

Discussion #2 1/26/26 – Spring 2026 MATH 54 Linear Algebra and Differential Equations

Questions

Problems

1. Answer the following *True* or *False*. Justify your answer.

(a) The points in the plane corresponding to $\begin{bmatrix} -2 \\ 5 \end{bmatrix}$ and $\begin{bmatrix} -5 \\ 2 \end{bmatrix}$ lie on a line through the origin.

Solution: False: We require all points on a line through the origin to be multiples of each other.

(b) An example of a linear combination of vectors \mathbf{v}_1 and \mathbf{v}_2 is the vector $\frac{1}{2}\mathbf{v}_1$.

Solution: True: We have

$$\frac{1}{2}\mathbf{v}_1 = \frac{1}{2}\mathbf{v}_1 + 0 \cdot \mathbf{v}_2.$$

(c) The solution set of the linear system whose augmented matrix is $[\mathbf{a}_1 \quad \mathbf{a}_2 \quad \mathbf{a}_3 \quad \mathbf{b}]$ is the same as the solution set of the equation

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + x_3\mathbf{a}_3 = \mathbf{b}.$$

Solution: True: This is how the matrix-vector multiplication works.

(d) The set $\text{Span}\{\mathbf{u}, \mathbf{v}\}$ is always visualized as a plane through the origin.

Solution: False: Consider

$$\text{Span}\{\mathbf{e}_1, -\mathbf{e}_1\} \quad \text{or} \quad \text{Span}\{\mathbf{e}_1, \mathbf{0}\}.$$

2. Write down a system of 2 equations and 3 unknowns that satisfies each of the following:

(a) No solution.

Solution: We can have

$$\begin{cases} x_1 + x_2 + x_3 = 5 \\ x_1 + x_2 + x_3 = 0 \end{cases}$$

along with many other possibilities.

(b) Infinitely many solutions.

Solution: We can have

$$\begin{cases} x_1 + x_2 + x_3 = 1 \\ x_2 + x_3 = 0 \end{cases}$$

along with many other possibilities.

3. Let

$$A = \begin{bmatrix} 1 & -4 & 2 \\ 0 & 3 & 5 \\ -2 & 8 & -4 \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} 3 \\ 7 \\ -3 \end{bmatrix}.$$

Is \mathbf{b} in the span of A 's column vectors?

Solution: No,

$$\left[\begin{array}{ccc|c} 1 & -4 & 2 & 3 \\ 0 & 3 & 5 & 7 \\ -2 & 8 & -4 & -3 \end{array} \right] \sim \left[\begin{array}{ccc|c} 1 & -4 & 2 & 3 \\ 0 & 3 & 5 & 7 \\ 0 & 0 & 0 & 3 \end{array} \right]$$

the augmented matrix $[A \mid \mathbf{b}]$ is not consistent.

Hence, \mathbf{b} is not in the span of A 's column vectors.

4. Let

$$\mathbf{u} = \begin{bmatrix} 2 \\ -1 \end{bmatrix} \quad \text{and} \quad \mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}.$$

Show that $\text{Span} \{ \mathbf{u}, \mathbf{v} \} = \mathbf{R}^2$. To do this, show that

$$\begin{bmatrix} h \\ k \end{bmatrix} \in \text{Span} \{ \mathbf{u}, \mathbf{v} \}$$

for all $h, k \in \mathbf{R}$.

Solution: The system

$$\left[\begin{array}{cc|c} 2 & 2 & h \\ -1 & 1 & k \end{array} \right]$$

is consistent for all $h, k \in \mathbf{R}$. Therefore,

$$\text{Span} \{ \mathbf{u}, \mathbf{v} \} = \mathbf{R}^2$$

5. Let

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}.$$

(a) Compute $A\mathbf{x}$ if

$$\mathbf{x} = \begin{bmatrix} -3 \\ 6 \end{bmatrix}.$$

Solution: We have

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \cdot \begin{bmatrix} -3 \\ 6 \end{bmatrix} = \begin{bmatrix} (1 \cdot (-3) + 2 \cdot 6) \\ (3 \cdot (-3) + 4 \cdot 6) \\ (5 \cdot (-3) + 6 \cdot 6) \end{bmatrix} = \begin{bmatrix} (-3 + 12) \\ (-9 + 24) \\ (-15 + 36) \end{bmatrix} = \begin{bmatrix} 9 \\ 15 \\ 21 \end{bmatrix}$$

and this vector lives in \mathbf{R}^3 .

(b) Explain why $A\mathbf{y}$ does not exist if

$$\mathbf{y} = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}.$$

Solution: The matrix A is of size 3×2 and \mathbf{y} is of size 3×1 . Since $2 \neq 3$, the inner dimensions do not line up so $A\mathbf{y}$ is not defined. You can also see this by taking the dot product of any of A 's rows and recognize that we cannot dot a vector of length 2 with a vector of length 3.

(c) If A is any 3×2 matrix, what is

$$A\mathbf{0}$$

if $\mathbf{0} \in \mathbf{R}^2$?

Solution: The term

$$A\mathbf{x} = \mathbf{0} \in \mathbf{R}^3$$

because we are taking the sum

$$0\mathbf{v}_1 + 0\mathbf{v}_2 = \mathbf{0}.$$

Here each \mathbf{v}_k is the k th column vector of a A ,

$$A = [\mathbf{v}_1 \ \mathbf{v}_2 \cdot]$$

6. If

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix} \quad \text{and} \quad \mathbf{x} = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}$$

how would you define

$$A^2\mathbf{x}?$$

Solution: We know that $A\mathbf{x} = \mathbf{y}$ is some vector in \mathbf{R}^3 so we can let

$$A^2\mathbf{x} = A(A\mathbf{x}) = A\mathbf{y}.$$

Here

$$\mathbf{y} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \\ 3 \end{bmatrix}$$

so

$$A^2 \mathbf{x} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 6 \\ 3 \end{bmatrix} = \begin{bmatrix} 11 \\ 18 \\ 9 \end{bmatrix}.$$

7. If the sum of three vectors in \mathbf{R}^3 is zero, must they lie in the same plane? Explain.