties) is one as well. This is because
if (G,m), (G′,m′) are two k-group schemes, then so is (G×G′,m×m′)

m×m′ : (G×G′)× (G×G′) ∼= (G×G)× (G′ ×G′)→ G×G′. (6.21)

We also have that the product of two varieties is a variety, and the product of two proper morphisms
is proper.

In particular, we can construct abelian varieties of arbitrary dimension by taking products of
elliptic curves.
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Remark 6.22. Some people define an algebraic group as a k-group scheme of finite type.

Proposition 6.23. Let G be a group variety over k. Then G is smooth over k.

Proof. It is enough to check that Gk is smooth over k, so we may assume that k = k is algebraically
closed. Then the closed points are the same as k-points. The set of smooth points is non-empty
and open, so it contains a closed point, as G is of finite type over k. If x ∈ G(k), then Tx : G→ G
is a k-automorphism taking e to x. So G is smooth at x if and only if it is smooth at e. So G is
smooth at every closed point, so G is smooth.

Corollary 6.24. ΩG/k is locally free if G is a k-group variety.

In fact, ΩG/k is free for any k-group scheme.

6.2 Mumford’s rigidity lemma
We will discuss Mumford’s rigidity lemma.

Theorem 6.25 (Mumford’s Rigidity Lemma). Let X,Y, Z be k-varieties with X proper, X(k) ̸= ∅.
Let f : X ×k Y → Z be a k-morphism. Suppose that for some y0 ∈ Y , z0 ∈ Z, we have that
X × {y0} = X × Spec k(y0) is contained in f−1(z0) set theoretically, so f collapses X × {y0} to a
point. Then there exists g : Y → Z such that f = g ◦ pr2.

In diagram terms we have

X × Y Z

Y

f

pr2
∃g

In words, the theorem says that given a family of morphisms {fi} : X → Z with X proper, if one
member of the family is constant, then so is every member.

As a reality check, let’s see that we need X to be proper. Let X = Y = Z = A1
k, and

f(x, y) = xy. Then f collapses A1 × {0} to a point, but no other fiber.
Before we prove this, we need a lemma.

Lemma 6.26. Let X be a proper k-variety, Y any k-scheme. Let pr2 : X×Y → Y be the projection
map. Then

(pr2)∗OX×kY = OY . (6.22)

Proof. Consider the fiber product commutative diagram

X ×k Y X

Y Spec k

pr1

pr2 aX

aY
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We have that aY is flat because everything over Spec k is flat, and we have that

pr∗1OX = pr−1
1 OX ⊗pr−1

1 OX
OX×Y = OX×kY . (6.23)

By flat base change Proposition 4.2 (take an open cover of X and Y so that all sheaves of these
schemes will be of the form M̃ , we have that pr2 is the base change of ax, and base change commutes
with H0, and M̃ is determined by its global sections, which gives the following)

(pr2)∗OX×Y = a∗Y (aX)∗OX . (6.24)

Further, we have that as vector spaces,

a∗Y (aX)∗OX = OY ×k Γ(X,OX) = OY (6.25)

since Γ(X,OX) = k as X is a proper k-variety.

So in the context of Theorem 6.25, we have that (pr2)∗OX×kY = OY and as X is proper, pr2
is a closed morphism. Thus p = pr2 satisfies the conditions of the following theorem, so Theorem
6.25 is a special case of the following.

Remark 6.27. The morphism pr2 : X ×k Y → Y having a section is equivalent to X(k) ̸= ∅.

Theorem 6.28 (Rigidity). Let p : X → Y be a morphism of schemes with a section s : Y → X,
so p ◦ s = id. Assume p is closed, p∗OX = OY , and X is integral. Suppose we have f : X → Z
with Z separated. Suppose there exists points y ∈ Y, z ∈ Z (not necessarily closed) such that
Xy = p−1(y) ⊂ f−1(z). Then f = g ◦ p for some unique g : Y → Z. Thus we have the following
diagram:

X Y

Z

p

f ∃!g

Proof. We first do two reductions.
(1) If there exists g : Y → Z with f = g ◦ p, then g = g ◦ (p ◦ s) = f ◦ s. So g = f ◦ s is unique

and exists if and only if f = (f ◦ s) ◦ p.
(2) Suppose there exists an open neighborhood Y ′ ⊂ Y of y such that if X ′ := p−1(Y ′), then

f |X′ factors through some Y ′ → Z. So we have a diagram

X ′ Y ′

Z

p|X′

f |X′
∃g′

Then by (1), f |X′ = (f ◦ s ◦ p)|X′ , and X ′ ̸= ∅ as f(X ′) = f ◦ s ◦ p(X ′) = f ◦ s(Y ′) ̸= ∅, so X ′ is
dense as X is irreducible. Then f = f ◦ s ◦ p because X is reduced and Z is separated (Hartshorne
exercise II.4.2).

Now, f maps Xy = p−1(y) ⊂ X to {z} ⊂ Z as Xy ⊂ f−1(z) by assumption. Let W ⊂ Z be
an affine open containing z. Then f−1(W ) is an open neighborhood of Xy. But since p is closed,
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and X \ f−1(W ) is closed, T = p(X \ f−1(W )) ⊂ Y is closed and does not contain y, so taking
Y ′ = Y \ T , we have that Y ′ is an open neighborhood of y and so p−1(Y ′) = X ′ is open. But since
p∗OX = OY , Γ(X ′,OX′) = Γ(Y ′,OY ′), so f |X′ factors through Y ′. So we are done by (2).

Corollary 6.29. Let X be an abelian variety over k, and G any group variety over k. If f : X → G
is any morphism, and g = f(e) ∈ G(k), then Tg−1 ◦ f is a homomorphism.

Proof. Tg−1 sends g → eG, so setting f ′ = Tg−1◦f , it is enough to show that f ′(ex) = eg implies
that f is a homomorphism. So replace f by f ′.

Consider h : X ×X → G, given on points by

(x, y) 7→ f(x)f(y)f(xy)−1 (6.26)

Then h(X × {eX}) = h({eX} × X) = {eG} ⊂ G. By rigidity, we have X × {x} is mapped to a
point for any x, and {x} × X is also mapped to a point for any x, so h(x) = eG for all x. Thus
f(x)f(y)f(xy)−1 = eG for all x, y, so f(xy) = f(x)f(y). Thus f is a homomorphism.

Corollary 6.30. There is only one possible group structure on an abelian variety once e is distin-
guished.

Proof. If X is an abelian variety and f : X → X is an isomorphism of schemes taking e→ e, then
f is also an isomorphism of group schemes by Corollary 6.29.

Example 6.31. We have that Ga × Ga × Ga and U3 are both isomorphic to A3 as schemes, but
they have different group structures.

Corollary 6.32. Any abelian variety is commutative.

Proof. Consider i : X → X the inverse map. As i(e) = e, by Corollary 6.29, i is a homomorphism.
But then we have that for each S ∈ (Sch /k), iS is a group homomorphism on X(S), so (xy)−1 =
x−1y−1 so xy = yx.

7 Seesaw, Cube, Square: Line bundles on abelian varieties
By a line bundle on a scheme X, we mean an invertible OX -module, or equivalently a locally free
OX -module of rank 1.

Definition 7.1. The Picard group of X, Pic(X) is the isomorphism classes of line bundles on X,
and is a group under the tensor product ⊗OX

. We often write L ∈ Pic(X) if we mean “L is a line
bundle on X”.

Theorem 7.2 (Seesaw Theorem). Let X,Y be a k-varieties, with X proper. Let L be a line bundle
on X ×k Y . Suppose for all closed y ∈ Y , L(y) = i∗yL is trivial, where X × {y} = pr−1

2 (y) =
X ×k Spec k(y) and iy : X × {y} ↪→ X × Y .

Then there exists a line bundle M on Y such that L ∼= pr∗2M . Moreover, M ∼= (pr2)∗L is unique
up to isomorphism.
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Proof. First we show that every y ∈ Y has an affine neighborhood V such that L|X×kV
∼= OX×kV .

For this, we may assume Y = SpecA is affine. Then by Corollary 5.33 (see also Example 5.24) there
exists a finite A-module Q such that H0(X × {y}) ∼= HomA(Q, k(y)). Since H0(X × {y},L(y)) ∼=
H0(X × {y},OX×{y} = k ×k k(y) = k(y). Now, let y = m ∈ SpecA, so that k(y) = A/m. Then we
have that

HomA(Q,A/m) = HomA/m(Q⊗A A/m, A/m) = HomA/m(Q/mQ,A/m) = A/m (7.1)

so dimA/m(Q/mQ) = 1 for all maximal m ⊂ A. Thus by Proposition 3.31, Q is locally free of rank
1 (using that Y is a finitely generated k-algebra, so its closed points are dense).

So every y ∈ Y does have an open neighborhood V = SpecB for which the corresponding
A-module Q is free. Thus Q = Bu, say, for some u ∈ B. Then

H0(X ×k V,L) = HomB(Q,B) = B(u)∨ (7.2)

which is free generated by the dual basis. At each closed y ∈ Y , u∨ maps to a nonzero section of
H0(X×{y},L(y)) = Hom(OX×{y},L(y)) as L(y) ∼= OX×{y} is trivial. Thus u∨ maps to a nowhere
vanishing section of H0(X ×k V,L), so it gives an isomorphism

u∨ : OX×V → L|X×V (7.3)

By Lemma 6.26, (pr2)∗(OX×V ) = OV , so the adjunction

pr∗2(pr2)∗OX×V → OX×V (7.4)

is an isomorphism (as pr∗2OV = OX×V trivially), so

pr∗2(pr2)∗L|X×V
∼= L|X×V . (7.5)

For general Y , this shows that (pr2)∗L = M is invertible (locally free rank 1), as at each y we
have constructed an open neighborhood V where M |V is trivial. Also, we have that pr∗2M

∼= L as
desired.

Finally, if L ∼= pr∗2M
′ for some M ′ ∈ PicY , then M ′ ∼= (pr2)∗L, so M ∼=M ′.

Corollary 7.3. Under the same hypotheses as the previous theorem, if for some x ∈ X(k) we have
that L|{x}×Y

∼= OY , then L is trivial.

Proof. We have that L = pr∗2M and pr2 ◦(x× idY ) = idY , so

OY = L|{x}×Y = (x× idY )
∗L ∼=M, (7.6)

so
L ∼= pr∗2M

∼= pr∗2OY
∼= OX×Y . (7.7)

The above corollary tells us if L is trivial on all the “horizontal fibers”, and is trivial on a single
“vertical fiber”, then L is trivial.

Sheet 3, question 11 tells us that we can have proper k-varieties X,Y and L ∈ Pic(X ×k Y )
such that L|x×Y and L|X×y are trivial for some x ∈ X(k) and y ∈ Y (k), but L is nontrivial.
In particular, Pic(X × Y ) ̸∼= Pic(X) ⊕ Pic(Y ) in general. But we do have some nice stuff over 3
varieties, hence the theorem of the cube. This tells us that if a line bundle is trivial on the “faces”
of a cube, it is trivial.
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Theorem 7.4 (Theorem of the cube). Let X,Y, Z be varieties over k, X,Y proper. Let x ∈ X(k),
y ∈ Y (k), z ∈ Z(k). Let L be a line bundle on X ×k Y ×k Z. Assume that each of the line bundles
L|x×Y×Z ,L|X×y×Z ,L|X×Y×z is trivial. Then L is trivial.

Remark 7.5.

1. In fact, Z can be a more general k-scheme. In particular, we don’t need Z to be reduced.

2. The seesaw Theorem 7.2 also holds for more general Y .

Before we prove this, we use first prove a helper lemma.

Lemma 7.6. Let V be a proper variety over an algebraically closed field k, let A be a finite local
k-algebra, and let I be a one-dimensional ideal, so that dimk I = 1 and I = k · t ⊂ A for some t.
Set z = SpecA and z1 = SpecA/I. Then we have an exact sequence which is functorial in V

0→ H1(V,OV )→ Pic(V × z)→ Pic(V × z1) (7.8)

Proof. We have that Pic(X) = H1(X,O×
X) for any scheme X (take a trivializing cover of L ∈

Pic(X), this gives a Čech cocycle).
Since I is one-dimensional, we must have that I2 = 0 (as I2 is an ideal properly contained in

I). Thus for all a, b ∈ I, we have that (1 + a)(1 + b) = 1 + (a+ b), so we have an exact sequence of
abelian groups

0→ I → A× → (A/I)× → 0 (7.9)
a 7→ 1 + a

Tensoring by OV , we get an exact sequence of sheaves of abelian groups

0→ IOV×z → O×
V×z → O

×
V×z1

→ 0 (7.10)

These sheaves live on V × z (we consider z1 as a closed subscheme of z), which is homeomorphic
to V . We also have an isomorphism of sheaves

OV
·t−→
∼
IOV×z (7.11)

given by multiplication by t. Applying the cohomology long exact sequence gives

0→ H0(V,OV )→ H0(V × z,O×
V×z)→ H0(V × z,O×

V×z1
) (7.12)

Now, we have that H0(V,OV ) = k because V is proper, and

H0(V × z,O×
V×z) = H0(V × z,OV×z)

× = (H0(V,OV )⊗A)× = A× (7.13)

by flat base change. Similarly, we have that H0(V × z,O×
V×z1

) = (A/I)×.
Thus the last map is surjective, so the map H0(V × z,O×

V×z1
) → H1(V,OV ) will be the zero

map, and thus the following map will be injective. So we get an exact sequence

0→ H1(V,OV )→ Pic(V × z)→ Pic(V × z1) (7.14)

as desired. This map is clearly functorial in V by construction.
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Remark 7.7.

1. This lemma tells us that if we have a line bundle on Pic(V × z1) which lifts to a line bundle
on Pic(V × z), then the number of different lifts are given by H1(V,OV ).

2. Take A = k[ϵ] = k[x]/(x2), the ring of dual numbers, and I = (ϵ), so that A/I = k. Then
z = Spec k[ϵ] and z1 = Spec k. Then we have an exact sequence

0→ H1(V,OV )→ Pic(V × Spec k[ϵ])→ PicV. (7.15)

The last map is the restriction to a closed subscheme, as V ↪→ V × Spec k[ϵ] is a closed
subscheme. But this has a retraction (a section? why?), so the map is surjective and we have
a full exact sequence.

3. Recall that the Zariski tangent space at x is the set of k-morphisms Spec k(x)[ϵ]→ X which re-
strict to the canonical map Spec k(x)→ X on the closed subscheme Spec k(x) ⊂ Spec k(x)[ϵ].

This result then says that the tangent space to Pic is H1(V,OV ). In fact, there is a group
scheme PicV/k with PicV/k(k) = Pic(V ) and PicV/k(k[ϵ) = Pic(V ×Spec k[ϵ]). SoH1(VOV ) =
TPicV/k,0 and the lemma says that the tangent space is additive.

Now we are ready to prove the theorem.

Proof of Theorem 7.4. For simplicity, we will assume that k = k. To prove this, we will consider
other k-schemes Z. We will prove the theorem (a) where Z = SpecA and A is a finite local k-
algebra, and then consider the case (b) where Z = SpecA and A is a Noetherian local k-algebra,
and then consider the general case (c).

(a) Let Z = SpecA, A a finite local k-algebra, so z ∈ Z is a possibly non-reduced point. We
proceed by induction on dimk A ≥ 1. If dimA = 1, then Z = Spec k, so X × Y × z ∼= X × Y × Z,
so we are done.

Otherwise, there exists a one dimensional ideal I ⊂ A with dimk I = 1, so i = k · t ⊂ A. (Recall
that k = k, so we can’t have A = a finite field extension). Let Z1 = SpecA/I, and we have that
dimk A/I = dimk A−1. Thus we can assume by induction that L|X×Y×Z1 is trivial. By the lemma,
we have an exact sequence

0 H1(X × Y,OX×Y Pic(X × Y × Z) Pic(X × Y × Z1)

0 H1(X,OX)⊕H1(Y,OY ) Pic(X × Z)⊕ Pic(Y × Z) Pic(X × Z1)⊕ Pic(Y × Z1)

a b

c

The Künneth formula 5.10, and the fac that H0(X,OX) = H0(Y,OY ) = k because X and Y are
proper, gives an isomorphism H1(OX) ⊕ H1(OY ) ∼= H1(X × Y,OX×Y ), which is an inverse to
a. So a is an isomorphism. Recall that L ∈ Pic(X × Y × Z), and by assumption we have that
b(L) = c(L) = 0. Thus by a routine diagram chase we have that L is trivial.

(b) Now let Z = SpecA, with (A,mA) a local Noetherian k-algebra. Let Zn = SpecA/mn
A for

n ≥ 1, then A/mn
A is finite, so by (a), L|X×Y×Zn

is trivial for all n.
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From base change, there exists finite modules Q,Q′ such that for all A→ B,

H0((X × Y × Z)B ,LB) = HomA(Q,B)

H0((X × Y × Z)B ,L∨
B) = HomA(Q

′, B) (7.16)

As L|X×Y×z
∼= 0 is trivial, we know that Q,Q′ are acyclic (why?). Then for all n ≥ 1, as L|X×Y×Zn

is trivial, we have that Q⊗A/mn
A
∼= A/mn

A. So

annA(Q) ⊂
⋂
n

mn
A = {0}, (7.17)

so Q ∼= A ∼= Q′. So by the seesaw theorem 7.3, L ∼= OX×Y×Z as X × Y is proper.
(c) Now, let Z be a variety. Then (b) implies that L|X×Y×SpecOZ,z

is trivial. As SpecOZ,z

contains the generic point of Z, and the set of z′ ∈ Z such that L|X×Y×z′ is trivial is closed,
L|X×Y×z′ is trivial for all z′ ∈ Z, so as L|x×y×Z is trivial, L is trivial by the seesaw theorem 7.3.

We give some nice corollaries. The following is the form of the Theorem of the Cube which we
use most often, however it is not any easier to prove than the full thing.

Corollary 7.8. Let X be an abelian variety over k, Y any k-scheme, and f, g, h : Y → X mor-
phisms. Let L be a line bundle on X. Then

M =Mf,g,h := (f + g + h)∗L ⊗ (f + g)∗L∨ ⊗ (f + h)∗L∨ ⊗ (g + h)∗L∨ ⊗ f∗L ⊗ g∗L ⊗ h∗L
(7.18)

is trivial, so congruent to OY .

Proof. First consider Y = X ×k X ×k X, and (f, g, h) = (pr31,pr
3
2,pr

3
3) : X ×X ×X → X. This is

a sort of “universal case” of the problem. ThenM|X×X×e = q∗M , where

q : X ×X → X ×X ×X
(x, y) 7→ (x, y, e) (7.19)

We have that (pr31 +pr32 +pr33) ◦ q = (pr31 +pr32) ◦ q = m as we send (x, y) 7→ x+ y. We can perform
similar calculations for the other terms to determine that

M|X×X×e = e∗L ∼= OX×X×e
∼= OX×X . (7.20)

So by symmetry,M|X×e×X
∼=M|X×X×e

∼= OX×X , so by the theorem of the cube,M∼= OX×X×X .
For general f, g, h : Y → X, we have that

Mf,g,h = (f, g, h)∗M|pr1,pr2,pr3 (7.21)

so this is trivial.

We give two more consequences. The next theorem is better names the “theorem of the paral-
lelogram”, as we can draw a parallelogram with vertices e, x, y, x+ y.
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Theorem 7.9 (Theorem of the square). Let X be an abelian variety, x, y ∈ X(k), L ∈ Pic(X).
Then

T ∗
x+yL ∼= T ∗

xL ⊗ T ∗
yL ⊗ L∨. (7.22)

Proof. Take Y = X in Corollary 7.8, and take f = x : X → Spec k
x−→ X, g = y : X → Spec k

y−→ X,
and h = idX : X → X. Then f + h = Tx, g + h = Ty, f + g + h = Tx+y, f + g is the constant
function x+ y, and if p : X → X is constant (so it factors through Spec k, then p∗L ∼= OX). Then
applying Corollary 7.8 gives the theorem.

Corollary 7.10. Let X be an abelian variety, and n ∈ Z, and let [n] : X → X be the “multiplication
by n” morphism. Let L ∈ PicX. Then

[n]∗L ∼= L⊗n(n+1)
2 ⊗ (i∗L)⊗

n(n−1)
2 (7.23)

where i = [−1] : X → X is the inverse morphism. In particular, if L ∼= i∗L, so L is symmetric,
then

[n]∗L ∼= L⊗n2

. (7.24)

If L∨ ∼= i∗L, so L is antisymmetric, then

[n]∗L ∼= L⊗n. (7.25)

Proof. We proceed by induction. Its a mess. Check both 0 and 1, as we need n − 1 and n − 2 to
prove n. The same argument works for negative n.

8 The Picard group of an abelian variety
Pic(X) is an abelian group under ⊗OX

with inverse L 7→ L∨, and unit OX . It is contravariant, so
if f : X → Y , then f∗ : Pic(Y ) → Pic(X) is a group homomorphism for all schemes X,Y . It is
convenient to work over k sometimes. The next proposition tells us that we lose no information by
doing so.

Proposition 8.1. Let X be a proper k-variety. Then Pic(X) ↪→ Pic(Xk) is injective, where
Xk = X ×k Spec k.

Proof. Suppose we have L ∈ Pic(X) such that Lk
∼= OXk

∈ Pic(Xk) is trivial. We want to show
that L is trivial, so L ∼= OX .

But L ∼= OX if and only if H0(X,L) ̸= 0 and H0(X,L∨) ̸= 0 by Sheet 3, question 10 and this
is true if and only if H0(Xk,Lk) ̸= 0 and H0(Xk,L∨

k
) ̸= 0 by flat base change, and this is true if

and only if Lk
∼= OXk

.

Next we use the theorem of the square and other things to show that there exists a surjection
X(k) ↠ Pic0(Xk) with finite kernel, where Pic0(Xk) is a subgroup of Pic(Xk).

From now on, except when otherwise stated, assume that k = k.

Proposition 8.2. Let X be an abelian variety, and L a line bundle on X. We have that

(i) For x ∈ X(k), set φL(x) = T ∗
xL ⊗ L∨ ∈ Pic(X). Then φL : X(k) → Pic(X) is a homomor-

phism.

52



(ii) Set K(L) := kerφL ⊂ X(k). If we set

Pic0(X) := {L ∈ Pic(X) | φL = 0} = {L ∈ Pic(X) | ∀x ∈ X(k), T ∗
xL ∼= L} (8.1)

then Pic0(X) is a subgroup of Pic(X), and we set

NS(X) := Pic(X)/Pic0(X), (8.2)

the Neron-Severi group on X.

Note that as k = k, X(k) is in bijection with the closed points of X. In general, define
φL : X(k)→ PicXk in the same way.

Proof. (i) We calculate φL(x+ y) = φL(x) + φL(y) directly using the Theorem of the Square.
(ii) We have that

φL⊗M(x) = T ∗
x (L ⊗M)⊗ (L ⊗M)∨

= φL(x) + φM(x) (8.3)

as T ∗
x : Pic(X)→ Pic(X) is a homomorphism.
So L 7→ φL is a homomorphism

Pic(X)→ Hom(X(k),Pic(X)) (8.4)

whose kernel is Pic0(X).

Definition 8.3. Let L ∈ Pic(X). Define Λ(L) = m∗L⊗ pr∗1 L∨⊗ pr∗2 L∨, the Mumford line bundle
on X ×k X, where m : X ×X → X is the group law.

Proposition 8.4. (i) For all x ∈ X(k), we have that Λ(L)|X×x = Λ(L)|x×X = T ∗
xL ⊗ L∨ =

φL(x) and
K(L) = {x ∈ X(k) | Λ(L)|X×x

∼= OX .} (8.5)

(ii) L ∈ Pic0(X) if and only if Λ(L) ∼= OX×kX .

Proof. (i) Let x ∈ X(k). Consider the map (idX , x) : X ↪→ X ×X with image X × x. Then

m ◦ (idX , x) = Tx

pr1 ◦(idX , x) = idX

pr2 ◦(idX , x) = x

(8.6)

so Λ(L)|X×x = (idX , x)
∗Λ(L) = T ∗

xL ⊗ L∨ ⊗O∨
X = Λ(L)|x×X by symmetry, as X is commutative.

The second part of the claim follows by definitions.
(ii) We have that Λ(L)e×X = OX , so by the Seesaw Theorem 7.2, Λ(L) ∼= OX×X if and only if

∀x ∈ X(k), Λ(L)|X×x
∼= OX . This is true if and only if for all x, φL(x) = 0, and this is true if and

only if L ∈ Pic0(X) by definition.

Proposition 8.5. (i) For all L ∈ Pic(X), imφL ⊂ Pic0(X).
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(ii) If L ∈ Pic0(X), then i∗L ∼= L∨, where i∗ = [−1] : X → X is the inversion map.

Proof. (i)Let M = φL(x) = T ∗
xL ⊗ L∨, for L ∈ Pic(X) and x ∈ X(k). Then for all y ∈ X(k),

φM (y) ∼= OX (8.7)

by the Theorem of the square (just calculate), so M ∈ Pic0(X).
(ii) Let L ∈ Pic0(X). Then by Proposition 8.4,

m∗L ∼= pr∗1 L ⊗ pr∗2 L. (8.8)

Consider the “co-difference” morphism d : X → X ×X sending x 7→ (x,−x). We have that m ◦ d
is the constant morphism e : X → X, so

d∗m∗L ∼= OX . (8.9)

Thus by (8.8), we have that

OX
∼= d∗(pr∗1 L ⊗ pr∗2 L) ∼= L ⊗ i∗L. (8.10)

This looks like the elliptic curve group law. A good exercise is to work everything out an elliptic
curve, as in that case the line bundles correspond to closed points. Our goal is to show the following.

Theorem 8.6. If L is ample, then K(L) is finite and

φL : X(k)/K(L) ∼= Pic0(X). (8.11)

Proposition 8.7. Let L ∈ Pic(X), and K(L) ⊂ X(k). Then there exists a unique reduced closed
subgroup scheme Z ⊂ X such that K(L) = Z(k) and

Λ(L)|X×Z = OX×Z (8.12)

Proof. Let
Z = {x ∈ X | Λ(L)|X×x

∼= OX×Spec k(x) (8.13)

for all points x ∈ X (not necessarily closed). Then Z ⊂ X is a closed subset by Sheet 3, Question
10, and by Proposition 8.4, K(L) = Z(k). Give Z the reduced subscheme structure. By the Seesaw
Theorem 7.2 on X×Z, since Λ(L)|e×X

∼= OX
∼= Λ(L)X×x for all x ∈ Z(k), we have that Λ(L)|X×Z

is trivial. It remains to check that Z is a subgroup scheme.
As k = k and Z is reduced, Z =

⋃
Zi is a union of k-varieties, so Z×Z =

⋃
Zi×Zj is reduced,

as Zi × Zj is a variety (this does not work if k is not algebraically closed).
Consider the inclusion followed by the shear map:

Z × Z ↪→ X ×X (m,pr2)−−−−−→
∼

X ×X. (8.14)

As (m,pr2) is an isomorphism, and Z(k) = K(L) is a subgroup of X(k), the image of Z × Z
under the above composite morphism is a reduced closed subscheme of X ×X whose k-points are
Z(k) × Z(k). So Z × Z ∼= Z × Z under the morphism (x, y) 7→ (m(x, y), x), so Z is a subgroup
scheme as for all k-algebras R, Z(R) ⊂ X(R) is a subgroup.
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Remark 8.8. (i) In fact, there exists a closed subgroup scheme K(L) ⊂ X (not necessarily
reduced), such that for all closed subschemes S ⊂ X,

Λ(L)|X×S
∼= OX×S (8.15)

if and only if S ⊂ K(L). Further, we have that Z = K(L)red. This is a sort of infinitesimal
expansion of Z.

(ii) In particular, if K(L) is infinite, then there exists a nonzero abelian subvariety Y ⊂ X such
that Y (k) ⊂ X(k). We can take Y to be the irreducible component of Z containing e, and
this will be an integral closed subgroup variety of proper X, hence an abelian variety.

Now, let D ≥ 0 be an effective divisor on an abelian variety X/k with k = k. So

D =

r∑
i=1

niDi, ni ≥ 0, (8.16)

and each Di is a codimension 1 subvariety (an integral closed subscheme). Because X is smooth
over k, Weil divisors are the same thing as Cartier divisors. Define

H(D) = {x ∈ X(k) | T ∗
xD = D} (8.17)

where by T ∗
xD = D we mean that the divisors on both sides are the same. Note that T ∗

xD = T−x(D).
So as OX(T ∗

xD) = T ∗
xOX(D), H(D) is a subgroup of

K(OX(D)) = {x ∈ X(k) | T ∗
xOX(D) = OX(D)}. (8.18)

It turns out that like K(L) (c.f Proposition 8.7), H(D) is the k-points of a closed subscheme of X,
for a much simpler reason. In fact, if Y ⊂ X is any closed subset, and x ∈ X(k), then Tx(Y ) = Y
if and only if for all y ∈ Y (k), x+ y ∈ Y (k) as the k-points are dense. This is true if and only if

x ∈
⋂

y∈Y (k)

{z ∈ X | (z, y) ∈ m−1(Y )}

=
⋂

y∈Y (k)

pr1(X × {y} ∩m−1(Y )), (8.19)

and this last set is closed because X × {y} and m−1(Y ) are closed, so after projection we take the
intersection of a bunch of closed sets.

Theorem 8.9. Let D be an effective divisor on X, L = OX(D). The following are equivalent:

(i) L is ample.

(ii) K(L) is finite.

(iii) H(D) is finite.

Proof. (ii) =⇒ (iii) as H(D) ⊂ K(OX(D)).
(i) =⇒ (ii): Suppose L is ample and K(L) is infinite. Then K(L) ⊃ Y (k) for a nonzero abelian

subvariety Y of X, as K(L) is the closed points of a subgroup scheme (see Remark 8.8 (ii)). As
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L|Y is ample, we may assume Y = X. Then K(L) = X(k). So L ∈ Pic0(X) = {L | φL = 0} and
so by Proposition 8.5 (ii), i∗L = L∨. So L∨ is ample, so L ⊗ L∨ = OX is ample. This means that
X is a point, as H0(X,O⊗n

X ) = k for all n, and since OX is ample, k generates OX , so dimX = 0.
This is a contradiction as we assume that K(L) was infinite.

(iii) =⇒ (i): Consider L⊗2 = OX(2D) ∼= T ∗
xL ⊗ T ∗

−xL = OX(T ∗
xD + T ∗

−xD) for all x ∈ X(k)
by the Theorem of the square 7.9. So for all x ∈ X(k), there exists sx ∈ H0(X,L⊗2) \ {0} such
that div(sx) = T ∗

xD + T ∗
−xD (the canonical section).

We want to construct a map f : X → PN given by H0(X,L⊗2). For any y ∈ X(k), sx(y) = 0 if
and only if y ∈ T ∗

xD ∪ T ∗
−xD if and only if one of y ± x ∈ D if and only if x ∈ Ey = T ∗

yD ∪ i∗T ∗
yD.

So for all x ∈ (X \ Ey)(k), sx(y) ̸= 0. In particular, for all y ∈ X(k), there exists s ∈ H0(X,L⊗2)
such that s(y) ̸= 0. So L⊗2 gives a morphism f : X → PN

k such that f∗OPN (1) = L⊗2.
We claim that f has finite closed fibers, so that f−1(p) is finite for all p ∈ PN (k). Suppose

f(y) = f(y′) for some y, y′ ∈ X(k). Then ∀s ∈ H0(X,L⊗2), either s(y) = 0 = s(y′), or s(y) ̸= 0 ̸=
s(y′). In particular, if x ∈ Ey(k), then sx(y) = 0 so sx(y′) = 0. Thus Ey ⊂ Ey′ (closed points are
dense), so Ey = E′

y as closed subsets of X by symmetry.
So if f does not have finite fibers, then there exists an irreducible Y ⊂ f−1(p), p ∈ PN

k with
dimY > 0 and such that for all y, y′ ∈ Y (k), Ey = Ey′ . This implies that for every irreducible
component D′ of D, T ∗

yD
′ = T ∗

y′D′ because T ∗
yD

′ = T ∗
yD

′, and Ey = Ey′ so T ∗
yD ∪ i∗T ∗

yD =
T ∗
y′D ∪ i∗T ∗

y′D and Y is connected (???).
So T ∗

yD = T ∗
y′D, so y−y′ ∈ H(D), so H(D) is infinite, a contradiction. Thus f has finite fibers.

Our claim implies that L is ample by Zariski’s main theorem, which says that if f is proper and
has finite fibers, then f is finite.

Thus f is finite. It is a general fact that f∗(F ⊗ f∗ξ) = f∗F ⊗ ξ for very general ξ. Since
f∗OPN (1) = L, we have that Hp(X,F⊗L⊗2n) = Hp(Pn, f∗F⊗OPn(n)) = Hp(Pn, (f∗F)(n)) which
vanishes if p > 0 and n≫ 0 for any coherent F on X, so L is ample by Serre’s criterion 5.20.

Corollary 8.10. Any abelian variety over any base field k is projective.

Proof. Let U ⊂ X be any open affine, and let D = X \ U with the reduced subscheme structure.
By Sheet IV, D is a divisor. We want to show that L = OX(D) is ample. By Serre’s criterion
Proposition 5.20 (iv) and flat base change, it is enough to show that Lk is ample on Xk. So assume
k = k.

It is enough to show that H(D) is finite. If x ∈ H(D), then Tx(D) = D, so Tx(U) = U . So we
may assume (translating if necessary) that e ∈ U(k). This implies H(D) ⊂ U(k) since H(D) is a
subgroup. If H(D) is infinite, there exists a closed subscheme Y ⊂ X of dimension greater than 0
with Y (k) ⊂ H(D). So then Y (k) ⊂ U(k), so Y ⊂ U as the closed points are dense. As Y is proper
of positive dimension and U is affine, this is impossible.

Corollary 8.11. Let X/k be an abelian variety and n ≥ 1. Then ker([n] : X(k)→ X(k)) is finite,
[n] : X → X is surjective, and the group X(k) is divisible.

Proof. We can assume that k = k. Suppose ker[n] is finite. If x, x′ ∈ X(k), then [n](x) = [n](x′)
if and only if x′ − x ∈ ker[n]. So for all y ∈ X(k), the fiber [n]−1(y) is finite. If we base change
from k to k(y), then the same holds for any y ∈ X, so [n] has finite fibers, so as it is a morphism
between varieties of the same dimension, it is dominant (the scheme-theoretic image of [n] will be
a subvariety of dimension equal to dimX, hence dense). As X is proper, [n] is proper, so [n] is
surjective (the image of X is a closed dense subset of X, which must be X).
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Then for all y ∈ X(k) and all n ≥ 1, there exists x ∈ X(k) with nx = y, so X(k) is divisible.
Thus we just need to show that ker[n] is finite. Let L ∈ Pic(X) be an ample line bundle.

Replacing L by L ⊗ i∗L if necessary, we may assume that L ∼= i∗L is symmetric. If ker[n] is
infinite, then there exists V ⊂ X a subvariety of dimension n > 0 with [n](V ) = {e} and thus the

composite map V ↪→ X
[n]−−→ X factors as V → Spec k

e−→ X, so the restriction of [n]∗L to V is
trivial. But [n]∗L ∼= L⊗n2

by Corollary 7.10, and L is ample, so OV is ample, so OV is affine and
hence 0-dimensional as it is proper.

This implies that [n] : X → X is a finite morphism (as in the proof of ???).
As [n] is a morphism between smooth varieties of the same dimension, it is flat by miracle

flatness.
So [n]∗OX is therefore a finite flat OX -module, hence is locally free, whose rank is (by definition)

the degree of n.

Theorem 8.12. We have that deg[n] = n2g, where g = dimX. In particular, #ker[n](k) ≤ n2g.

Proof. We use Hilbert polynomials. Assume that L ∈ Pic(X) is symmetric and very ample, so it
determines a closed immersion X ↪→ PN . Consider F = [n]∗OX , which is a coherent sheaf on X.
What is its rank?

By Proposition 5.23, we have that

P (X, [n]∗OX , t) = deg[n]PX(t) +O
(
tg−1

)
(8.20)

and degPX = g = dimX. We have that [n] : X → X is finite, so for all m ∈ Z,

H0(X, [n]∗OX ⊗ Lm) = H0(X,OX ⊗ [n]∗Lm) = H0(X,L⊗mn2

). (8.21)

Thus for m≫ 0 we have that (why??)

deg[n]PX(m) = Px([n]∗OX ,m) +O
(
mg−1

)
= dimH0(X, [n]∗OX ⊗ Lm) +O

(
mg−1

)
= dimH0(X,Lmn2

) +O
(
mg−1

)
= PX(mn2) +O

(
mg−1

)
. (8.22)

As degPX = g, we have that deg[n] = n2g.

In fact, it’s easy now to show that if n is invertible in k = k, then

ker[n] ∼= (Z/n)2g (8.23)

the constant group scheme.

Theorem 8.13. Let k = k and let L be an ample line bundle. Then

φL : X(k) ↠ Pic0(X) (8.24)

is surjective.

The theorem tells us that Pic0(X) ∼= X(k)/K(L). Using this, one can give Pic0(X) the structure
of an abelian variety of the same dimension of X, the dual abelian variety.
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Proof. Let M∈ Pic0(X), and assume thatM /∈ imφL. We will compute the cohomology of

F = Λ(L)⊗ pr∗1M∨ ∈ Pic(X ×k X) (8.25)

in two different ways, by “slicing horizontally and vertically”.
First we slice horizontally x ∈ X(k). Then

F|X×x = Λ(L)|X×x ⊗M∨ = T ∗
x ⊗ L∨ ⊗M∨ = φL(x)⊗M∨ ∈ Pic0(X). (8.26)

By assumption (sinceM /∈ imφL), F|X×x ̸∼= OX . So by Sheet IV Question 7,

Hp(X,F|X×x) = 0 (8.27)

for all p ≥ 0 and for all x ∈ X(k).
This shows that for all open affines U ⊂ X, Hp(X × U,F|X×U ) = 0 by Corollary 5.39 for the

map X×U → U . So Hp(X×X,F) = 0 for all p ≥ 0 by iterated Meyer-Vietoris (Sheet II Question
5).

Now we slice in the other vertically:

F|x×X
∼= Λ(L)|x×X = T ∗

xL ⊗ L∨ ∈ Pic0(X). (8.28)

If x ∈ X(k) \K(L), then F|x×X = φL(x) ̸∼= OX so by the same argument as in the horizontal case
Hp(X,F|x×X) = 0. For for all open affines U ⊂ X \K(L),

Hp(U ×X,F|X×X) = 0 (8.29)

for all p ≥ 0.
As X is projective, there exists an open affine V ⊂ X with V ⊃ K(L). For instance, if

dimX > 0, let V be the complement of any hyperplane not meeting the finite set K(L). If
dimX = 0 then everything is trivial.

By Sheet 2 Question 5 again, Hp(V ×X,F|V×X) = Hp(X ×X,F) = 0 for all p ≥ 0. Then by
Corollary 5.39 again, for all x ∈ V (k), Hp(X,F|x×X) = 0 for all p ≥ 0. But e ∈ K(L) ⊂ V , and
H0(X,F|e×X) = H0(X,OX) = k.
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